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Abstract

Background: Discovering novel interactions between HIV-1 and human proteins would greatly contribute to
different areas of HIV research. Identification of such interactions leads to a greater insight into drug target prediction.
Some recent studies have been conducted for computational prediction of new interactions based on the
experimentally validated information stored in a HIV-1-human protein-protein interaction database. However, these
techniques do not predict any regulatory mechanism between HIV-1 and human proteins by considering interaction
types and direction of regulation of interactions.

Results: Here we present an association rule mining technique based on biclustering for discovering a set of rules
among human and HIV-1 proteins using the publicly available HIV-1-human PPI database. These rules are
subsequently utilized to predict some novel interactions among HIV-1 and human proteins. For prediction purpose
both the interaction types and direction of regulation of interactions, (i.e., virus-to-host or host-to-virus) are considered
here to provide important additional information about the regulation pattern of interactions. We have also studied
the biclusters and analyzed the significant GO terms and KEGG pathways in which the human proteins of the
biclusters participate. Moreover the predicted rules have also been analyzed to discover regulatory relationship
between some human proteins in course of HIV-1 infection. Some experimental evidences of our predicted
interactions have been found by searching the recent literatures in PUBMED. We have also highlighted some human
proteins that are likely to act against the HIV-1 attack.

Conclusions: We pose the problem of identifying new regulatory interactions between HIV-1 and human proteins
based on the existing PPI database as an association rule mining problem based on biclustering algorithm. We
discover some novel regulatory interactions between HIV-1 and human proteins. Significant number of predicted
interactions has been found to be supported by recent literature.

Background
Human immunodeficiency virus-1 (HIV-1) causes
acquired immunodeficiency syndrome (AIDS) in which
human immune system begins to collapse. Progressive
failure of the immune system leads to life threatening
infection. At each stage of life cycle, HIV-1 virus hijacks
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the host cellular machinery for increasing the production
of virus genomic material. HIV-1 virus contains a single
stranded RNA genome, which codes for only 19 proteins;
thus, it relies on human cellular functions. The RNA
genome, consisting of seven structural landmarks (LTR,
TAR, RRE, PE, SLIP, CRS, and INS) and nine genes (gag,
pol, env, tat, rev, nef, vif, vpr, and vpu), encode nineteen
proteins. The prediction of possible viral-host interactions
is one of the major tasks in Protein-Protein Interaction
(PPI) research for antiviral drug discovery and treatment
optimization. Predicting PPIs between viral and host pro-
teins has contributed substantial knowledge to the drug
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design area. Recently, PPI prediction has been regarded
as an promising alternative to the traditional approach
to drug design [1]. Novel predictions can provide sound
knowledge to the drug developers for understanding the
mechanism of infection and assisting them to accelerate
the development of new therapeutic approaches.
The computational approaches for predicting PPIs are

mainly modeled as classification problems [2]. In [3] a
Bayesian classification based approach is proposed for
predicting PPIs in yeast. An assessment based on the
genomic features used in a Bayesian network approach
to predict genome-wide PPIs in yeast is proposed in [4].
Using a variant of kernel canonical correlation analysis
the pathway protein interactions have been predicted in
[5]. Afterwards an approach called Mixture-of-Feature-
Experts (mixture of classifiers) [6], some kernel based
methods [7] and a decision tree based method [8] have
been constructed to predict the set of interacting proteins
in yeast and human cells.
Most of the approaches were primarily focused to deter-

mine the PPIs in a single organism (“intra-species pre-
diction”). But the prediction of PPIs between different
organisms (“inter-species prediction”), more specifically
in virus and the corresponding host proteins is now
very important issue in development of new therapeutic
approaches and design of drugs for these viral diseases.
Recently some computational approaches are proposed
by several researchers to predict and analyze some novel
interactions between HIV-1 and human proteins.
In [9] a random forest classifier model is utilized for

predicting newHIV-1-human PPIs. The authors extended
their method by integrating a semi-supervised approach
for including partial positive interactions in [10]. A struc-
tural similarity based approach for predicting HIV-1-
human protein interactions is proposed in [11]. A support
vector machine classifier based approach is presented in
[12]. Recently a biclustering technique is used to iden-
tify significant host-cellular subsystem in [13]. They found
significant patterns of HIV-host interaction in order to
identify core processes that are active during infection.
They have used a distance measure to group the host
protein sets and identified 37 distinct higher-level subsys-
tems and highlighted significant host-cell subsystems that
are perturbed during the course of HIV-1 infection. The
interaction types between the proteins are considered but
the direction of regulation of these interactions are not
focused here.
A similar biclustering approach is studied in [14] to find

immunodeficiency gateway proteins and their involve-
ment in microRNA regulation. The authors make an
exhaustive graph search technique to identify the strong
significant biclusters from the HIV-1-human protein
interaction network, modeled as a bipartite graph. These
strong significant biclusters or bicliques are then analyzed

to find out the activity of miRNAs through the HIV-1
regulatory pathway in human at systems level.
In another study [15], a novel association rule mining

approach based on biclustering is proposed for finding
frequent closed itemsets [16] followed by a set of associa-
tion rules from the adjacency matrix of the HIV-1–human
interaction network. These rules are then utilized for
predicting new interactions. In both studies [14,15] the
interaction types and regulation direction of the HIV-
1 proteins and human proteins are not considered for
finding the bicliques.
With this observation we use an association rule min-

ing approach for finding a set of rules by considering both
the interaction types and the direction of regulations. For
this, we have annotated each interaction with interac-
tion type and divided the whole network into two anno-
tated subnetworks depending on the regulation direction
of interaction type. We have utilized Binary inclusion-
Maximal (BiMax) biclustering algorithm [17] on each sub-
network and identified all maximal biclusters from these
two matrices. We have considered the biclusters found
from each subnetwork separately, and generated all pos-
sible association rules satisfying the minimum support
and minimum confidence thresholds. Subsequently some
interactions between HIV-1 proteins and human proteins
are predicted using those association rules. As informa-
tion about the direction of regulation and types of inter-
actions are already embedded in the association rules, the
predicted interactions from those rules also inherit those
information. These additional information about the pre-
dicted interactions may contribute substantial knowledge
in understanding HIV pathogenesis.

Method
In this section biclustering-based association rule mining
approach is described. An outline of our method for anal-
ysis of bicliques and prediction of interactions has been
visualized in Figure 1.

Preparation of the HIV-1-human PPI Bipartite Network
The HIV-1-human PPI dataset which is published in [18]
consists of total 5127 interactions between 19 HIV-1 pro-
teins and 1432 human proteins. For each interactions
there is an associated interaction type. We broadly divide
all the interaction types in three classes: regulating, reg-
ulated by and bidirectional (regulation is in both way).
We find 68 unique interaction types (among them 33 are
in class 1, 25 are in class 2 and the remaining 10 are in
class 3) that are listed in Table 1. We draw a bar diagram
shown in Figure 2 that shows the distribution of inter-
action types in the HHPID dataset. Figures 2(a), (b) and
(c) represent the distribution of the edges annotated with
corresponding interaction types spanned in three classes
respectively. By annotating each human protein with its
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Figure 1 This Figure summarizes the whole process. In the first step the whole bipartite network is broadly partitioned in two networks based
on the three classes of interaction types (shown in panels a–c). Then biclustering is performed on each network to get significant bicliques (shown
in panels d–e). In the third step these bicliques are analyzed and some association rules are extracted from those biclusters. After that some novel
interactions are predicted (shown in panel f).
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Table 1 The three classes of interactions and corresponding interaction types

Interaction classes Interaction types

Class-1 (Direction of regulation is from viral to host proteins) acetylates, activates, cleaves, decreases phosphorylation of, deglycosylates, degrades,
depolymerizes, disrupts, downregulates, enhances, enhances polymerization of,
inactivates, incorporates, induces accumulation of, induces acetylation of, induces
cleavage of, induces complex with, induces phosphorylation of, induces rearrangement
of, induces release of, inhibits, inhibits acetylation of, modulates, phosphorylates, polarizes,
recruits, upregulates, relocalizes, sensitizes, stabilizes, stimulates, upregulates, regulates

Class-2 (Direction of regulation is from host to viral proteins) acetylated by, activated by, cleavage induced by, cleaved by, degraded by,
downregulated by, enhanced by, exported by, glycosylated by, imported by, inhibited
by, isomerized by, mediated by, methylated by, modified by, modulated by, myristoylated
by, palmitoylated by, phosphorylated by, processed by, recruited by, regulated by,
relocalized by, stimulated by, ubiquitinated by, upregulated by

Class-3 (Bidirectional) co-localizes with, binds, competes with, complexes with, cooperates with, fractionates
with, associates with, interacts with, requires, synergizes with

Figure 2 Bar diagram showing the distribution of interaction types in the whole HHPID dataset. Panel-a, Panel-b and Panel-c show
distribution of edges annotated by class-1, class-2 and class-3 type interactions, respectively.
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corresponding interaction type we get 2564 annotated
human proteins considering the two classes (regulating
and bidirectional) of interactions and 1271 annotated
human proteins considering the other two classes (reg-
ulated by and bidirectional) of interaction types. For
example, a protein of type HP1_upregulates signifies that
the HP1 protein is upregulated by some viral proteins
and protein of type HP2_inhibitedby represents that the
human protein HP2 inhibits some viral protein. We con-
struct two binary matrices of human and viral proteins,
HV_ positive of size 19 × 2564 , and HV_negative of size
19× 1271. An entry of ‘1’ in matrixHP_ positive and ‘-1’ in
HV_negative denotes the presence of interaction between
the corresponding pair of human and HIV-1 proteins, and
an entry of 0 represents the absence of any information
regarding the interaction of the corresponding human and
viral proteins. An entry ‘X’ in both the matrices repre-
sents the interaction between the corresponding pair of
human and HIV-1 proteins is two-way or bidirectional
interaction. The whole process is described in detail in
algorithm 1. The step-1 and step-2 are involved in prepar-
ing the datasets in the form of two matrices. In step-3 and
step-4 our algorithm uses BiMax [17] as a subroutine for
finding the maximal frequent closed itemsets or biclus-
ters with respect to aminsupport value andminconfidence
value specified in the algorithm.

Algorithm 1 Algorithm of the whole procedure
Input: HIV-1-human bipartite PPI network (Hm,n),
minsupport value,minconfidence value
Output: Biclusters, Association Rules

Step 1. Preparing the dataset
[H ′

m′ ,n′ ,H ′′
m′′ ,n′′ ] = Gen_Network (Hm,n) � Generate two directed bipartite

networks H ′
m′ ,n′ ,H ′′

m′′ ,n′′ from Hm,n.
Step 2. Replace the entries ‘X’ with ‘1’ and ‘-1’ in H ′

m′ ,n′ and H ′′
m′′ ,n′′

respectively
Step 3. Apply BiMax to H ′

m′ ,n′ with misupport value=4 and
minconfidence value=70%
Step 4. Apply BiMax to H ′′

m′′ ,n′′ with misupport value=3 and
minconfidence value=75%

Algorithm 2 The Gen_Network procedure
Input: Hm,n, interaction types in class-1, interaction types
in class-2, interaction types in class-3.
Output: Two directed bipartite networks: H ′

m′,n′ , H ′′
m′′,n′′

Check the interaction type of each edge
if interaction type belongs to class-1 then

tag this edge with ‘+1’
else if interaction type is belonging to class-2 then

tag this edge with ‘-1’
else

tag this edge with ‘X’
end if
Partition the edges into E1, E2, E3 such that E1 contain edges tagged with
‘+1’, E2 contain edges tagged with ‘-1’, E3 contain edges tagged with ‘X’.
Take ξ1 = E1

⋃
E3 and ξ2 = E2

⋃
E3

Construct two directed bipartite networks H ′
m′ ,n′ , H ′′

m′′ ,n′′ taking the edge set
ξ1 and ξ2 respectively.

Finding association rules
In data mining, association rule mining (ARM) is a popu-
lar and well researchedmethod for discovering interesting
relations between variables and showing attribute-value
associations that occur frequently in large databases. The
problem of association rule mining is defined as follows:
Let I = {i1, i2, . . . in} be a set of n items and X be an item-
set where X ⊂ I. Let T = {(t1,X1), (t2,X2), . . . (tm,Xm)}
be a set ofm transactions, where ti and Xi, i = 1, 2, . . . ,m
are the transaction identifier and the associated itemset
respectively. The support of an itemset X is the number of
transactions where all the items in X appear. An itemset is
called frequent if its support is greater than some thresh-
old min_sup. The confidence of an Association Rule (AR)
of the form P ⇒ Q, P

⋂
Q = φ, P

⋃
Q = X obtained

from an itemset X is defined as the ratio of the support of
X to the support of P. Formally the ARM problem can be
defined as follows: find the set of all rules R of the form
P ⇒ Q such that P

⋃
Q is a frequent itemset and the

confidence of P ⇒ Q is greater than a thresholdmin_conf .
The concept of frequent closed itemsets [16], which

are condensed representations of all frequent itemsets, is
defined to avoid redundancy. An itemset is called closed
itemset if none of its proper supersets have the same sup-
port value. Finding the set of frequent itemsets is equiv-
alent to find a set of all-1 biclusters each having at least
min_sup number of rows [15]. BiMax generates all maxi-
mal biclusters and the columns of each maximal bicluster
represents a closed itemset. Hence all extracted biclusters
satisfying min_sup condition provide the set of frequent
closed itemsets.
Here the rows of the binary matrices HV_ positive, and

HV_negative represent the viral proteins and the columns
represent the annotated human proteins. Each row (viral
protein) has been considered as a transaction and each
column (human protein) represents an item. Now an item
is purchased by a transaction if the corresponding value
in the matrix is ‘1’ or ‘X’ or ‘-1’. This can be interpreted
as follows: with a viral protein some of the human pro-
teins are associated with specific type of interactions. Now
finding the frequent closed itemsets from these twomatri-
ces is equivalent to identify the maximal all-1 biclusters
with a given min_sup value representing the number of
rows of these biclusters. Here BiMax algorithm is uti-
lized for finding the maximal biclusters from these two
binary matrices. These biclusters are treated as maximal
frequent closed itemset for finding the association rules.
Details of the method describing association rule mining
that utilizes the biclustering technique are given in the
Additional file 1.
Here the rules may be of types: Type-1:

[HP1_upregulates,HP2_downregulates,HP3_activates]
⇒[ {HP4,HP5}_activates,HP6_downregulates]
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and Type-2:

[VP1,VP2,VP3]⇒[VP4,VP5] .

The type-1 rules may be interpreted as follows: if the
human protein HP1 is upregulated, HP2 is downregulated
and HP3 is activated by some set of viral proteins then
there is a high chance of activation of the two proteins
HP4 and HP5 and downregulation of the protein HP6 by
the same set of viral proteins. The type-2 rules are inter-
preted as: if the viral proteins VP1, VP2, and VP3 interact
with some human proteins then VP4 and VP5 are also
likely to interact with these human proteins.

Predicting new interactions
From the extracted association rules we predict some
novel interactions associated with interaction types,
between HIV-1 and human proteins. Consider a fre-
quent closed itemset consisting of annotated human pro-
teins as follows: HP1_ f 1, HP2_ f 2, HP3_ f 3, HP4_ f 4, and
HP5_ f 5, where each fi denotes the interaction type tagged
with each of these human proteins. Suppose a rule con-
structed from those proteins is as follows:

[HP1_ f 1,HP2_ f 2,HP3_ f 3]⇒[HP4_ f 4,HP5_ f 5] .

In this scenario we further assume that the proteins
HP1_ f 1, . . . , HP5_ f 5 form a biclique with 3 viral pro-
teins V1, V2, and V3 (in other words we can say that
the support count for this frequent itemset is 3) shown in
Figure 3. Now without loss of generality suppose the pro-
teins in the antecedent of the rule form another biclique
with 4 viral proteins: V1, V2, V3, and V4 (as the subset
of a frequent itemset is always frequent, so the antecedent

is true for at least 3 viral proteins). So the confidence of
this rule is 3/4 or 75%. From this observation we can pre-
dict that the viral protein V4 is also likely to interacts with
HP4_ f 4 and HP5_ f 5, and the confidence of this predic-
tion is 75%. Figure 3 describes the whole scenario. This
process is also applied in type-2 rules for prediction of new
interactions in similar fashion.

Results and discussion
In this section we analyze the predicted biclusters or
bicliques and study the biological relevance of the human
proteins constituting those bicliques. After that we show
the association rules that are generated from those biclus-
ters. For the purpose of illustrating those rules we find out
biological importance of these rules that give an insight
view into the regulation pattern of human proteins during
the HIV-1 infection. We also show some novel predicted
interactions and find out the evidences from recent liter-
ature that strengthen our prediction. For visualizing the
predicted interactions we draw two bipartite graphs that
include all the predictions we made here.

Analysis of obtained bicliques
We found 19 biclusters in both of the matrices
HV_ positive and HV_negative. For extracting the biclus-
ters from HV_ positive and HV_negative, we plot the dis-
tribution of biclusters against min_support value for both
HV_ positive and HV_negative matrices. From Figures 4
and 5 we notice a sharp fall of the number of biclus-
ters when min_support value is changing from 3 to
4 for HV_ positive and the same situation is happen-
ing for HV_negative when min_support value changes
from 2 to 3. To get more biologically relevant biclusters
from HV_ positive matrix, we keep minimum number of

Figure 3 An example of prediction process from the association rules.
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Figure 4 Distribution of biclusters extracted from HV_ positive
against themin_support values.

viral proteins (or, min_support value) as 4 and minimum
number of human proteins (or, minimum number of
items) as 2, whereas in the case of HV_negative the cor-
responding values are 3 and 2. Thus each bicluster repre-
sents a biclique in the whole interaction graph consisting
of viral proteins and human proteins as two partitioned
sets of nodes. The viral and human proteins consisting
these biclusters are listed in Table 2 and Table 3, respec-
tively. Columns 4, 5 and 6 represent the most significant
GO-terms, GO-ids and the corresponding p-values of
three broadly classified GO category: biological process,
molecular function and cellular component, respectively.
We also find significant KEGG pathways for the human
proteins participating in each bicluster.
A careful observation on Tables 2 and 3 reveals that

some of the biclusters share some common proteins. We
compute a overlap score between each pair of biclus-
ters for detecting the amount of overlap between them.
Overlap score between a pair of biclusters is defined as
the number of common human proteins divided by the
total number of unique human proteins in these biclus-
ters. Figure 6(a) and (b) show the overlaps of the biclusters
extracted from HV_ positive and HV_negative matrices

Figure 5 Distribution of biclusters extracted from HV_negative
against themin_support values.

respectively. From Figure 6(a) we can observe that the
biclusters 5, 7 and 8 have substantial amount of over-
laps among human proteins. From Table 3 it can also be
noticed that the GO-terms associated with these biclus-
ters are almost same. This is not quite unexpected because
biclusters 5, 7 and 8 are enriched with casein kinase-2
protein family. It is established that HIV-1 transcription
is regulated by casein kinase-2 protein family. Casein
kinase-2 phosphorylates cellular proteins are involved in
HIV-1 transactivation that contain multiple casein kinase-
2 phosphorylation consensus sequences [19]. Similarly in
Figure 6(b) we see that biclusters 3, 4 and 5 have multi-
ple proteins common among them. From Table 2 it can
be also found that GO-terms associated with these biclus-
ters under biological process and cellular component are
almost same.
From Figure 6 it can be observed that the biclusters from

HIV_positive matrix show more overlaps than biclusters
from HIV_negative matrix. But if we give a closer look
on the number of proteins in each bicluster then it seems
to be so obvious. In HV_ positive matrix, each biclus-
ter contains 5.21 human proteins on average, whereas
in HV_negative matrix, each bicluster contains only 3.78
human proteins on average. Moreover, the number of
unique human proteins in all biclusters is surprisingly
different in HV_ positive (approx 26%) and HV_negative
(approx 70%) sets. Hence it is evident that overlaps among
the HV_ positive biclusters are much greater than that
among the HV_negative biclusters. From these observa-
tions we can conclude that the human proteins participat-
ing in the HV_negative biclusters are more diverse than
that in the HV_ positive biclusters.
In Table 2 the first biclique consists of 14 human

proteins BCL2, CASP3, TP53, IFNG, IFNG, IL10, IL2,
IL6, MAPK1, NFKB1, PARP1, FOS, JUN and TNF that
belong to the T cell receptor signaling pathway which
plays a key role in human immune system. Latent HIV
proviruses are thought to be primarily reactivated in
vivo through stimulation of the T-cell receptor (TCR).
Activation of the T-cell receptor (TCR) induces multiple
signal transduction pathways, that leads to the ordered
nuclear migration of the HIV transcription initiation fac-
tors NF-kB (nuclear factor kB) and NFAT (nuclear factor
of activated T-cells) [20]. Human proteins in biclique
3 and 4 also belong to the same signaling pathway.
Human proteins in biclique 5 are BCL2, CYCS, IFNG,
IL2, IL6, MAPK1, FOS and JUN that are affected by
two envelope glycoprotein GP120 and GP160, Transac-
tivating regulatory protein (Tat) and accessory protein
Vpr of HIV-1 virus that may lead to Colorectal cancer.
The human proteins in biclique 6 interact with 4 HIV-
1 proteins (2 envelop glycoprotein, Nef and Tat) and
are involved in Cytokine-cytokine receptor interaction
pathway. Cytokines are soluble extracellular proteins or
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Table 2 The significant GO-terms, GO-id and KEGG pathways found in the bicliques extracted fromHV_positivematrix, considering interaction types and direction
of the interactions

Biclique HIV protein Human protein GO term (bp) GO term (cc) GO term (mf) KEGG pathway

1 Tat Vpr env_gp120 matrix BCL2 CASP3 TP53 IFNG
IFNG IL10 IL2 IL6 MAPK1
NFKB1 PARP1 FOS JUN TNF

Regulation of apoptosis
(GO: 0042981) (3.1E-11)

Nucleoplasm
(GO:0005654) (6.8E-5)

Promoter binding
(GO:0010843) (1.7E-5)

T cell receptor signaling
pathway (1.2E-9)

2 Nef Tat env_gp120
env_gp160

BCL2 ICAM1 IFNG IL1B IL2
IL6 MAPK1 MAPK3 FOS
JUN

Positive regulation of
nitrogen compound
metabolic process (GO:
0051173) (1.8E-8)

Extracellular space
(GO:0005615) (8.3E-4)

Cytokine activity
(GO:0005125) (2.6E-4)

Toll-like receptor signaling
pathway (3.3E-7)

3 Nef Vpr env_gp120
env_gp160

CD4 BCL2 IFNG IL2 IL6
MAPK14 MAPK1 FOS JUN

Positive regulation of
macromolecule metabolic
process (GO:0010604)
(2.5E-10)

Nucleoplasm
(GO:0005654) (1.4E-2)

Protein dimerization
activity (GO:0046983)
(3.5E-3)

T cell receptor signaling
pathway (2.2E-9)

4 Nef Tat Vpr env_gp120
env_gp160

BCL2 IFNG IL2 IL6
MAPK1 FOS JUN

Positive regulation of
macromolecule metabolic
process (GO:0010604)
(6.4E-8)

Extracellular space
(GO:0005615) (3.7E-2)

Cytokine activity
(GO:0005125) (3.2E-3)

T cell receptor signaling
pathway (2.8E-6)

5 Tat Vpr env_gp120
env_gp160

BCL2 CYCS IFNG IL2 IL6
MAPK1 FOS JUN

Regulation of apoptosis
(GO:0042981) (2.9E-7)

Protein phosphatase type
2A complex (GO:0000159)
(1.1E-2)

Cytokine activity
(GO:0005125) (4.5E-3)

Colorectal cancer (2.3E-6)

6 Nef Tat env_gp120
env_gp41

CCL5 IFNG IL1B IL10 IL2
IL2RA IL6 TNF

Leukocyte migration
(GO:0050900) (2.3E-11)

Extracellular space
(GO:0005615) (1.6E-7)

Cytokine activity
(GO:0005125) (7.4E-11)

Cytokine-cytokine
receptor interaction
(8.9E-10)

7 Nef Tat Vpr env_gp120
env_gp41

IFNG IL10 IL2
IL6 TNF

Regulation of
immunoglobulin
production (GO:0002637)
(1.1E-11)

Extracellular space
(GO:0005615) (8.2E-6)

Cytokine activity
(GO:0005125) (4.9E-8)

Allograft rejection (1.3E-6)

8 Tat env_gp120 env_gp160
env_gp41

IL1A IL1B IL2 IL6 LCK Positive regulation of
protein transport
(GO:0051222) (4.6E-7)

Extracellular space
(GO:0005615) (5.9E-4)

Cytokine activity
(GO:0005125) (1.3E-5)

Graft-versus-host disease
(1.7E-6)

9 Nef Tat env_gp120 matrix CCL3 IFNG IL6 TNF Positive regulation
of protein amino
acid phosphorylation
(GO:0001934) (1.8E-9)

Extracellular space
(GO:0005615) (8.2E-6)

Cytokine activity
(GO:0005125) (4.9E-8)

Allograft rejection (1.3E-6)

10 Nef Tat Vpr env_gp120
env_gp41 matrix

IFNG IL6 TNF Regulation of chemokine
biosynthetic process
(GO:0045073) (4.9E-7)

Extracellular space
(GO:0005615) (2.9E-3)

Cytokine activity
(GO:0005125) (2.2E-4)

Graft-versus-host disease
(5.7E-5)

11 Tat Vpr env_gp120
retropepsin

BCL2 CASP3 CYCS PARP1 B cell homeostasis
(GO:0001782) (2.4E-3)

Protein phosphatase type
2A complex (GO:0000159)
(4.7E-3)

not found Amyotrophic lateral
sclerosis (ALS) (3.2E-4)

12 Tat Vpr env_gp120
matrix

CCL3 IFNG IL6 TNF Regulation of chemokine
biosynthetic process
( GO:0045073) (1.5E-6)

Extracellular space
(GO:0005615) (1.5E-4)

Cytokine activity
(GO:0005125) (3.3E-6)

Cytokine-cytokine
receptor interaction
(1.4E-4)
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Table 2 The significant GO-terms, GO-id and KEGG pathways found in the bicliques extracted fromHV_positivematrix, considering interaction types and direction
of the interactions (Continued)

13 Nef env_gp120
env_gp160 env_gp41

CD4 IL1B IL2 IL6 Positive regulation of
T cell activation (activation
(GO:0050870) (1.7E-7)

Extracellular space
(GO:0005615) (8.3E-3)
activity (GO:0008083)
(4.5E-4)

Graft-versus-host
disease (1.7E-4)

14 Nef Tat Vpr env_gp120
retropepsin

BCL2 CASP3 PARP1 B cell homeostasis
(GO:0050870) (1.7E-7)

Nuclear envelope
(GO:0005635) (3.2E-2)

Transcription factor
binding (GO:0008134)
(7.7E-2)

Amyotrophic lateral
sclerosis (ALS) (2.1E-2)

15 Nef Tat env_gp120
env_gp160 env_gp41

IL1B IL2 IL6 Positive regulation
of immunoglobulin
secretion (GO:0051024)
(3.7E-4)

Extracellular space
(GO:0005615) (5.4E-2)

Not found Not found

16 Nef Tat Vpr env_gp120
env_gp160 env_gp41

IL2 IL6 Positive regulation of
immunoglobulin secretion
secretion (GO:0051024)
(3.7E-4)

Extracellular space
(GO:0005615) (5.4E-2)

activity (GO:0008083)
(1.2E-2)

Graft-versus-host disease
(7.7E-3)

17 Nef Vpr Vpu env_gp120 CD4 CASP3 NFKB1 Regulation of T cell
activation (GO:0050863)
(1.7E-2)

Intracellular organelle
lumen (GO:0070013)
(1.9E-2)

Protein
homodimerization activity
(GO:0042803) (5.1E-2)

Epithelial cell signaling in
Helicobacter pylori
infection (2.7E-2)

18 Tat Vpr env_gp120
env_gp160 retropepsin

BCL2 CYCS Positive regulation of
catalytic activity activity
(GO:0043085) (3.8E-2)

Protein phosphatase type
2A complex (GO:0000159)

Amyotrophic lateral
sclerosis (ALS) (1.0E-2)

19 Nef env_gp160
env_gp41 matrix

CALM1 IL6 Positive regulation of DNA
binding (GO:0043388)
(5.2E-3)

Not found Not found Not found
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Table 3 The significant GO-terms GO-id and KEGG pathways found in the bicliques extracted fromHV_negativematrix, considering interaction types and direction
of the interactions

Biclique HIV protein Human protein GO term (bp) GO term (cc) GO term (mf) KEGG pathway

1 env_gp120 env_gp160
env_gp41

MAN1B1 MGAT2 MAN2C1
MAN2A1 MAN2A2 MANBA
GBA3 MAN2B2 GAA
MAN2B1 MAN1A1
MAN1A2 MAN1C1 GCS1
GANAB GANC GBA2

Mannose metabolic
process (GO:0006013)
(4.5E-11)

Golgi apparatus part
(GO:0044431) (6.9E-6)

Mannosidase activity
(GO:0015923) (8.7E-25)

N-Glycan biosynthesis
(1.0E-11)

2 Rev capsid matrix
nucleocapsid p1 p6

UBB UBC UBD Long-term strengthening
of neuromuscular junction
(GO:0042062) (7.4E-4)

Cytosolic small ribosomal
subunit (GO:0022627)
(3.1E-3)

Structural constituent of
ribosome (GO:0003735)
(1.3E-2)

Not found

3 Rev Tat matrix p6 MAPK1 MAPK3 UBB UBC
UBD

Cell cycle (GO:0007049)
(7.2E-4)

Nucleoplasm (3.3E-4) MAP kinase activity
(GO:0004707) (3.2E-3)

Dorso-ventral axis
formation (1.5E-2)

4 RT Vif env_gp120 IFNA1 IFNA16 IFNA2 IFNA7 Response to virus
(GO:0009615) (5.1E-7)

Extracellular space
(GO:0005615) (1.5E-4)

Interferon-alpha/beta
receptor binding
(GO:0005132) (2.3E-10)

Regulation of autophagy
(3.0E-7)

5 Rev Vpu matrix
retropepsin

CSNK2A1 CSNK2A2
CSNK2B

Wnt receptor signaling
pathway (GO:0016055)
(GO:0016055) (9.6E-5)

Not found Protein serine/threonine
kinase activity (Adherens
junction (2.3E-4)

6 Rev Tat Vif matrix p6 MAPK1 MAPK3 Ras protein signal
transduction
(GO:0007265) (7.8E-3)

Nucleolus (GO:0005730)
(5.5E-2)

MAP kinase activity
(GO:0004707) (1.1E-3)

Dorso-ventral axis
formation (4.9E-3)

7 RT Rev Vpu matrix
retropepsin

CSNK2A1 CSNK2B Wnt receptor signaling
pathway (GO:0016055)
(9.8E-3)

Not found Protein serine/threonine
kinase activity
(GO:0004674) (3.3E-2)

Adherens junction (1.5E-2)

8 RT Rev matrix CSNK2A1 CSNK2B PRKCA Wnt receptor signaling
pathway (GO:0016055)
(2.0E-2)

Not found Protein serine/threonine
kinase activity
(GO:0004674) (1.1E-3)

Tight junction junction
(6.9E-4)

9 Tat integrase matrix KPNB1 RANBP5 TNPO1 Protein import into
nucleus, docking
(GO:0000059) (1.3E-3)

Nuclear pore
(GO:0005643) (6.2E-3)

Nuclear localization
sequence binding
(GO:0008139) (5.4E-4)

Not found

10 Rev Tat matrix MAPK1 MAPK3 PRKCA UBB
UBC UBD

Regulation of
synaptogenesis
(GO:0051963) (1.7E-5)

Cytosol (GO:0005829)
(1.2E-4)

MAP kinase activity
(GO:0004707) (4.3E-3)

Aldosterone-regulated
sodium reabsorption
(6.3E-5)

11 Nef env_gp120
env_gp160

CD4 ITGAL ICAM1
HLA-DRB1 PRKCQ LCK

T cell activation
(GO:0006468) (7.8E-6)

Plasma membrane part
(GO:0044459) (1.5E-4)

Glycoprotein binding
(GO:0001948) (1.4E-2)

Cell adhesion molecules
(CAMs) (1.6E-4)

12 Tat capsid env_gp120 IFNG CD3D CD3E CD3G T cell activation
(GO:0042110) (2.6E-4)

Alpha-beta T cell recep-
tor complex (GO:0042105)
(2.2E-7)

T cell receptor binding
(GO:0042608) (6.9E-4)

T cell receptor signaling
pathway (9.3E-6)

13 Nef env_gp120 env_gp41 CXCR4 CD4 Initiation of viral infection
(GO:0019059) (1.6E-3)

Not found Coreceptor activity
(GO:0015026) (1.5E-3)

Not found
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Table 3 The significant GO-terms GO-id and KEGG pathways found in the bicliques extracted fromHV_negativematrix, considering interaction types and direction
of the interactions (Continued)

14 Nef Tat env_gp120 TP53 ICAM1 T cell activation
during immune response
(GO:0002286) (9.6E-4)

Not found Not found Not found

15 Nef Tat Vpr CDK9 TP53 Transcription,
DNA-dependent
(GO:0006351) (2.2E-2)

Nucleoplasm part
(GO:0044451) (4.3E-2)

Not found Not found

16 Nef RT Tat PRKCA TP53 Induction of apoptosis
by intracellular signals
(GO:0008629) (4.0E-3)

Nsoluble fraction
(GO:0005626) (6.6E-2)

Not found Non-small cell lung cancer
(1.1E-2)

17 Tat env_gp120 env_gp160 CD28 ICAM1 Regulation of immune
effector process
(GO:0002697) (7.5E-3)

External side of plasma
membrane (GO:0009897)
(1.3E-2)

Viral myocarditis (1.4E2)

18 Tat Vpr env_gp120 TP53 NFKB1 Regulation of specific
transcription from RNA
polymerase II promote
(GO:0006357)(6.9E-3)

Nucleoplasm
(GO:0005654) (3.3E-4)

Promoter binding
(GO:0010843) (4.4E-3)

Pancreatic cancer (1.4E-2)

19 Tat env_gp120 env_gp41 CCL5 IFNG Leukocyte chemotaxis
(GO:0030595) (2.7E-3)

Extracellular space
(GO:0005615) (5.4E-2)

Cytokine activity
(GO:0005125) (1.5E-2)

Cytokine-cytokine
receptor interaction
(5.2E-2)
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Figure 6 Overlap score between all pairs of biclusters extracted from HV_negative (shown in (a)) and HV_ positive (shown in (b)).

glycoproteins that are crucial intercellular regulators and
mobilizers of cells engaged in innate as well as adaptive
inflammatory host defenses, cell growth, cell death, angio-
genesis, and development and repair processes aimed
at the restoration of homeostasis (http://www.genome.
jp/kegg/pathway/hsa/hsa04060.html). Human proteins in
some bicliques are involved in Graft-versus-host disease
in which a lethal complication of allogeneic hematopoi-
etic stem cell transplantation (HSCT) is noticed where
immunocompetent donor T cells attack the genetically
disparate host cells. The importance of HIV-1 envelop gly-
coprotein in preventing the Graft-versus-host disease has
recently been studied in [21]. The proteins in bicliques
11, 14, 18 are involved in the pathway Amyotrophic lat-
eral sclerosis (ALS) which is caused by progressive, lethal,
degenerative disorder of motor neurons. It is established
that HIV causes diverse disorders of the brain, spinal cord
and peripheral nerves. HIV infection could be a risk fac-
tor for either amyotrophic lateral sclerosis (ALS) itself or
other motor neuron diseases [22].
In Table 3 biclique 1 consists of 3 HIV-1 envelop gly-

coproteins (env gp120, env gp160, and env gp41) and
17 human proteins which are associated with molecu-
lar function mannosidase activity and are also involved
in the pathway N-Glycan biosynthesis. Recent studies
have shows that the HIV-1 N-glycan composition plays a
crucial role in the balance between dendritic cell (DC)-
mediated antigen degradation and presentation and DC-
mediated virus transmission to target cells [23]. The
human proteins in biclique 4 are found to be involved
in the regulation of autophagy. Autophagy is an intra-
cellular lysosomal (vacuolar) degradation process that is
characterized by the formation of double-membrane vesi-
cles, known as autophagosomes, and it is involved in
cell growth, survival, development and death. In [24]
it is argued that HIV-1 infection can down-regulate

autophagy in infected cells during acute infection. We
find in bicliques 5 and 7, human proteins are belong-
ing to the Adherens junction pathway which is the most
common type of intercellular adhesions, and are impor-
tant for maintaining tissue architecture and cell polarity
and can limit cell movement and proliferation. Adherens
junction consists oftransmembrane cadherins and cyto-
plasmic attached α-catenins and β-catenins assembled
together into a multiprotein complex. This complex orga-
nization of cadherin-catenins and cytoskeleton strength-
ens cell-cell adhesion and has a role in signal transduction.
Indirect evidence suggests that adherens junction may be
involved in HIV-1 induced dysfunction of the vascular
endothelium [25].

Analysis of predicted rules
We have predicted a total of 93 (62 rules are from the
biclusters ofHV_ positive and 31 rules are from the biclus-
ters of HV_negative matrices) type-1 rules and 33 type-2
rules (among them 26 are from HV_ positive and 7 are
from HV_negative). We studied the distribution of the
confidence levels of these predicted rules. Figure 7 shows
the distribution of the number of predicted rules at dif-
ferent confidence levels. From Figure 7(a) and (b) we can
notice a significant change in the number of predicted
rules when confidence level is changing from 80% onward
for HV_ positive and the same situation is happening for
HV_negative when confidence level changes from 75%
onward. For extracting more biologically relevant rules
we set the confidence level threshold at 80% for type-
1 rules and 75% for type-2 rules. From Figure 7(a) we
find that among 88 rules 58 rules have the confidence
level above 79% whereas from Figure 7(b) we notice all
the 38 rules have their confidence level above 75%. All
the predicted type-1 and type-2 rules can be found in the
Additional file 2. Here we show the type-1 rules predicted

http://www.genome.jp/kegg/pathway/hsa/hsa04060.html
http://www.genome.jp/kegg/pathway/hsa/hsa04060.html


Mukhopadhyay et al. BMC Bioinformatics 2014, 15:26 Page 13 of 22
http://www.biomedcentral.com/1471-2105/15/26

70 75 80 85 90
0

5

10

15

20

25

30

35

Confidence level (%)

N
um

be
r 

of
 p

re
di

ct
ed

 r
ul

es

74 76 78 80 82 84
0

5

10

15

20

25

30

Confidence level (%)

N
um

be
r 

of
 p

re
di

ct
ed

 r
ul

es

(a) (b)
Figure 7 Distribution of number of predicted rules extracted from HV_ positive (shown in (a)) and HV_negative (shown in (b)) at different
confidence level.

from HV_ positive, that have the confidence level 85% or
above, and 7 type-2 rules predicted from HV_negative
that have confidence level 75% or above in Tables 4 and 5
respectively. All the type-1 rules are important for getting
valuable information about the regulation mechanism of
human proteins. Those rules also say that regulation of
some proteins triggered the regulation of other proteins
with a high probability. So a proper analysis of these rules
reveals the interdependence of the regulation mechanism
of a set of proteins constituting a rule. For predicting the
type-2 rules from the biclusters found in HV_ positive
and HV_negative we treat human proteins as rows and
viral proteins as columns in those biclusters. These type-
2 rules are also important for explanation of the predicted
interactions between some HIV-1 proteins and human

proteins. So proper analysis of those type-1 and type-
2 rules gives a wider aspect in regulation mechanism
and prediction of interactions between HIV-1 and human
proteins.

Predicted interactions
From the biclusters found from twomatricesHV_ positive
and HV_negative we predict some highly confident
interactions between HIV-1 and human proteins. We
also analyze the biological relevance of those inter-
actions and conduct a literature survey to establish
experimental evidence supporting our predicted inter-
actions.
From the HV_ positive matrix 64 interactions between

8 HIV-1 and 31 human proteins and from HV_negative

Table 4 Predicted rules generated from the biclusters (treating viral proteins as rows and human proteins as columns)
found in HV_positive matrix

Sl no. Association rules Confidence

Rule-1 [IFNG, IL6, TNF_UPREGULATES] ⇒ [IL10_UPREGULATES,IL2_DOWNREGULATES] 83.333

Rule-2 [IL6_UPREGULATES] ⇒ [IFNG,TNF_UPREGULATES] 85.715

Rule-3 [BCL2_DOWNREGULATES] ⇒ [CASP3_ACTIVATES, PARP1_INDUCES CLEAVAGE OF] 83.333

Rule-4 [CASP3_ACTIVATES] ⇒ [BCL2_DOWNREGULATES,PARP1_INDUCES CLEAVAGE OF] 83.333

Rule-5 [IL2_DOWNREGULATES] ⇒ [IL1B,IL6_UPREGULATES] 83.333

Rule-6 [IL2_DOWNREGULATES, IL6_UPREGULATES] ⇒ [IL1B_UPREGULATES] 83.333

Rule-7 [IL6_UPREGULATES] ⇒ [IL2_DOWNREGULATES] 85.714

Rule-8 [BCL2_DOWNREGULATES] ⇒ [CYCS_INDUCES RELEASE OF] 83.333

Rule-9 [IL6_UPREGULATES] ⇒ [IFNG,TNF_UPREGULATES] 85.714

Rule-10 [BCL2_DOWNREGULATES] ⇒ [CASP3_ACTIVATES,PARP1_INDUCES CLEAVAGE OF] 83.333

Rule-11 [CASP3_ACTIVATES] ⇒ [BCL2_DOWNREGULATES,PARP1_INDUCES CLEAVAGE OF] 83.333

Rule-12 [IL2_DOWNREGULATES] ⇒ [IL1B, IL6_UPREGULATES] 83.333

Rule-13 [IL2_DOWNREGULATES, IL6_UPREGULATES] ⇒ [IL1B_UPREGULATES] 83.333

Rule-14 [IL6_UPREGULATES] ⇒ [IL2_DOWNREGULATES] 85.714

Rule-15 [BCL2_DOWNREGULATES] ⇒ [CYCS_INDUCES RELEASE OF] 83.333
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Table 5 Predicted rules generated from the biclusters
(treating human proteins as rows and viral proteins as
columns) found in HV_negativematrix

Sl no. Association rules Confidence (%)

Rule-1 [env_gp160,env_gp41]⇒[env_gp120] 79.2

Rule-2 [matrix,nucleocapsid]⇒[Rev,Tat,capsid,p1,p6] 75

Rule-3 [nucleocapsid,p6]⇒[Rev,Tat,capsid,matrix,p1] 75

Rule-4 [Rev,Tat,matrix]⇒[p6] 83.3

Rule-5 [capsid,env_gp120]⇒[Tat] 80

Rule-6 [RT,env_gp120]⇒[Vif] 80

Rule-7 [Vif,env_gp120]⇒[RT] 80

matrix 50 interactions between 13 HIV-1 proteins and
32 human proteins are predicted. For finding the exper-
imental evidences of our predicted interactions we have
extensively searched PUBMED for finding some recent
reports describing the predicted interactions. The refer-
ences of the articles we find from PUBMED showing the
proof of our predictions are listed in Additional file 3.
Among the 64 interactions 35 interactions and among 50
interactions 24 interactions are found to be experimen-
tally validated and these are shown in Tables 6 and 7 with
corresponding PUBMED ids.
The HIV-1 protein Trans-Activator of Transcription

(TAT) contains a protein transduction domain, which
allows Tat to enter cells by crossing the cell membrane
causing infection and is therefore known as a cell pene-
trating peptide. Here we predict 14 human proteins that
interact with Tat protein with specific interaction types.
In row 1 of Table 6 we predict the downregulation of
human CD4 cell by HIV-1 protein Tat. In [26] it is estab-
lished that the downregulation of CD127 expression in
HIV infection may be due to HIV protein Tat. In HIV
infection, decreased CD127 expression on T-cells is cor-
related with reduced CD4(+) T-cell counts, increased viral
replication and immune activation [26]. We also pre-
dict that Tat activates caspase-3 (CASP3) and caspase-9
(CASP9). In [27] it has been found that Tat activated both
caspase-3 and endonuclease-G, a caspase-independent
effector of apoptosis. We predict upregulation of human
protein Interleukin 6 (IL6) by HIV-1 protein Tat and
Nef. Tat induces the production of human interleukin-6
(huIL-6) and its receptor (huIL-6Ra) and activate STAT3
signaling [27]. In row 2 of Table 6 we can notice that
activation of MAPK14 protein is mediated by Tat. In
[28] it is also supported that Tat-mediated p66shc pro-
tein transduction augments TNF-a-induced p38 MAPK
phosphorylation in endothelial cells. Row 7 of Table 6
indicates that Tat induces the cleavage of human protein
Poly(ADP-ribose) polymerase 1 (PARP1). In [29] PARP1 is
established as a negative regulator of HIV-1 transcription
through competitive binding with Tat or the Tat.P-TEFb

complex to TAR RNA (Trans-activation response element
(TAR) RNA). The positive transcription elongation fac-
tor, P-TEFb, which plays an essential role in the regulation
of transcription by RNA polymerase II (Pol II) is targeted
by the Tat protein which bypasses normal cellular P-TEFb
control and directly brings P-TEFb to the promoter prox-
imal paused polymerase in the HIV genome and forms
a complex Tat.P-TEFb. PARP-1 has a high affinity for
TAR RNA and binds to the loop region of TAR RNA
and displaces Tat or Tat.P-TEFb from the RNA [29]. In
row 8 of Table 6 we have also predicted that Tat down-
regulates human protein BCL2 (B-cell lymphoma 2). In
[30] it is noticed that Tat decreases the ratio of anti-
and pro-apoptotic proteins, Bcl2/Bax. In [30] the author
hypothesized that morphine enhances ‘HIV-Tat induced
toxicity’ in human neurons and neuroblastoma cells.
Enhanced toxicity by Tat and morphine was accompanied
by increased numbers of TUNEL positive apoptotic neu-
rons elevated caspase-3 levels and decreased ratio of anti-
and pro-apoptotic proteins, Bcl2/Bax [30]. Nuclear factor
(NF)-kB is a master regulator of pro-inflammatory genes
and is upregulated by Tat as shown in row 29 of Table 6.
HIV-1 Tat transactivator activates NF-kB by hijacking the
inhibitor IkB-a and by preventing the repressor binding to
the NF-kB complex [31]. CXCR-4 is an alpha-chemokine
receptor specific for stromal-derived-factor-1 (SDF-1 also
called CXCL12), a molecule endowed with potent chemo-
tactic activity for lymphocytes. This receptor is one of
several chemokine receptors that HIV isolates can use
to infect CD4+ T cells. In row 30 of Table 6 we show
that HIV-1 protein Tat interacts with CXCR-4. In [32]
the HIV-1 Tat protein has been described as a ‘natural’
CXCR4 antagonist with anti-HIV-1 activity. Chemokine
(C-C motif ) ligand 3 (CCL3) is a protein which is encoded
by the CCL3 gene. Chemokines are important mediators
of inflammation. In Table 6 we predict that Tat upreg-
ulates CCL3. In [33] it has been demonstrated that the
chemokine expression is dramatically increased in both
the sera and brain of HIV-1 infected individual. TheHIV-1
protein Tat has been detected in the central nervous sys-
tem (CNS) of HIV infected individuals, and has induced
chemokines from various cells within the brain. In [33]
the authors speculated that the possible reason behind
the dramatic increase in the secretion of the chemokines
CCL2, CXCL8, CXCL10, CCL3, CCL4, and CCL5 is the
interaction of human microglia, the resident phagocytes
of the brain, with HIV-1 protein Tat.
Nef (Negative Regulatory Factor) is a HIV-1 protein

which functions to manipulate the host’s cellular machin-
ery and thus allow infection, survival and replication of
the pathogen. Our prediction includes 12 human proteins
that interact with Nef (5 proteins activated, 4 proteins
downregulated, 2 proteins upregulated, and 1 interacted
with).
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Table 6 Predicted interactions found from biclusters constructed using rows as viral proteins and columns as human
proteins (Sl. No. 1 to 26) and rows as human proteins and columns as viral proteins (Sl. No. 27 to 36)

Sl. No. HIV-1 Protein Human protein Interaction types Pubmed Id

1 Tat CD4 DOWNREGULATES 22421574, 22342181

2 Tat MAPK14 ACTIVATES 20378550

3 Tat CASP9 ACTIVATES 11509621

4 Tat CASP3 ACTIVATES 17505978

5 Tat IL6 UPREGULATES 17151125, 9169458

6 Tat CD4 INTERACTS WITH 12457987

7 Tat PARP1 INDUCES CLEAVAGE OF 15498776

8 Tat BCL2 DOWNREGULATES 11994280

9 Nef JUN ACTIVATES 12419805

10 Nef FOS ACTIVATES 20068037, 10388555

11 Nef MAPK1 ACTIVATES 21738584

12 Nef LCK ACTIVATES 16849330

13 Nef CASP3 ACTIVATES 11123279

14 Nef IFNG DOWNREGULATES 21858117

15 Nef BCL2 DOWNREGULATES 15858021

16 Nef CCL3 DOWNREGULATES 20015995

17 Nef IL12B UPREGULATES 19019824

18 Nef IL6 UPREGULATES 11519483, 8799208

19 matrix IL10 UPREGULATES 18178611

20 matrix IL1B UPREGULATES 18593760

21 matrix IL2 DOWNREGULATES 21482826

22 env_gp120 CASP3 ACTIVATES 16330530

23 env_gp120 CD4 DOWNREGULATES 22226668

24 env_gp160 TNF UPREGULATES 8938574

25 Vpu BC+L2 DOWNREGULATES 11696595

26 env_gp120 MAPK8 ACTIVATES 11468147

27 env_gp120 TNF INHIBITS 16873189

28 Tat NFKBIA UPREGULATES 22187158

29 Tat IFNB1 UPREGULATES 9223731

30 Tat CXCR4 INTERACTS WITH 11594685

31 Tat CCL3 UPREGULATES 15204927

32 Nef NFKB1 INTERACTS WITH 12419805

33 Nef BCL2L1 DOWNREGULATES 11123279

34 Vpr CASP9 ACTIVATES 12096338

35 Vpr CYCS INDUCES RELEASE OF 16511342

Direction of the regulations are taken from viral to human proteins.

We can notice in row 9 of Table 6 that Nef activates
human protein JUN. In [34] a time- and dose-dependent
increase in JNK activation accompanied with increased
AP-1 activation, was observed by Nef protein. The c-Jun
N-terminal kinases (JNKs) is originally a kinase protein
that binds to c-JUN within its transcriptional activation
domain. Other human proteins like FOS, MAPK1, LCK

and CASP3 are predicted to be activated by Nef pro-
tein. In [35] Nef has been found to reduce the expres-
sion of anti-apoptotic proteins like BCL2, and activate
the apoptotic hallmark like mitochondrial depolarization,
activation of caspase-3, and cleavage of the caspase target
poly(ADP-ribose) polymerase. These findings also sup-
port our prediction ‘Nef downregulates BCL2’. In rows
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Table 7 Predicted interactions found from biclusters constructed using rows as human proteins and columns as viral
proteins (Sl. No. 1 to 10) and rows as viral proteins and columns as human proteins(Sl. No. 11 to 24)

Sl. No. HIV-protein Human protein Interaction types Pubmed id

1 env_gp160 CCL4 Inhibited by 21118814

2 env_gp160 CCL5 Inhibited by 21118814

3 env_gp160 HDAC6 Inhibited by 16148047

4 Rev IPO7 Imported by 16704975

5 capsid IPO7 Imported by 20147401

6 Rev CD4 Inhibited by 8573391

7 matrix NFKBIA inhibited by 10722660

8 Capsid APOBEC3G Interacts with 17065315

9 Vif TP53 Interacts with 21071676

10 RT CD4 Interacts with 22426469

11 Vif MAPK3 Phosphorylated by 10074203

12 Vif UBB Ubiquitinated by 15781449

13 Vif UBD Ubiquitinated by 18596088

14 Vif MAPK1 Ubiquitinated by 10074203

15 Gag_Pr55 IFNA16 Inhibited by 11197304

16 Gag_Pr55 IFNA7 Inhibited by 8553538

17 Tat CD4 Interacts with 12457987

18 Tat PRKCQ Interacts with 9446795

19 Tat LCK Interacts with 18854243

20 p6 MAPK3 Phosphorylated by 11773377

21 p6 MAPK1 Phosphorylated by 15155723

22 Gag_Pr55 IFNA2 Inhibited by 8553538

23 env_gp160 TP53 Interacts with 19023333

24 Nef CD28 Interacts with 21819585

Here the direction of the interactions are taken from human to viral proteins.

17 to 21 of Table 6 we predict 5 interactions between
some common families of interleukin proteins with HIV-
1 protein Nef and matrix. Interleukins are a group of
cytokines and its large portions are responsible for the
development of human immune system. Poor production
of Th1-type cytokines including interleukin-12 (IL-12)
is generally observed in CD4+T cells during the acute
immunodeficiency syndrome associated with HIV-1 pro-
gression [36]. Cellular immunity is critically depended on
Interleukins and its production is significantly decreased
during HIV infection.
Our predictions also include other HIV-1 proteins

like Vpr, matrix, Vpu, Envelop glycoprotein-120, and
glycoprotein-160 that interact with some human pro-
teins associated with specific interaction types. Our pre-
dicted interaction set also shows interactions between
some common family of Caspases or cysteine-aspartic
proteases which belong to family of cysteine proteases,
with HIV-1 proteins Tat, Nef and Vpr. We notice that
in our predicted interaction set Caspase proteins like

CASP3 and CASP9 are activated by HIV-1 protein Tat,
Nef and Vpr. The sequential activation of Caspase 3
has an impact in the execution phase of ‘Cell apoptosis’
which is commonly known as the process of ‘pro-
grammed cell death’. This suggests that Tat, Nef and
Vpr are involved in many biological activities relat-
ing to the activation of Caspase family proteins which
subsequently leads to apoptosis and programmed cell
death.
In several studies it is established that Mitogen-

activated protein kinase (MAPK) signal pathway is
responsible for acting as a positive regulator of HIV-1
replication cycle. MAPK1, MAPK8 and MAPK14 which
belong to the MAPK kinase family, are involved in differ-
ent biological and cellular processes such as proliferation,
differentiation, transcription regulation and development.
From Table 6 we can notice that MAPK1, MAPK8 and
MAPK14 are activated by HIV-1 proteins Nef, Tat and
Env_Gp120 respectively. This suggests that HIV-1 pro-
teins Nef, Tat and Env_gp120 have an increased effect in
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different biological and cellular processes that are respon-
sible for the activation of MAPK kinase.
We are able to find PUBMED ids of some recent arti-

cles indexed in PUBMED that also agree with these pre-
dicted interactions. In Table 7, we show a total of 24
predicted interactions in which the direction of regula-
tion of those interactions are from human proteins to
viral proteins. The interactions in this direction are valu-
able as these types of interactions are useful for predicting
human proteins which may prevent HIV infection. The
predicted human proteins that are participating in these
types of interactions are likely to be responsible for block-
ing HIV infection. Some recent reports whose PUBMED
ids are listed in column 5 of Table 7, support this fact.
For example, we predict that envelop glycoprotein 160
is inhibited by human proteins CCl4, CCl5 and HDAC6.
In [37] the first two interactions are fully supported.
The authors also investigated the mechanisms whereby
nonpeptidic, low molecular weight CC chemokine recep-
tor 5 (which is a G-protein-coupled receptor for the
chemokines CCL3, CCL4, and CCL5) ligands block HIV-
1 entry and infection. In [38] it is demonstrated that
acetylation of alpha-tubulin is inhibited by the overex-
pression of active Histone deacetylase 6 (HDAC6). It is
also established that Histone deacetylase 6 (HDAC6) pre-
vents HIV-1 envelope-dependent cell fusion and infection

without affecting the expression and codistribution of
HIV-1 receptors [38]. As another example, we predict
that HIV-1 virion infectivity factor (Vif ) is phosphory-
lated by MAPK3. In [39] it is reported that the activation
of mitogen-activated protein kinases (MAPK) through the
Ras/Raf/MEK signaling pathway enhances the infectiv-
ity of HIV-1 virions infectivity factor (Vif ). These evi-
dences establish that many of our predicted interactions,
which are not already included in HIV-1-human interac-
tion database are supported by different literature. This
demonstrates the utility of the proposed method.
In Figures 8 and 9, two bipartite networks that are

constructed using our predicted interactions are shown.
Figure 8 shows 64 predicted interactions found from the
biclusters of HV_ positive matrix. Here 8 specific interac-
tion types are shown in different colors. The big red nodes
represent HIV-1 proteins and the yellow nodes represent
the corresponding human proteins that are predicted to
interact with these viral proteins by specific interaction
types. Similarly Figure 9 shows 50 predicted interactions
found from the biclusters of HV_negative matrix and 7
different interaction types are shown in 7 different colors.

Detecting overlaps with other methods
We have shown overlaps among the interactions pre-
dicted by Tastan et al. [9], Doolittle et al. [11], and
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Figure 8 The predicted bipartite network constructed from biclusters found in HV_ positivematrix. The big red circles denote viral proteins
and small yellow circles denote human proteins that interact with these viral proteins. Here the edges are colored corresponding to the interaction
types. These predicted interactions consist of 8 HIV-1 proteins and 31 human proteins.
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Mukhopadhyay et al. [15] with our proposed method.
This is shown in Figure 10. As these studies utilize
extremely uncorrelated methodologies for prediction pur-
pose , hence as expected, it is reflected on the overlap
also. From this figure it appears that there is no rea-
sonable overlaps between these three studies with our
present study. Moreover we did not find reasonable over-
laps among the other three studies also. Our present
study has overlap of 18 and 17 interactions with that of
Mukhopadhyay et al. [15] and Tastan et al. [9], respec-
tively, but we do not find any interaction common with
Dooloittle et al. [11]. Although Mukhopadhyay et al. [15]
used association rule mining approach which is also uti-
lized in the present study for prediction purpose, Venn
diagram shows a little proportion of overlaps of inter-
actions between Mukhopadhyay et al. and the present
study. It is possibly due to the incorporation of interaction
types and directionality in our present study. However
the intuition behind detection of overlaps among several
methods is not to consider these methods as competi-
tive, but it could be more appropriate to consider them
as collaborative in order to capture the full set of possible

interactions and to put priority on the overlapped interac-
tions. The predicted interactions which are supported by
at least two studies are of great importance as these inter-
actions are supported by more than one methodology. In
the Additional file 4, we have listed all the interactions
supported by two and three studies separately. Moreover,
these methods have certain limitations for predicting the
interactions so they are not expected to capture the same
set of interactions.
However, we have performed a significance test to inves-

tigate whether the overlaps among all the studies is more
than expected by random chance. As we are not aware
of the distribution of overlaps, so a nonparametric test is
the best option here. We have utilizedWilcoxon Ranksum
test for this purpose. We have first created HIV-1–human
protein pairs by randomly selecting HIV-1 proteins and
human proteins from HHPID dataset. We have selected
four sets of random pairs by retaining the size of each set
same as the size of four predicted sets which are being
tested. Next, we have computed the overlaps among each
pair of random interaction sets. We performed this pro-
cedure 500 times and got 500 random overlaps for each
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Figure 10 Venn diagram showing the overlap between the predicted interaction sets of four studies.

pair of random sets. These are then compared with the
real overlaps using Wilcoxon Ranksum test. The result-
ing p-values are shown in Figure 11. From this figure it
is evident that the resulting p-values are significantly low
in all cases of overlaps. This is strong evidence against
the null hypothesis suggesting that the overlaps are sig-
nificant. Hence it is evident that although the overlaps
are small, still they are more than expected by random
chance.

Conclusions
Here we have posed the problem of identifying new reg-
ulatory interactions between HIV-1 and human proteins
based on the existing PPI database as an association
rule mining problem based on BiMax biclustering algo-
rithm. For predicting new interactions here we consider
the direction of regulation as well as the types of the
interactions as reported in the HIV-1-human interac-
tion database. Therefore, our predicted interaction set

Figure 11 This figure summarizes the results of Wilcoxon Ranksum test. Here 4 random set of HIV-1–human protein pairs are generated. The
size of 4 random sets is retained same as the size of predicted set of Tastan et al., Doolittle et al., Mukhopadhyay et al., and our present study. This is
repeated for 500 times and overlaps between each pair of sets is calculated. The p-values shown in figure signify the result of Wilcoxon ranksum test
between this random overlaps and the real overlaps.
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has some additional information along with the predicted
pairs. It keeps record about the regulation direction and
interaction type of all predicted pairs. It may substan-
cially reduce the effort of molecular biologist as it does not
require to explore all possible combinations of interaction
types that could be possible for a predicted pair.
We have shown the overlaps among the predicted sets of

interactions of present study with some other studies. All
other studies have utilized completely different method-
ologies and possible prediction set of each study is utterly
dependent on these methodologies. So, it is somewhat
not justified to compare all these techniques together
by considering only the predicted interaction sets pro-
duced by all these methods. For example Doolittle et al.,
exploited structural similarity information of HIV-1 and
human proteins for prediction purpose. So, the human
protein which does not show structural similarity with any
possible HIV-1 proteins, can not be included in the pos-
sible prediction set. Moreover they have not used HHPID
dataset for prediction, instead they utilized HPRD, PIG
databases for collecting information about interactions,
Dali and PDB databases for acquiring information about
structural similarity and HHPID dataset for validating the
predictions. Although Tastan et al., Mukhopadhyay et al.,
and our present study use HHPID dataset for prediction
purpose but the main drawback of Mukhopadhyay et al.
technique is that it cannot predict any interaction whose
protein pairs are not included in a maximal biclique. Our
present study also has the same limitation but with a little
improvement that it keeps the interaction type and direc-
tionality information with each biclique. However Tastan
et al., produces all possible pairs of interactions and are
able to compute prediction score of each of the possi-
ble interaction pairs. But they are not able to provide the
interaction type and directionality information associated
with the predicted set of interactions.
For validating the predicted interactions some evidences

from recent literature are collected to establish the fact
that our predicted interactions are supported in differ-
ent literature. We also performed a gene ontology based
study on the predicted bicliques and found some sig-
nificant pathways in which the human proteins of those
bicliques are involved. Considering the regulation direc-
tion we have predicted two types of association rules at
certain confidence levels and illustrated the general mean-
ing of those types of rules. Here we have also predicted
some human proteins that are immuned to certain HIV-1
attack. Type-2 rules are also equally important for pre-
diction of new interactions between HIV-1 and human
proteins.
Here we have not considered the PPI information

among the host proteins for predicting PPIs between
human and HIV-1 proteins. Biclustering in HIV-1–
human PPI network yields strong interaction modules or

bicliques between human and HIV-1 proteins. Associa-
tion rules are extracted from these bicliques and predicted
interactions are based on these predicted rules. So, for
prediction purpose we only utilize viral-host interactions.
It may be possible to integrate host PPI information along
with the viral-host PPIs. The interactions between human
proteins that form bicliques with viral proteins may be
taken into consideration. This may contribute greater
knowledge about the predicted interactions.
Also Similar type of analysis may be done on other type

of host-pathogen networks. Host pathogen interaction
networks that have sufficient information about the inter-
action type between host proteins and pathogen proteins
can be similarly analyzed for host-pathogen interaction
prediction.
In analyzing the type-1 rules we overlooked the effect

caused by the downregulation or upregulation or activa-
tion of the proteins constituting the antecedent part of
these rules. Some of these proteins may be act as a tran-
scription factor to activate or repress the regulation of
other human proteins and so on. Chaining through these
regulatory pathways if we can find some human proteins
that affect some viral proteins then we will be able to
find a closed path which starts with some set of viral pro-
teins and ends up with the same or different viral proteins
through the regulation mechanism of proteins constitut-
ing this path. Analysis of these regulatory pathways may
greatly contribute to our understanding of the process of
HIV-1 replications and different stages of virus life cycle
in human body. For this type of analysis we have to con-
sider the whole regulatory network of human proteome
besides the viral-host bipartite network. We suggest this
as a future work plan for this work.

Availability
The Additional file 1 and other related materials are
available at http://kucse.in/hiv/.
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