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Abstract

Background: The advances of systems biology have raised a large number of sophisticated mathematical models for
describing the dynamic property of complex biological systems. One of the major steps in developing mathematical
models is to estimate unknown parameters of the model based on experimentally measured quantities. However,
experimental conditions limit the amount of data that is available for mathematical modelling. The number of
unknown parameters in mathematical models may be larger than the number of observation data. The imbalance
between the number of experimental data and number of unknown parameters makes reverse-engineering problems
particularly challenging.

Results: To address the issue of inadequate experimental data, we propose a continuous optimization approach for
making reliable inference of model parameters. This approach first uses a spline interpolation to generate continuous
functions of system dynamics as well as the first and second order derivatives of continuous functions. The expanded
dataset is the basis to infer unknown model parameters using various continuous optimization criteria, including the
error of simulation only, error of both simulation and the first derivative, or error of simulation as well as the first and
second derivatives. We use three case studies to demonstrate the accuracy and reliability of the proposed new
approach. Compared with the corresponding discrete criteria using experimental data at the measurement time points
only, numerical results of the ERK kinase activation module show that the continuous absolute-error criteria using both
function and high order derivatives generate estimates with better accuracy. This result is also supported by the second
and third case studies for the G1/S transition network and the MAP kinase pathway, respectively. This suggests that the
continuous absolute-error criteria lead to more accurate estimates than the corresponding discrete criteria. We also
study the robustness property of these three models to examine the reliability of estimates. Simulation results show
that the models with estimated parameters using continuous fitness functions have better robustness properties than
those using the corresponding discrete fitness functions.

Conclusions: The inference studies and robustness analysis suggest that the proposed continuous optimization criteria
are effective and robust for estimating unknown parameters in mathematical models.
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Background
In systems biology, mathematical modelling plays an
important role in identifying regulatory mechanisms of
biochemical systems. These models have been applied
successfully to study dynamic interactions among system
components and simulate systems responses to external
signals. Such an important tool offers enormous potential
for exploring system functions at various levels and also
serves as the test beds for generating hypotheses and
designing biological experiments. However, one of the
major challenges in mathematical modelling is the
unknown model parameters that are estimated from
experimentally measured quantities. Although part of
the model parameters may be calculated directly from
experimental data, such as the protein degradation rate
that can be obtained from the half-life of the protein,
the majority of model parameters has to be estimated
by matching computer simulations to experimental data.
In spite of substantial progresses achieved in the last
20 years, this reverse-engineering problem still remains a
challenge in computational biology [1,2]. The key issue is
how to infer a large number of model parameters from
a small number of experimental data [3]. Moreover, this
reverse-engineering problem has been extended from
parameter estimation to model selection [4,5].
There are two major types of approaches for estimating

model parameters. The first approach uses optimization
techniques to find the optimal parameter sets [2]. These
optimization methods usually convert parameter inference
into a functional optimization problem and then minimize
the objective function that measures the goodness-of-
fit of the model according to the given experimental
data. Two major types of optimization methods in the
literature are called gradient-based optimization methods
and evolutionary-based optimization methods. Based on
these two basic approaches, various techniques such as
simulated annealing, linear and non-linear least-squares
fitting, genetic algorithms and evolutionary computation
have been employed to build computational biology
models [6-9]. In addition, to address the key issue of
local maxima in optimization methods, deterministic
and stochastic global optimization methods have been
explored recently in systems biology [10].
Another type of inference methods is statistical methods

including the Bayesian inference methods [11-14]. The
major advantage of these methods is the ability to infer
the whole probability distribution of parameters, rather
than a single optimal estimate. In addition, they can deal
with noisy data and uncertain data. Recent advances in
Bayesian computation including Markov chain Monte
Carlo (MCMC) techniques and sequential Monte Carlo
(SMC) methods that have been successfully applied to
infer models of biological systems [15,16]. However,
the potential obstacles of these methods in application
include the potential correlation of generated samples,
dependence of algorithm performance on prior hypothesis,
and requirement of likelihood function. To address these
issues, for example, for parameter estimation problems
without analytically likelihoods, approximate Bayesian
computation (ABC) methods have been designed to
provide stable parameter estimates with relatively high
computational efficiency [17], and thus have been applied
to a wide range of models in systems biology [18]. Most
recently, we have proposed two algorithms to improve
the performance of ABC algorithms using the simulated
likelihood density [19].
Each inference method mentioned above has its advan-

tages and disadvantages. It is difficult to find an inference
method that is effective to all the biological models and is
better than all the other methods [20]. We may develop
inference methods that are good enough within the given
tolerances. There are a number of criteria to measure the
quality of an inference method, including the efficiency
regarding the computing time, flexibility about changing
systems constraints, and robustness to the noise in experi-
mental data [21]. In addition, a good inference algorithm
should have less local minima in order to accelerate
the convergence rate of optimization algorithms [20].
Currently the widely used objective functions are based on
the least-squared error criterion or more sophisticated
weighted objective functions for deterministic models
[7,9,22] or likelihood functions for stochastic models
[23,24]. To address the issue of local maxima, a number of
objective functions have been proposed using smoothness
conditions of simulations such as the slope error criterion
[25] and the second derivative criterion [20]. In addition,
the combination of different objective functions leads
to more sophisticated multiple-objective approaches that
embed different sources of information into a single
computational framework [26,27].
Another important characterisitcs of inference methods

is the identifiability, namely whether the model parameters
can be uniquely determined by the given experimental data
[2,28]. When the number of experimental data is less than
the number of unknown parameters, the inverse problem is
non-identifiable. To address the issue of insufficient data,
we used experimental data at measurement time points
and a linear interpolation to generate more data at other
time points [29]. In this work we go one step further by
proposing a novel approach to infer unknown parameters
in mathematical models. In addition to minimize the differ-
ence between simulation and experimental data at the
measurement time points using existing methods, the
innovation of this approach is to reduce potential errors at
non-measurement time points. To achieve this, we propose
to use a cubic spline interpolation to generate continuous
representation of system dynamics and calculate simulation
errors over the entire time interval of the observation.
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Based on the least-squared error criterion, we propose
a number of continuous approaches using function values
as well as the first and second order derivatives. Although
the continuous representation of systems dynamics has
been employed for other problems such as the continuous
representation of microarray gene expression data [30],
this is the first time that it is used to infer model para-
meters. Following this, three case studies are presented
to demonstrate the effectiveness and accuracy of the
proposed continuous approaches.

Methods
Objective functions
Here we are interested in the problem of estimating
parameters in the following ODE model

dX
dt

¼ f t;X; θð Þ; t∈ a; b½ �; ð1Þ

where X = (X1,…, Xn)
T are the solution of the model, and

θ = (θ1,…, θm) are the unknown model parameters. The
parameter inference is searching for the optimal value of θ
for which the simulation (Xi0,…, XiN) (i = 1,…, n) of
model (Eq. 1) at time points (t0,…, tN) have the best-fit to
experimental observations (Xi(t0),…, Xi(tN)). Here Xij is
the simulated i-th component at time point tj, and Xi(tj)
the experimental data of the i-th component at tj. A major
issue in parameter inference is the criterion to measure
the best-fit. The widely used criterion is the least-squared
error in the form of either an absolute error DJA1 or a
relative error DJR1, given by

DJA1 ¼ 1
nN

Xn
i¼1

XN
j¼1

Xij−Xi tj
� �� �2

; ð2Þ

DJR1 ¼ 1
nN

Xn
i¼1

XN
j¼1

Xij−Xi tj
� �� �2

maxj X2
ij

n o : ð3Þ

In addition to the error of function values, the slope
error criterion has been introduced to infer parameters
in the S-system model [31], which is an ODE model to
describe the dynamics of metabolic networks. The
absolute and relative slope errors are given by

DJA2 ¼ 1
nN

Xn
i¼1

XN
j¼1

X 0
ij−X

0
i tj
� �� �2

; ð4Þ

DJR2 ¼ 1
nN

Xn
i¼1

XN
j¼1

X 0
ij−X

0
i tj
� �� �2

maxj X 0
ij

� �2
� �; ð5Þ

where X
0
i tj
� �

denotes the slope of experimental data for
the i-th component at time point tj, and X

0
ij is the
numerical derivative of the i-th simulated component
at tj.
Similarly, the criteria based on the second derivative

are introduced here as

DJA3 ¼ 1
nN

Xn
i¼1

XN
j¼1

X
00
ij−X

00
i tj
� �� �2

; ð6Þ

DJR3 ¼ 1
nN

Xn
i¼1

XN
j¼1

X
00
ij−X

00
i tj
� �� �2

maxj X
00
ij

� �2
� �; ð7Þ

DJA4 ¼ 1
nN

Xn
i¼1

XN
j¼1

X
00
ij

� �2
; ð8Þ

DJR4 ¼ 1
nN

Xn
i¼1

XN
j¼1

X
00
ij

� �2

maxj X
00
ij

� �2
� �; ð9Þ

where X′′ i(tj) is the second derivative of Xi(tj). These
criteria are designed either to reduce the errors of the
second order derivatives (6, 7) or to decrease the “rough-
ness” of the solution, and hence to relieve the overfitting
problem (8, 9) [20].
In addition, there are potentially some large simulation

errors at the non-measurement time points even when the
simulation is in good agreement with experimental data at
the measurement time points. To improve the reliability of
inference, one approach is to generate observation data at a
number of non-measurement time points by using a linear
interpolation [29]. However, such a low order interpolation
may generate errors to the generated observation data
and further influence the accuracy of inferred model
parameters. To improve the accuracy, this technique
can be extended in one of the following two ways: we
may either use a higher order interpolation method or
estimate observation data at more non-measurement
time points. The extreme case of the latter approach is
to use the whole trajectory rather than observations at
discrete time points to calculate the difference between
simulated and experimental data. Here we use this
approach to develop a continuous optimization method
to infer model parameters reliably.
We first expand the discrete experimental data into

the continuous function Xi(t) (t ∈ [a, b]) by using a cubic
spline interpolation. After obtaining numerical solution
�Xi tð Þ of the model (Eq. 1) in the same interval, we define
the following continuous optimization criteria, given by

CJA1 ¼ 1
n b−að Þ

Xn
i¼1

Z b

a

�Xi tð Þ−Xi tð Þ½ �2dt; ð10Þ
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CJR1 ¼ 1
n b−að Þ

Xn
i¼1

Z b

a

�Xi tð Þ−Xi tð Þ½ �2

maxt∈ a;b½ � �X 2
i tð Þ

n o dt; ð11Þ

CJA2 ¼ 1
n b−að Þ

Xn
i¼1

Z b

a

�X 0
i tð Þ−X 0

i tð Þ� 	2
dt; ð12Þ

CJR2 ¼ 1
n b−að Þ

Xn
i¼1

Z b

a

�X 0
i tð Þ−X 0

i tð Þ� 	2
maxt∈ a;b½ � �X 0

i tð Þ� �2n o dt; ð13Þ

CJA3 ¼ 1
n b−að Þ

Xn
i¼1

Z b

a

�X 00
i tð Þ−X 00

i tð Þ� 	2
dt; ð14Þ

CJR3 ¼ 1
n b−að Þ

Xn
i¼1

Z b

a

�X 00
i tð Þ−X 00

i tð Þ
� 	2

maxt∈ a;b½ � �X 00
i tð Þ� �2n o dt;

ð15Þ

CJA4 ¼ 1
n b−að Þ

Xn
i¼1

Z b

a

�X 00
i tð Þ� 	2

dt; ð16Þ

CJR4 ¼ 1
n b−að Þ

Xn
i¼1

Z b

a

�X 00
i tð Þ

� 	2
maxt∈ a;b½ � �X 00

i tð Þ� �2n o dt:

ð17Þ
To take full advantage of each criterion, we develop a

number of multiple-objective fitness functions to estimate
model parameters, which are listed in Table 1. Note that
the integrals in the above criteria are calculated using a
numerical integration method such as the composite
Table 1 Fitness functions for measuring simulation error

Criterion Notation Definition Comment

DAE1 DJA1 Eq. (2) Discrete absolute err

DAE2 DJA1 þ DJA2 (2, 4) Discrete absolute err

DAE3 DJA1 þ DJA2 þ DJA3 (2, 4, 6) Discrete absolute err

DAE4 DJA1 þ DJA2 þ DJA4 (2, 4, 8) Discrete absolute err

DRE1 DJR1 (3) Discrete relative erro

DRE2 DJR1 þ DJR2 (3, 5) Discrete relative erro

DRE3 DJR1 þ DJR2 þ DJR3 (3, 5, 7) Discrete relative erro

DRE4 DJR1 þ DJR2 þ DJR4 (3, 5, 9) Discrete relative erro

CAE1 CJA1 (10) Continuous absolute

CAE2 CJA1 þ CJA2 (10, 12) Continuous absolute

CAE3 CJA1 þ CJA2 þ CJA3 (10, 12, 14) Continuous absolute

CAE4 DJR1 þ DJR2 þ DJR4 (10, 12, 16) Continuous absolute

CRE1 CJR1 (11) Continuous relative e

CRE2 CJR1 þ CJR2 (11, 13) Continuous relative e

CRE3 CJR1 þ CJR2 þ CJR3 (11, 13, 15) Continuous relative e

CRE4 CJR1 þ CJR2 þ CJR4 (11, 13, 17) Continuous relative e

(DAE: discrete absoulte error, CAE: continuous absolute error, DRE: discrete relative
Simpson’s rule. The maximal value of a function over the
interval [a, b] is defined as the maximum of function
values at the sampling points.

Cubic spline interpolation
The essential idea of the cubic spline is to fit data by
using a piecewise function of the form

S tð Þ ¼
s1 tð Þ if t1≤t≤t2
s2 tð Þ if t2≤t≤t3
⋯

sm−1 tð Þ if tm−1≤t≤tm

8>><
>>:

where each ti is the time point of observed data, and si
(t) is a cubic polynomial, defined by

si tð Þ ¼ ai t−tið Þ3 þ bi t−tið Þ2 þ ci t−tið Þ þ di

for i = 1,…,m − 1. The cubic spline S(t) will interpolate
all data points. In addition, the function, first and second
derivatives are continuous for the interval [t1, tm]. Com-
pared with the piece-wise linear interpolation, a cubic
spline function has two major advantages: a higher order
of approximation to increase approximation accuracy and
smoothness of first and second derivatives. The latter is
important in this work since we include the first and
second derivatives of simulation/observation to measure
simulation errors.
There are various types of the cubic spline functions

depending on different boundary conditions. Denoting
the second derivative of the spline as Mi = S′′ (ti), three
examples of cubic spline interpolation are natural spline
or of function values

or of function and derivative values

or of function, derivative, second derivative values

or of function, derivative values as well as values of second derivative.

r of function values

r of function and derivative values

r of function, derivative, second derivative values

r of function, derivative values as well as values of second derivative.

error of function values

error of function and derivative values

error of function, derivative, second derivative values

error of function, derivative values as well as values of second derivative.

rror of function values

rror of function and derivative values

rror of function, derivative, second derivative values

rror of function, derivative values as well as values of second derivative.

error, CRE: continuous relative error).
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(M1 =Mm = 0), parabolic spline (M1 =M2, Mm − 1 =Mm)
and cubic runout spline (M1 = 2M2 −M3, Mm = 2Mm − 1 −
Mm − 2). This work uses the natural spline interpolation to
generate continuous functions for numerical solutions of
system (Eq. 1) and for experimental data.

Genetic algorithm
All model parameters are estimated using a genetic algo-
rithm, which is an effective searching method for finding
unknown kinetic rates when the search space is associated
with a complex error landscape. We use a MATLAB
toolbox developed by Chipperfield et al. [32] to infer
the unknown model parameters. This toolbox uses
MATLAB functions to build a set of versatile routines
for implementing a wide range of genetic algorithms.
The major procedures of the genetic algorithm toolbox
include population representation and initiation, fitness
assignment, selection functions, crossover operators,
mutation operators and multiple subpopulation support.
In this work we use the function crtbp to create the binary
initial population. The linear-ranking and non-linear-
ranking algorithm ranking is used to transform the raw
objective function values into non-negative figures of
merit for each individual. In addition, a selection function
reins is used to effect fitness-based reinsertion when the
entire population is not reproduced in each generation,
and a high-level entry function select is used to provide a
convenient interface to the selection routines. Finally, a
high-level entry function recombine and the routine
mut are applied to provide all the crossover operators
and perform binary and integer mutations.
In our numerical tests, the genetic algorithm run

over 300 generations for each estimate and there are a
population of 100 individuals in each generation. The
estimation error generally remains unchanged after the
200th generation in each implementation. The value of
a model parameter is taken initially from the uniform
distribution in the range of [0,Wmax]. Here Wmax is the
maximal possible value of that parameter. Different
parameters may have different values of Wmax. The initial
estimate of rate constants can be changed by using
different random seeds in the MATLAB toolbox, leading
to different final estimates of the model parameters. We
use different seeds of random numbers in MATLAB to
generate different initial sets of model parameters in
the genetic algorithm. For each initial set of parameters,
we simulate the mathematical model to obtain the
time-course profiles of the system. Different criteria
listed in Table 1 are used in the genetic algorithm as
the objective function to calculate the difference between
numerical and standard simulations. For the discrete
criteria, we simply compare the differences between the
simulated and exact data at each measurement time
point. However, when using the continuous criteria, we
use a cubic spline to obtain the continuous function as well
as its first and second derivatives for both experimental
data and numerical solutions. The calculated fitness value
is then returned to genetic algorithm for selecting the
optimal model parameters.

Accuracy of the estimated model parameters
In this work we first use a given set of model parameters
θ * = (θ1 *,…, θm *) to generate a simulation that is used as
the observation data, and then infer the model parameters
based on the generated observation data. Due to the
local optimization issue for genetic algorithm, we infer
a number of sets of model parameters using each con-
tinuous or discrete criterion and choose 10 sets with
the smallest values of objective function for each criterion.
The estimation error of each set of inferred model
parameters θ(j) = (θ1

(j),…, θm
(j)) is defined as the relative

difference from the model parameters θ * = (θ1 *,…, θm *).
The accuracy of each criterion is defined as the mean
of the estimation errors, given by

E ¼ 1
10

X10
j¼1

Xm
i¼1

θ jð Þ
i −θ�i




 



θ�i

: ð18Þ

To treat each parameter equally, we choose relative
errors to measure the difference between the estimated
parameters and model parameters. This mean error is a
measure for accuracy property of each criterion. In
addition, we present standard deviation (STD) for these 10
sets of estimates as additional information for the quality
of estimates. However, the comparison of discrete and
continuous approaches is mainly based on the magnitude
of the mean errors of these approaches.

Robustness analysis
The robustness property of a mathematical model with
respect to a set of perturbations P is defined as the average
of an evaluation function Ds

a;P of the system over all
perturbations p ∈ P, weighted by the perturbation prob-
abilities prob(p), given by [33]

Rs
a;P ¼

Z
p∈P

prob pð ÞDs
a;Pdp: ð19Þ

Here we use the following measure to evaluate the
robustness property

Rs
a;P ¼

X
i;j

Z
p∈P

prob pð Þ �xij pð Þ−xij
� �2

dp;

where �xij pð Þ is the numerical solution of the i-th compo-
nent at time point tj using the perturbed parameters,
and xij is the corresponding simulated data without par-
ameter perturbation. In addition, the standard deviation
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of simulation errors is used to measure the fluctuations
of perturbed simulations.
For each estimated model parameter θi, the perturb-

ation is set to

�θi ¼ max θi 1þ μNð Þ; 0f g ð20Þ
with the Gaussian random variable N(0,1). Here μ = 0.2 is
the perturbation strength for the first and second systems
and μ = 0.1 for the third system. We have also tested
other values of strength. When the value of μ is small,
the difference between the robustness properties is too
small to distinguish for different methods. However, if
this value is large, the model with perturbed parameters
may be stiff and numerical solutions may blow out.
For each set of estimated parameters, we generate 5000

sets of perturbed model parameters. The variation of each
set of perturbed parameters to the unperturbed model
parameters is measured by

ε ¼
X5000
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
j¼1

�xij−xij
� �2

vuut :

Then we calculate the mean and standard deviation
(STD) of the variance εl. For each criterion, we considere
the top 10 sets of estimated parameters that have the
smallest values of the fitness function. The mean and STD
of the variation εl for each set of parameter are averaged,
which are used as the final results presented in Additional
file 1: Tables S6, S7 and S8.

Results
The ERK kinase activation module
The first case study estimates the rate constants of ERK
kinase activation module using experimental data [34].
The MAP kinase pathway comprises of a set of three
protein kinases, namely Raf, MEK and ERK. Raf kinase
is activated by the input signal Ras protein, and then
these three kinases are activated sequentially [35]. In
vivo, activated MEK activates ERK kinase dominantly in
the cytosol by phosphorylating threonine and tyrosine
residues in the activation loop [36]. In the process of
distributive catalysis, the activated MEKpp that binds
to the substrate ERK, activates one of the sites and
releases the intermediate mono-phosphorylated ERKp.
Then, a new collision between MEKpp and ERKp is re-
quired for the conversion of this intermediate into the
dual-phosphorylated ERKpp. The biochemical reactions
for the ERK activation are represented by

MEKppþ ERKp
→a1

←d1

MEKpp‐ERKp→
k1

MEKppþ ERKp

MEKppþ ERKp
→a2

←d2

MEKpp‐ERKp→
k2

MEKppþ ERKp
Based on the above reactions, the mathematical model
for a system of six differential equations is given by

d Mpp½ �
dt

¼ −a1 Mpp½ � E½ �−a2 Mpp½ � Ep½ �
þ d1 þ k1ð Þ Mpp−E½ � þ d2 þ k2ð Þ Mpp−Ep½ �

d E½ �
dt

¼ −a1 Mpp½ � E½ � þ d1 Mpp−E½ �
d Mpp−E½ �

dt
¼ a1 Mpp½ � E½ �− d1 þ k1ð Þ Mpp−E½ �

d Ep½ �
dt

¼ −a2 Mpp½ � Ep½ � þ k1 Mpp−E½ � þ d2 Mpp−Ep½ �
d Mpp−Ep½ �

dt
¼ a2 Mpp½ � Ep½ �− d2 þ k2ð Þ Mpp−Ep½ �

d Epp½ �
dt

¼ k2 Mpp−Ep½ �;

ð21Þ

where [M] and [E] are the concentrations of MEK and
ERK, respectively, and [Mpp-E] represents complex
[MEKpp-ERK].
We use a stiff-implicit solver ode23tb in MATLAB to

simulate model (Eq. 21) with rate constants [37]

a1; a2; d1; d2; k1; k2ð Þ
¼ 1:1765; 28:2352; 48:2353; 128:2353; 12:9412; 1:1765ð Þ

ð22Þ
and initial condition [0.165, 5, 0, 0, 0, 0] (in Figure three
in [34]). The generated simulation is used as the stand-
ard simulation which is very close to the experimental data
(Additional file 1: Figure S1). The natural cubic spline is
used to calculate the first and second derivatives of the
standard simulation. Then we use a genetic algorithm to
search for the optimal model parameters [32]. The values
of Wmax for these 6 parameters all are equal to 300.
For each criterion in Table 1 we estimate 100 sets of

parameters and selected the top 10 sets that have the
smallest fitness values. Additional file 1: Figure S1 shows
that the standard simulation is very close to the simula-
tion using the estimated model parameters. Since the
fitness functions are based on different criteria, it is not
appropriate to compare fitness values directly. Thus we
calculated the mean error (Eq. 18) and STD of the esti-
mated parameter sets, which are presented in Figure 1 and
Additional file 1: Table S2. Numerical results in Table 2
and Additional file 1: Table S2 suggest that the continuous
criteria with function values as well as the first and second
derivatives (CAE4) give estimates with the best accuracy
in terms of mean error and the most reliability in terms of
the STD. In addition, the discrete criteria may generate
more accurate estimates than the corresponding continu-
ous criteria if only the function values are used to calculate
the fitness values (e.g. DAE1 and DRE1). However, for
the continuous criteria, more constraints based on the



Figure 1 Mean error and STD of different approaches for imferring the ERK kinase activation module. Criterion CAE4 has the smallest
values of both mean error and STD.
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values of derivatives lead to more accurate estimations,
which is consistent with the previous research results
[20]. Furthermore, the STD of each criterion is consistent
with the corresponding mean error, which suggests that
the estimates of a criterion would be more stable if the
estimation error is smaller.
To find out the reasons for variations in the performance

of various criteria, we plot the mean of each estimated
model parameter, which is the average of the top 10 esti-
mates for each criterion in Additional file 1: Figure S2. To
match the relative errors in Additional file 1: Table S2, the
averaged parameters were scaled by the exact parameter;
and the exact parameters in Additional file 1: Figure S2 are
Table 2 Summary of the accuracy of the estimated model par

ERK kinase module

The number of the absolute criteria 4

The number of the relative criteria 4

Better continuous absolute criteria CAE3, CAE4

Better discrete absolute criteria DAE1, DAE2

Better continuous relative criteria CRE2, CRE3, CRE4

Better discrete relative criteria DRE1

The best criteria CAE4

The comparison of discrete and continuous approaches is mainly based on the mag
file 1: Tables S2, S3 and S4.
always unit one. Additional file 1: Figure S2 suggests that
the criterion CAE4 (the continuous absolute-error criterion
using the first and second derivatives) produces estimates
in which each estimated parameter is close to the exact one
with moderate errors. However, the discrete relative-error
criteria may produce estimates with large errors.

The G1/S transition module
The second case study discusses an autocatalytic system
of the G1/S transition module. In this network pRB (ret-
inoblastoma) is a tumour suppressor from the family of
pocket proteins, and E2F1 is a transcription factor targeting
gene that regulates cell cycle progression. The tumour
ameters

G1/S transition module MAP kinase pathway

4 0

4 4

CAE1, CAE2, CAE3, CAE4 N/A

0 N/A

CRE4 CRE1, CRE2, CRE3, CRE4

DRE1, DRE2, DRE3 0

CAE1 CRE2

nitude of the mean errors of these approaches which are given in Additional
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suppressor pRB was originally discovered in childhood
cancer of the retina and turned out to be the crucial
inhibitor for the G1/S phase progression. For these
reasons, the pair E2F/DP (i.e. the complex of protein
E2F and DP) and pRB have been regarded as the central
players of the transition phenomena. Here E2F1 is its
own transcriptional activator, and it is also a transcription
factor for its inhibitor pRB [38]. This module of two genes
shows bistability dynamics, which is described by the
following equations [38].

d
dt

pRB½ � ¼ k1
E2F1½ �

Kn1 þ E2F1½ �
J11

J11 þ pRB½ �−φpRB pRB½ �

d
dt

E2F1½ � ¼ kp þ k2
a2 þ E2F1½ �2
K 2

n2 þ E2F1½ �2
J12

J12 þ pRB½ �−φE2F1 E2F1½ �:

ð23Þ
For the 10 parameters in the model, we use the exact

values (k1 = 1, Kn1 = 0.5, J11 = 0.5, ϕpRB = 0.005, kp = 0.05,
k2 = 1.6, a = 0.04, Kn2 = 4, J12 = 5, ϕE2F1 = 0.1) and initial
conditions [pRB, E2F1] = [1,5] [38] to generate a standard
simulation whose values at t = [0, 50, 100, 150, 200, 250,
300] are used as the experimental data (Additional file 1:
Figure S3).
We employed the same approach as used for the first

case study to investigate the accuracy of different criteria.
The values of Wmax for these 10 parameters all are equal
to 5. Numerical results in Table 2 and Additional file 1:
Table S3 suggested that, among the absolute-error criteria,
the continuous criteria always generate more accurate
estimates than the corresponding discrete criteria. In
addition, among all types of continuous criteria, the
absolute-error criteria produced more accurate estimates
than the relative-error criteria. Therefore, continuous
absolute-error criteria are superior to the other criteria in
both mean error and STD. In particular, continuous
absolute-error criterion of function values (CAE1) has the
minimal mean error. Numerical results in the second case
study suggested that the continuous absolute-error criteria
are effective approaches for inferring unknown parameters
in mathematical models.

The MAP kinase pathway
The first two tested models have only small numbers of
unknown parameters. Therefore the next question is
whether the results obtained from these two small-scale
systems are still valid for systems with a large number
of unknown parameters. To answer this question, we
used a recently proposed model with 57 unknown model
parameters as the third test system. This model describes
the dynamics of the MAP kinase pathway, which is one of
the most prominent signaling pathways [29]. This model
comprises a cytosolic subsystem and a nuclear subsystem.
In the cytosolic subsystem, the Ras-GTP is the signal
input of the MAP kinase cascade, which activates Raf
molecules in a single step. This activation is followed
by sequential activation of the dual-specificity MAP
kinase kinase (MEK) by Raf* (i.e., the activated Raf ) in
a single-step processive module. The activated MEKpp
in turn activates ERK in a two-step distributive module.
The activated ERKpp is the signal output of the MAK
kinase module [29,36]. MEK and ERK kinases can diffuse
between the cytosol and nucleus freely. In the nuclear
subsystem, the activated MEKpp can further activate
ERK kinase via the distributive two-step phosphorylation
module. In addition, phosphatases, termed as Raf-P’ase,
MEK-P’ase and ERK-P’ase, can deactivate the activated
Raf*, MEKpp and ERKpp kinases, respectively, at different
subcellular locations [29]. The detailed information of
phosphorylation and dephosphorylation reactions as
well as the differential equation model are given in the
Additional file 1.
The extended observation data, namely the proteomic

data together with the interpolated data at the time points
between the observations, are used to infer the model
parameters. The proteomic data are relative protein
concentrations, in which the activity of each kinase is
normalized by its activity at 5 min. Thus we only use
the four relative criteria (DRE1 ~ 4 and CRE1 ~ 4) to
infer the model parameters. We also use the kinetic
rate constants estimated from the same dataset [29] to
generate a simulation. The rate constants and initial
conditions are also provided in the Additional file 1.
Additional file 1: Figure S4 gives simulated and observed
datasets. Similar to the experimental data, we use the
activities of Raf, MEK and ERK kinases to infer parame-
ters. Here MAK and ERK data include the activities in
cytosol, nucleus as well as the total activity. We use a
stiff-implicit solver ode23tb in MATLAB to simulate
mathematical model and apply genetic algorithm to
search for optimal model parameters [32]. The cubic
spline interpolation is used to calculate the first and
second derivatives of the observation data and numerical
simulation. The values of Wmax for these 57 unknown
parameters all are equal to 300.
For each relative criterion, we estimate 100 sets of

parameters and selected the top 10 sets that have the
smallest fitness values. Then we compared the relative
difference between the estimated parameters and exact
rate constants, which were presented in Additional file 1:
Table S4. For various fitness functions, the continuous
criteria always generated more accurate estimates than the
discrete criteria. In particular, among various continuous
criteria, the criterion based on the simulation values
(CRE1) leads to estimates with the smallest mean error; in
addition, the criterion using function values and the first
order derivative values (CRE2) produced more stable
estimates, which have smaller values of the STD.



Deng and Tian BMC Bioinformatics 2014, 15:256 Page 9 of 12
http://www.biomedcentral.com/1471-2105/15/256
For the process of kinase activation, it was indicated
that the steady state levels of the kinases were determined
by the factor

Kmi ¼ di þ ki
ai

ð24Þ

rather than by the individual rate constants that are
pertinent [39]. Thus we calculated the averaged errors
of the factor Kmi for each inference method we have
tested, which are presented in Additional file 1: Table
S5. Numerical results suggest that continuous criterion
using the function values (CRE1) generates estimates
with the best accuracy and smallest STD.

Robustness analysis
Due to the lack of experimental data as a constraint in
reverse-engineering, the estimated model parameters
may have a wide range of values but all of them are able
to faithfully realize experimental observations. Currently
a few additional criteria, including robustness property,
have been used to select the candidates of estimated
parameters. Robustness can be defined as the ability of
a system to function correctly in the presence of both
internal and external uncertainty [40]. Since the robustness
property is ubiquitously in biological systems [41,42], it has
been used as a criterion not only to select the optimal
network from the candidate structures but also to choose
estimated rate constants of mathematical models [43-45].
A formal definition of this property is well consistent with
the general principle of robustness property for complex
systems [33,40]. Recently more detailed definitions have
been proposed to calculate the robustness property of
biological systems [46].
To demonstrate the reliability of the continuous ap-

proach, we then carry out the robustness analysis for
the three systems with the selected top 10 estimates of
model parameters of each criterion. Here noise in the
model represents the combined sources of fluctuations
such as errors in estimated parameters, external environ-
mental noise and internal noise due to small numbers
of molecules. We first used the estimated kinetic rates
without any perturbation to produce a standard simulation.
Then for each set of parameters, we generated 5,000 sets
of perturbed rate constants using the Gaussian random
variable and a perturbation strength μ (Eq. 20). Perturbed
simulations were obtained by using the perturbed param-
eters, and we compared the standard simulation with
perturbed simulations. Based on the definition of robust-
ness (Eq. 19), we used the mean and STD of simulation
errors to represent the robustness property. The system
with a particular set of rate constants is more stable if
both the mean and STD of simulation errors are smaller.
For the first model of ERK kinase activation, Table 3
and Additional file 1: Table S6 shows that the models
derived from the continuous absolute-error criterion have
slightly better robustness properties than those derived
from the continuous relative-error criterion or discrete
absolute-error criterion. They also show much better
robustness properties than those derived from the discrete
relative-error criterion. However, for the second model of
the G1/S transition module, the robustness properties of
the continuous approaches in Table 3 and Additional
file 1: Table S7 are merely as stable as those for discrete
approaches. All the mean fitness values and STDs of fitness
values of different criteria are close to each other. In
this case only the estimates derived from the continuous
absolute-error criteria have better robustness properties
than those derived from the corresponding discrete
criteria. For the MAP kinase pathway, robustness analysis
results in Table 3 and Additional file 1: Table S8 suggest
that the generated estimates from three continuous
approaches out of four have better robustness property
than those from the discrete approaches. Thus the robust-
ness analysis for those three test systems shows that two
models with the parameters generated using continuous
criteria create better robustness properties than the corre-
sponding models derived from discrete criteria, while the
remaining model with parameters from either continuous
approaches or discrete approaches has similar robustness
properties. In summary, robustness analysis results suggest
that the continuous approaches have generated estimates of
model parameters that are either more stable than or as
stable as those derived from the discrete approaches.

Discussion
This work presents a continuous optimization approach
to address the issue of inadequate experimental data for
inferring unknown parameters in mathematical models
of biochemical networks. The proposed method is based
on the approximation of a cubic spline function to the
underlying solution of the network model. In addition to
the function values that are widely used in the existing
approaches, both the first and second derivatives of the
simulation are also required to match the generated
observation data using a cubic spline function. Therefore
the success of this approach depends on the approximation
of the cubic spline to the solution of network model.
Another important factor to determine the success of
continuous approaches may be the relative amount of
added data using continuous approaches. Compared with
the experimental observation data, the second model (i.e.
the G1/S transition module) has less generated observation
data using the continuous approaches; while the third
model (i.e. the MAP kinase pathway) has much more gen-
erated observation data. The performance of continuous
approaches for the third model is better than the corre-



Table 3 Summary of the robustness property of the three models with estimated model parameters

ERK kinase module G1/S transition module MAP kinase pathway

The number of the absolute criteria 4 4 0

The number of the relative criteria 4 4 4

Better continuous absolute criteria CAE1, CAE3, CAE4 CAE1, CAE3 N/A

Better discrete absolute criteria 0 DAE2, DAE4 N/A

Better continuous relative criteria CRE2, CRE3, CRE4 CRE4 CRE1, CRE2, CRE3

Better discrete relative criteria DRE1 DRE1, DRE2, DRE3 DER4

The comparison of discrete and continuous approaches is mainly based on the magnitude of the mean errors of these approaches which are given in Additional
file 1: Tables S6, S7 and S8.
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sponding discrete approaches. However, using continuous
approaches for the second model is just as good as discrete
approaches. Thus our results suggest that the performance
of these continuous methods will be better if continuous
approaches can generate more observation data.
For the three test models, numerical simulations using

estimated model parameters match the continuous system
dynamics based on experimental data very well. However,
numerical results suggest that the first derivative of the
system dynamics contributes the majority of simulation
error. Thus new methods are needed to reduce the ap-
proximation error of the first derivative. This observation
may give an explanation for the small difference between
criteria 3 and 4, namely the criterion using the error of
the second derivative and that using the maximal value of
the second derivative. However, it will be interesting to
examine the importance of higher order derivatives and
consider other types of approximation methods in order
to consider approximations using higher order derivatives.
It is assumed in this work that there is no noise in

experimental measurement. However, the datasets from
biological experiments are often subject to environmental
fluctuations and measurement error. Noise at one meas-
urement point will be propagated to the function values
at other time points via interpolation function. Thus it
may have substantial impact on the accuracy of estimated
parameters. Since spline is a piecewise continuous inter-
polation, our approach can ensure that the influence of
noise is constrained to a relatively small time period.
Recently a number of approaches have been proposed to
filter out noise from experimental observations, including
the particle filtering method [47]. Thus an interesting
topic is to combine these noise-filtering methods with
the continuous optimization approach to make reliable
estimation of unknown parameters.
The calculation of simulation error is also an important

issue in parameter estimation. This work considered two
types of error, namely absolute error and relative error. An
interesting result is that using criteria based on absolute
error lead to estimates with better accuracy, though it was
widely accepted that the advantage of using relative error
is to avoid the dominance of large errors derived from
parameters with large value. When all the parameter
values are moderate in the second test system, there is
no substantial difference between the estimates derived
from absolute error or relative error. Regarding the calcu-
lation of simulation error, a more sophisticated approach
is using the weighted distance measure [9], which would
be a topic of interest in further study.
Our proposed continuous approach represents a new

starting point to design inference methods to estimated
unknown parameters in mathematical models. Nearly all
current inference methods are discrete methods using
experimental data at a number of measurement time
points. Thus we may design corresponding continuous
approaches based on these discrete approaches. The key
issue is whether the continuous inference method is bet-
ter than the corresponding discrete method in terms of
accuracy and reliability. In this work we compared the
accuracy of four discrete inference methods with that
of the corresponding continuous methods. In fact these
discrete methods are current in use for estimating model
parameters [20,29,31]. Thus this work provided promising
evidence showing that the continuous approaches perform
better than the corresponding discrete methods for the
three test systems.

Conclusions
In summary, this work proposes an effective continuous
optimization approach for estimating model parameters
in mathematical models of biological systems. This method
uses a spline function to approximate the underlying
solution of the network model. The spline function gener-
ates observation data at other time points together with
the first and second derivatives of the network simulation.
All the generated information is used to infer unknown
parameters in mathematical models. This work represents
an early attempt to address the issue of inadequate
experimental data for estimating unknown parameters.
Three case studies are used to verify the accuracy of
the proposed approaches. Simulation results suggest
that the proposed continuous optimization method is an
effective and robust approach for accurate and reliable
parameter estimation.
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Additional file

Additional file 1: Provides the ODE model and rate constants for
the MAP kinase pathway. It also gives detailed information regarding
the estimation error and robustness property of various methods for the
three test systems. Supplementary Figures show the simulated network
dynamics and estimated values of each unknown parameter.
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