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Abstract

Background: Although the costs of next generation sequencing technology have decreased over the past years,
there is still a lack of simple-to-use applications, for a comprehensive analysis of RNA sequencing data. There is
no one-stop shop for transcriptomic genomics. We have developed MAP-RSeq, a comprehensive computational
workflow that can be used for obtaining genomic features from transcriptomic sequencing data, for any
genome.

Results: For optimization of tools and parameters, MAP-RSeq was validated using both simulated and real
datasets. MAP-RSeq workflow consists of six major modules such as alignment of reads, quality assessment of
reads, gene expression assessment and exon read counting, identification of expressed single nucleotide
variants (SNVs), detection of fusion transcripts, summarization of transcriptomics data and final report. This
workflow is available for Human transcriptome analysis and can be easily adapted and used for other genomes.
Several clinical and research projects at the Mayo Clinic have applied the MAP-RSeq workflow for RNA-Seq studies. The
results from MAP-RSeq have thus far enabled clinicians and researchers to understand the transcriptomic landscape of
diseases for better diagnosis and treatment of patients.

Conclusions: Our software provides gene counts, exon counts, fusion candidates, expressed single nucleotide variants,
mapping statistics, visualizations, and a detailed research data report for RNA-Seq. The workflow can be executed
on a standalone virtual machine or on a parallel Sun Grid Engine cluster. The software can be downloaded from
http://bioinformaticstools.mayo.edu/research/maprseq/.

Keywords: Transcriptomic sequencing, RNA-Seq, Bioinformatics workflow, Gene expression, Exon counts,
Fusion transcripts, Expressed single nucleotide variants, RNA-Seq reports
Background
Next generation sequencing (NGS) technology break-
throughs have allowed us to define the transcriptomic
landscape for cancers and other diseases [1]. RNA-
Sequencing (RNA-Seq) is information-rich; it enables
researchers to investigate a variety of genomic features,
such as gene expression, characterization of novel tran-
scripts, alternative splice sites, single nucleotide variants
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(SNVs), fusion transcripts, long non-coding RNAs, small
insertions, and small deletions. Multiple alignment soft-
ware packages are available for read alignment, quality
control methods, gene expression and transcript quantifi-
cation methods for RNA-Seq [2-5]. However, the majority
of the RNA-Seq bioinformatics methods are focused only
on the analysis of a few genomic features for downstream
analysis [6-9]. At present there is no comprehensive
RNA-Seq workflow that can simply be installed and
used for multiple genomic feature analysis. At the Mayo
Clinic, we have developed MAP-RSeq - a comprehensive
computational workflow, to align, assess and report
multiple genomic features from paired-end RNA-Seq
data efficiently with a quick turnaround time. We have
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

http://bioinformaticstools.mayo.edu/research/maprseq/
mailto:kocher.jeanpierre@mayo.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Table 2 MAP-RSeq installation and run time in a Linux
environment

Linux File size Timeline

Download 930 MB ~10 minutes to download on
consumer grade internet

Install time - ~6 hours (mostly downloading
and indexing references)

Unpacked size 9GB -

Run time - Depends on the sample data used
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tested a variety of tools and methods to accurately esti-
mate genomic features from RNA-Seq data. Best per-
forming publically available bioinformatics tools along
with parameter optimization were included in our
workflow. As needed we have integrated in-house methods
or tools to fill in the gaps. We have thoroughly investigated
and compared the available tools and have optimized
parameters to make the workflow run seamlessly for
both virtual machine and cluster environments. Our
software has been tested with paired-end sequencing reads
from all Illumina platforms. Thus far, we have processed
1,535 Mayo Clinic samples using the MAP-RSeq work-
flow. The MAP-RSeq research reports for RNA-Seq data
have enabled Mayo Clinic researchers and clinicians to ex-
change datasets and findings. Standardizing the workflow
has allowed us to build a system that enables us to investi-
gate across multiple studies within the Mayo Clinic.
MAP-RSeq is a production application that allows re-
searchers with minimal expertise in LINUX or Windows
to install, analyze and interpret RNA-Seq data.

Implementation
MAP-RSeq uses a variety of freely available bioinformatics
tools along with in-house developed methods using Perl,
Python, R, and Java. MAP-RSeq is available in two versions.
The first version is single threaded and runs on a virtual
machine (VM). The VM version is straightforward to
install. The second version is multi-threaded and is
designed to run on a cluster environment.

Virtual machine
Virtual machine version of MAP-RSeq is available for
download at the following URL [10]. This includes a
sample dataset, references (limited to chromosome 22),
and the complete MAP-RSeq workflow pre-installed.
Virtual Box software (free for Windows, Mac, and Linux
at [11]) needs to be installed in the host system. The
system also needs to meet the following requirements:
at least 4GB of physical memory, and at least 10GB of
available disk. Although our sample data is only from
Human Chromosome 22, this virtual machine can be
extended to the entire human reference genome or to
Table 1 MAP-RSeq installation and run time for
QuickStart virtual machine

QuickStart VM File size Timeline

Download 2.2GB ~ 20 minutes to download
on consumer grade internet

Unpacked size 8GB -

Time to import into VM - ~ 10 minutes

VM boot - 3 minutes

Run time with sample
data (chr22 only)

- ~ 30 minutes
other species. However this requires allocating more
memory (~16GB) than may be available on a typical
desktop system and building the index references files
for the species of interest.
Tables 1 and 2 shows the install and run time metrics

of MAP-RSeq in virtual machine and Linux environments
respectively. For Table 2, we downloaded the breast cancer
cell line data from CGHub [12] and randomly chose 4
million reads to run through the QuickStart VM. It took
6 hours for the MAP-RSeq workflow to complete. It did
not exceed the 4GB memory limit, but did rely heavily on
the swap space provided; making it run slower than if it
would have had more physical memory available. Job pro-
filing indicates that the system could have used 11GB of
memory for such a sample.

Sun grid engine
MAP-RSeq requires four processing cores with a total of
16GB RAM to get optimal performance. It also requires
8GB of storage space for tools and reference file installa-
tion. For MAP-RSeq execution the following packages
such as JAVA version 1.6.0_17 or higher, Perl version
5.10.0 or higher, Python version 2.7 or higher, Python-
dev, Cython, Numpy and Scipy, gcc and g++ , Zlib,
Zlib-devel, ncurses, ncurses-devel, R, libgd2-xpm, and
mailx need to be preinstalled and referenced in the en-
vironment path. It does also require having additional
storage space for analysing input data and writing out-
put files. MAP-RSeq uses bioinformatics tools such as
BEDTools [13], UCSC Blat [14], Bowtie [15], Circos
[16], FastQC [17], GATK [18], HTSeq [19], Picard
Tools [20], RSeqQC [21], Samtools [22], and TopHat
[23]. Our user manual and README files provide de-
tailed information of the dependencies, bioinformatics
Table 3 Wall clock times to run MAP-RSeq at different
read counts

MAP-RSeq processing time Read counts

118 minutes 1000000

82 minutes 500000

71 minutes 200000
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tools and parameters for MAP-RSeq. The application
requires configuration, such as run, tool and sample
information files, as described in the user manual.
Table 3 shows the processing time of the workflow

across different sequencing read depths. Time was recorded
from a server with 8 quad core Intel Xeon 2.67 GHz pro-
cessors and 530 GBs of shared memory using Centos 6. For
a sample with 1 million reads, MAP-RSeq completes in less
than 2 hours. For samples with 150 million to 300 million
reads, MAP-RSeq completes in 12-48 hours depending on
the hardware used.

Results and discussion
NGS technology has been outpacing bioinformatics.
MAP-RSeq is a comprehensive simple-to-use solution
Figure 1 Flowchart of the MAP-RSeq workflow. High-level representatio
for analysis of RNA-Sequencing data. We have used
both simulated and real datasets to optimize parame-
ters of the tools included in the MAP-RSeq work-
flow. The high-level design of MAP-RSeq is shown
in Figure 1. MAP-RSeq consists of the six major
modules such as alignment of reads, quality assess-
ment of sequence reads, gene expression and exon ex-
pression counts, expressed SNVs from RNA-Seq,
fusion transcript detection, summarization of data and
final report.
Reads are aligned by TopHat 2.0.6 [23] against the

human reference genome build (default = hg19) using the
bowtie1 aligner option. Bowtie is a fast memory efficient,
short sequence aligner [15]. The remaining unaligned
reads from Bowtie are used by TopHat to find splice
n of the MAP-RSeq workflow for processing RNA-Seq data.
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junctions and fusions. At the end of the alignment
step, MAP-RSeq generates binary alignment (BAM)
and junction bed files for further processing. The workflow
uses the RSeQC software [21] to estimate distance between
paired-end reads, evaluate sequencing depth for alternate
splicing events, determine rate of duplicate reads, and
calculate coverage of reads across genes as shown in
the example report file (Figure 2). The summary statis-
tics and plots generated by MAP-RSeq workflow are
used for further quality assessments. The example
MAP-RSeq result set (files and summary report) from
a RNA-Sequencing run can be downloaded from the
MAP-RSeq homepage [10].
Several research and clinical projects [24-26] at Mayo

Clinic have applied MAP-RSeq workflow for obtaining
gene expression, single nucleotide variants and fusion
transcripts for a variety of cancer and disease related
studies. Currently there are multiple ongoing projects or
clinical trial studies for which we generate both RNA-
Sequencing and exome sequencing datasets at the Mayo
Clinic Sequencing Core. We have developed our RNA-Seq
and DNA-Seq workflows such that sequencing data can
be directly supplied to the pipelines with less manual
intervention. Analysis of the next generation sequencing
datasets along with phenotype data enable further under-
standing of the genomic landscape to better diagnose and
treat patients.
Figure 2 Screenshot output report (html) of MAP-RSeq. An example sc
Gene expression and exon expression read counts
A Gene expression count is defined as the sum of reads
in exons for the gene whereas an exon expression count
is defined as the sum of reads in a particular exon of a
gene. Gene expression counts in MAP-RSeq pipeline
can be obtained using HTSeq [19] software (default) or
featureCounts [27] software. The gene annotation files
were obtained from the Cufflinks website [28]. Exon
expression counts are obtained using the intersectBed
function from the BEDTools Suite [13].
MAP-RSeq gene expression counts module was vali-

dated using a synthetic dataset for which RNA-Seq
reads were simulated using the BEERS software - a
computational method that generates paired-end RNA-
sequencing reads for Illumina platform [29]. The parame-
ters used for BEERS to generate simulated data are: total
reads = 2 million reads, hg19 annotation from RefSeq, read
length = 50 bases, base error = 0.005 and substitution
rate = 0.0001. Simulated reads were aligned and mapped
using the MAP-RSeq workflow. The mapped reads were
then input into HTSeq for gene expression counts.
Genes with fewer than 30 reads were excluded from
the analysis. A correlation of r = 0.87 was observed
between the Reads Per Kilobase per Million (RPKM)
simulated gene counts and the counts reported by
MAP-RSeq, as shown in Figure 3. For simulated data
(50 bases), Table 4 summarizes various statistics reported
reenshot report of MAP-RSeq output file.



Figure 3 Correlation of gene counts reported by MAP-RSeq in comparison to counts simulated by BEERS. MAP-RSeq uses the
HTSeq software to classify reads to genomic features. The intersection nonempty mode of HTSeq was applied and the query-name
sorted alignment (BAM) file along with the reference GTF file obtained from BEERS were provided as input files to HTSeq for
accurate assignment of paired-end reads to genomic features. Comparison of the gene counts (RPKM) obtained from MAP-RSeq
with counts for respective genes simulated by BEERS yielded a Pearson correlation of 0.87. The genomic regions where gene
expression reported by HTSeq did not completely correlate with simulated expression are due to ambiguous reads or due the
fact that either mate of the paired-end read mapped to a different genomic feature, thus categorizing the read as ambiguous
by HTSeq.
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by the MAP-RSeq workflow regarding the alignment of
reads to transcriptome and junctions, gene and exon
abundance as well as number of SNVs identified and
annotated using GATK. An example of MAP-RSeq gene
counts table, exon counts table, and normalized counts
Table 4 Alignment statistics from MAP-RSeq using
simulated dataset from BEERS

MAP-RSeq features Statistics

Total number of single reads 4000000

Reads used for alignment 3999995

Total number of reads mapped 3851539 (96.3%)

Reads mapped to transcriptome 3401468 (85.0%)

Reads mapped to junctions 450071 (11.3%)

Reads contributing to gene abundance 1395844

Reads contributing to exon abundance 11266392

Number of SNVs identified 6222
(RPKM) along with annotations for each run are shown in
Figure 4.

Differential expression
Each sample is associated to a phenotype, such as tumor,
normal, treated, control, etc and that meta-data needs to
be obtained to form groups for differential expression
analysis. To remove any outlier samples, it is required to
perform detailed quality control checks prior to gene ex-
pression analysis. There are a variety of software packages
that are used for differential expression analysis using
RNA-Seq gene expression data [4,30-32]. Several studies
have been published comparing the differential expression
methods and concluded that there are substantial differ-
ences in terms of sensitivity and specificity among the
methods [33-35]. We have chosen edgeR software [4]
from R statistical package for gene expression analysis. In
our source code for MAP-RSeq pipeline, we have Perl, R
scripts and instructions that can be used post MAP-RSeq
run for differential expression analysis.



Figure 4 Screenshots of gene and exon expression reports by MAP-RSeq. An example of the gene and exon expression counts from the
output reports of MAP-RSeq.

Kalari et al. BMC Bioinformatics 2014, 15:224 Page 6 of 11
http://www.biomedcentral.com/1471-2105/15/224
Expressed SNVs (eSNVs) from RNA-Seq
After filtering out multiple mapped and fusion reads,
the MAP-RSeq calls SNVs using UnifiedGenotyper
v.1.6.7 and VariantRecalibrator from Genome Analysis
ToolKit (GATK) with the alignment files generated by
Tophat. The UnifiedGenotyper from GATK is a single
nucleotide variant (SNV) and indel caller developed by
the BROAD institute [18]. SNVs are further annotated
by the variant quality score recalibration (VQSR)
method. The annotated SNVs are further filtered based
on read quality (QD), coverage (DP), strand bias (FS),
and positional bias (ReadPosRankSum) to identify true
variants.
A 1000 genome sample (NA07347) with both exome

and RNA-Seq data was used to validate the SNV calling
module of MAP-RSeq workflow. A concordance rate of
95.6% was observed between the MAP-RSeq SNV calls
and the exome sequencing variant calls for NA07347.
Figure 5 shows a screenshot of the MAP-RSeq variant
calling file. Confident variant calls from MAP-RSeq
workflow at high and low read depths of sequencing
are shown in Figure 6A and 6B respectively.

Fusion transcript detection
The TopHat-Fusion algorithm identifies fusion transcripts
accurately [36]. MAP-RSeq uses the TopHat-Fusion algo-
rithm and provides a list of expressed fusion transcripts.
In addition to the output from TopHat-Fusion, we have
implemented modules to visualize fusion transcripts using
circos plots [16]. Fusion transcript candidates are reported
and summarized by MAP-RSeq. As shown in Figure 7,
intra and inter fusion transcripts along with annotations



Figure 5 Screenshot of a MAP-RSeq VCF files after VQSR annotation. An example of SNV data representation from MAP-RSeq runs.
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are provided for each sample by the workflow. A circos
plot is generated to visualize fusion transcripts across an
entire RNA-Seq run (see Additional file 1). MAP-RSeq
also generates 5′–3′ fusion spanning sequence for PCR
validation of fusion transcripts identified. These primer
sequences can be selected by researchers to validate the
fusion transcripts.
Summarization of data and final report
The workflow generates two main reports for end users:
1) summary report for all samples in a run with links to
detailed reports and six QC visualizations per sample 2)
final data report folder consists of exon, gene, fusion and
expressed SNV files with annotations for further statistical
and bioinformatics analysis.
A screenshot of an example report from MAP-RSeq

is shown in Figure 2. A complete form of the report is
presented in the additional file provided (see Additional
file 1). Detailed descriptions of the samples processed by
MAP-RSeq along with the study design and experiment
details are reported by the workflow. Results are sum-
marized for each sample in the report. Detailed quality
control information, links to gene expression counts,
exon counts, variant files, fusion transcript information
and various visualization plots are also reported.
Conclusions
MAP-RSeq is a comprehensive simple-to-use applica-
tion. MAP-RSeq reports alignment statistics, in-depth
quality control statistics, gene counts, exon counts,
fusion transcripts, and SNVs per sample. The output
from the workflow can be plugged into other software
or packages for subsequent downstream bioinformatics
analysis. Several research and clinical projects at the
Mayo Clinic have used the gene expression, SNVs and
fusion transcripts reports from the MAP-RSeq workflow
for a wide range of cancers and other disease-related stud-
ies. In future, we plan to extend our workflow such that
alternate splicing transcripts and non-coding RNAs can
also be obtained.
Availability and requirements
Project name: MAP-RSeq
Project home page: http://bioinformaticstools.mayo.edu/
research/maprseq/
Operating system(s): Linux or VM
Programming language: PERL, Python, JAVA, R and
BASH
Other requirements: none
License: Open Source
Any restrictions to use by non-academics: none

http://bioinformaticstools.mayo.edu/research/maprseq/
http://bioinformaticstools.mayo.edu/research/maprseq/


Figure 6 Examples of SNVs called in RNA and DNA data for NA07347. An IGV screenshot representation of SNV regions for the 1000
genome sample NA07347 A) at high read depths called in RNA when compared to exome/DNA data and B) at low read depth called in RNA
when compared to exome/DNA data.
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Figure 7 Fusion transcripts reported by MAP-RSeq. An example of the fusion transcripts output file from MAP-RSeq workflow.
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Additional file

Additional file 1: Summary report from the MAP-RSeq workflow.
Complete report in HTML format which summarizes the study design,
alignment and expression statistics per sample, links to pre- and post-QC
plots as well as to the resulting files on gene and exon expression, fusion
transcripts and SNVs identified per sample.
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