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Abstract

Background: Although the costs of next generation sequencing technology have decreased over the past years,
there is still a lack of simple-to-use applications, for a comprehensive analysis of RNA sequencing data. There is
no one-stop shop for transcriptomic genomics. We have developed MAP-RSeq, a comprehensive computational
workflow that can be used for obtaining genomic features from transcriptomic sequencing data, for any
genome.

Results: For optimization of tools and parameters, MAP-RSeq was validated using both simulated and real
datasets. MAP-RSeq workflow consists of six major modules such as alignment of reads, quality assessment of
reads, gene expression assessment and exon read counting, identification of expressed single nucleotide
variants (SNVs), detection of fusion transcripts, summarization of transcriptomics data and final report. This
workflow is available for Human transcriptome analysis and can be easily adapted and used for other genomes.
Several clinical and research projects at the Mayo Clinic have applied the MAP-RSeq workflow for RNA-Seq studies. The
results from MAP-RSeq have thus far enabled clinicians and researchers to understand the transcriptomic landscape of
diseases for better diagnosis and treatment of patients.

Conclusions: Our software provides gene counts, exon counts, fusion candidates, expressed single nucleotide variants,
mapping statistics, visualizations, and a detailed research data report for RNA-Seq. The workflow can be executed
on a standalone virtual machine or on a parallel Sun Grid Engine cluster. The software can be downloaded from

http://bioinformaticstools.mayo.edu/research/maprseq/.
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Background

Next generation sequencing (NGS) technology break-
throughs have allowed us to define the transcriptomic
landscape for cancers and other diseases [1]. RNA-
Sequencing (RNA-Seq) is information-rich; it enables
researchers to investigate a variety of genomic features,
such as gene expression, characterization of novel tran-
scripts, alternative splice sites, single nucleotide variants
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(SNVs), fusion transcripts, long non-coding RNAs, small
insertions, and small deletions. Multiple alignment soft-
ware packages are available for read alignment, quality
control methods, gene expression and transcript quantifi-
cation methods for RNA-Seq [2-5]. However, the majority
of the RNA-Seq bioinformatics methods are focused only
on the analysis of a few genomic features for downstream
analysis [6-9]. At present there is no comprehensive
RNA-Seq workflow that can simply be installed and
used for multiple genomic feature analysis. At the Mayo
Clinic, we have developed MAP-RSeq - a comprehensive
computational workflow, to align, assess and report
multiple genomic features from paired-end RNA-Seq
data efficiently with a quick turnaround time. We have
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tested a variety of tools and methods to accurately esti-
mate genomic features from RNA-Seq data. Best per-
forming publically available bioinformatics tools along
with parameter optimization were included in our
workflow. As needed we have integrated in-house methods
or tools to fill in the gaps. We have thoroughly investigated
and compared the available tools and have optimized
parameters to make the workflow run seamlessly for
both virtual machine and cluster environments. Our
software has been tested with paired-end sequencing reads
from all Illumina platforms. Thus far, we have processed
1,535 Mayo Clinic samples using the MAP-RSeq work-
flow. The MAP-RSeq research reports for RNA-Seq data
have enabled Mayo Clinic researchers and clinicians to ex-
change datasets and findings. Standardizing the workflow
has allowed us to build a system that enables us to investi-
gate across multiple studies within the Mayo Clinic.
MAP-RSeq is a production application that allows re-
searchers with minimal expertise in LINUX or Windows
to install, analyze and interpret RNA-Seq data.

Implementation

MAP-RSeq uses a variety of freely available bioinformatics
tools along with in-house developed methods using Perl,
Python, R, and Java. MAP-RSeq is available in two versions.
The first version is single threaded and runs on a virtual
machine (VM). The VM version is straightforward to
install. The second version is multi-threaded and is
designed to run on a cluster environment.

Virtual machine

Virtual machine version of MAP-RSeq is available for
download at the following URL [10]. This includes a
sample dataset, references (limited to chromosome 22),
and the complete MAP-RSeq workflow pre-installed.
Virtual Box software (free for Windows, Mac, and Linux
at [11]) needs to be installed in the host system. The
system also needs to meet the following requirements:
at least 4GB of physical memory, and at least 10GB of
available disk. Although our sample data is only from
Human Chromosome 22, this virtual machine can be
extended to the entire human reference genome or to

Table 1 MAP-RSeq installation and run time for
QuickStart virtual machine

QuickStart VM File size Timeline

Download 2.2GB ~ 20 minutes to download
on consumer grade internet

Unpacked size 8GB -

Time to import into VM - ~ 10 minutes

VM boot - 3 minutes

Run time with sample - ~ 30 minutes

data (chr22 only)
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Table 2 MAP-RSeq installation and run time in a Linux
environment

Linux File size Timeline

Download 930 MB ~10 minutes to download on
consumer grade internet

Install time - ~6 hours (mostly downloading
and indexing references)

Unpacked size 9GB -

Run time - Depends on the sample data used

other species. However this requires allocating more
memory (~16GB) than may be available on a typical
desktop system and building the index references files
for the species of interest.

Tables 1 and 2 shows the install and run time metrics
of MAP-RSeq in virtual machine and Linux environments
respectively. For Table 2, we downloaded the breast cancer
cell line data from CGHub [12] and randomly chose 4
million reads to run through the QuickStart VM. It took
6 hours for the MAP-RSeq workflow to complete. It did
not exceed the 4GB memory limit, but did rely heavily on
the swap space provided; making it run slower than if it
would have had more physical memory available. Job pro-
filing indicates that the system could have used 11GB of
memory for such a sample.

Sun grid engine

MAP-RSeq requires four processing cores with a total of
16GB RAM to get optimal performance. It also requires
8GB of storage space for tools and reference file installa-
tion. For MAP-RSeq execution the following packages
such as JAVA version 1.6.0_17 or higher, Perl version
5.10.0 or higher, Python version 2.7 or higher, Python-
dev, Cython, Numpy and Scipy, gcc and g++ , Zlib,
Zlib-devel, ncurses, ncurses-devel, R, libgd2-xpm, and
mailx need to be preinstalled and referenced in the en-
vironment path. It does also require having additional
storage space for analysing input data and writing out-
put files. MAP-RSeq uses bioinformatics tools such as
BEDTools [13], UCSC Blat [14], Bowtie [15], Circos
[16], FastQC [17], GATK [18], HTSeq [19], Picard
Tools [20], RSeqQC [21], Samtools [22], and TopHat
[23]. Our user manual and README files provide de-
tailed information of the dependencies, bioinformatics

Table 3 Wall clock times to run MAP-RSeq at different
read counts

MAP-RSeq processing time Read counts

118 minutes 1000000
82 minutes 500000
71 minutes 200000
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tools and parameters for MAP-RSeq. The application
requires configuration, such as run, tool and sample
information files, as described in the user manual.

Table 3 shows the processing time of the workflow
across different sequencing read depths. Time was recorded
from a server with 8 quad core Intel Xeon 2.67 GHz pro-
cessors and 530 GBs of shared memory using Centos 6. For
a sample with 1 million reads, MAP-RSeq completes in less
than 2 hours. For samples with 150 million to 300 million
reads, MAP-RSeq completes in 12-48 hours depending on
the hardware used.

Results and discussion
NGS technology has been outpacing bioinformatics.
MAP-RSeq is a comprehensive simple-to-use solution
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for analysis of RNA-Sequencing data. We have used
both simulated and real datasets to optimize parame-
ters of the tools included in the MAP-RSeq work-
flow. The high-level design of MAP-RSeq is shown
in Figure 1. MAP-RSeq consists of the six major
modules such as alignment of reads, quality assess-
ment of sequence reads, gene expression and exon ex-
pression counts, expressed SNVs from RNA-Seq,
fusion transcript detection, summarization of data and
final report.

Reads are aligned by TopHat 2.0.6 [23] against the
human reference genome build (default = hgl9) using the
bowtiel aligner option. Bowtie is a fast memory efficient,
short sequence aligner [15]. The remaining unaligned
reads from Bowtie are used by TopHat to find splice

(Tophat 2.0.6)

X,/ )

&

Sort and re-organize
BAM (Picard)

tion Mapping
UCSC/NCBI /| HUGO

(BEDTools)

Variants
Inter & Intra
Chromosomal Fusions
(Tophat 2.0.6)

Single Nucleotide
Variants (GATK &
VQSR)

Figure 1 Flowchart of the MAP-RSeq workflow. High-level representation of the MAP-RSeq workflow for processing RNA-Seq data.
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junctions and fusions. At the end of the alignment
step, MAP-RSeq generates binary alignment (BAM)
and junction bed files for further processing. The workflow
uses the RSeQC software [21] to estimate distance between
paired-end reads, evaluate sequencing depth for alternate
splicing events, determine rate of duplicate reads, and
calculate coverage of reads across genes as shown in
the example report file (Figure 2). The summary statis-
tics and plots generated by MAP-RSeq workflow are
used for further quality assessments. The example
MAP-RSeq result set (files and summary report) from
a RNA-Sequencing run can be downloaded from the
MAP-RSeq homepage [10].

Several research and clinical projects [24-26] at Mayo
Clinic have applied MAP-RSeq workflow for obtaining
gene expression, single nucleotide variants and fusion
transcripts for a variety of cancer and disease related
studies. Currently there are multiple ongoing projects or
clinical trial studies for which we generate both RNA-
Sequencing and exome sequencing datasets at the Mayo
Clinic Sequencing Core. We have developed our RNA-Seq
and DNA-Seq workflows such that sequencing data can
be directly supplied to the pipelines with less manual
intervention. Analysis of the next generation sequencing
datasets along with phenotype data enable further under-
standing of the genomic landscape to better diagnose and
treat patients.
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Gene expression and exon expression read counts

A Gene expression count is defined as the sum of reads
in exons for the gene whereas an exon expression count
is defined as the sum of reads in a particular exon of a
gene. Gene expression counts in MAP-RSeq pipeline
can be obtained using HTSeq [19] software (default) or
featureCounts [27] software. The gene annotation files
were obtained from the Cufflinks website [28]. Exon
expression counts are obtained using the intersectBed
function from the BEDTools Suite [13].

MAP-RSeq gene expression counts module was vali-
dated using a synthetic dataset for which RNA-Seq
reads were simulated using the BEERS software - a
computational method that generates paired-end RNA-
sequencing reads for Illumina platform [29]. The parame-
ters used for BEERS to generate simulated data are: total
reads = 2 million reads, hgl9 annotation from RefSeq, read
length =50 bases, base error=0.005 and substitution
rate = 0.0001. Simulated reads were aligned and mapped
using the MAP-RSeq workflow. The mapped reads were
then input into HTSeq for gene expression counts.
Genes with fewer than 30 reads were excluded from
the analysis. A correlation of r=0.87 was observed
between the Reads Per Kilobase per Million (RPKM)
simulated gene counts and the counts reported by
MAP-RSeq, as shown in Figure 3. For simulated data
(50 bases), Table 4 summarizes various statistics reported

-
V. Results Summary:

+ QC steps - FastQC-report

you shouid be aware before dong any further analyss.
FastQC Reports

« Statistics based on per Sample Analysis (ColumnDescription)

FastC aims to provide 8 simple way to do some qualty control checks on raw Sequence data coming from high throughput sequencing pipeines. R provides 8 modular set of 8nalyses which you can use fo give a quick mpression of whether your data has any probiems. of which

Analyss is carmied out using fasiq sequence files as input and generates output tables. For paired-end runs, the tables contan counts for each sample combined from both reads.

sawme(s)| rora mesos | useomeios | wareeomesos | wapeen mesos (cenoue) | wirpeo mesos mcron) | cenecount | exom count | ss peTeeo
s_AB |294030280(262.266.623| 262,321,204 (89.2)| 236.598852(80.5) | 25722442(87) | 163745488 (55.7)| 185350767 | 282,827
8_CD | 367,467,944 366.429.975| 350.734,057 (95.4)| 316656.109(862) | 24077.948(9.3) | 195569950 (532)| 236.985.171| 383190

VI. Results Delivered

The folowing three sats of tables are defvered and colmn descriotion s avaiable in Appendx.

« Exon table: contains counts for the number of times an exon has been detected

count (raw) = Sum of &xon read counts
count (RPKM)

« Gene table: contains counts for the number of times a gene copy has been detected

count (raw) = Sum of &xon resd counts, wih an exception that if reads stant in different exons of the same gene twice, these are counted only once for the gene

* SNV reports: contains Single Nucleotide Variants (SNV) called using GATK software

sampie.gativel = raw SNV cals for each sample
sampie.fiter.vcf = SNV calls annotated using VOSR fiters

+ RSeQC Plots:

Sawrre Nave Juncrion Saturanon Seucws Juncon Seucms Event Ianer oisTance

Rexo ourucamon Gene o0y CovER:GE

- ° .

=

Figure 2 Screenshot output report (html) of MAP-RSeq. An example screenshot report of MAP-RSeq output file.
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read length 50 bp
Cor=0.87
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Figure 3 Correlation of gene counts reported by MAP-RSeq in comparison to counts simulated by BEERS. MAP-RSeq uses the
HTSeq software to classify reads to genomic features. The intersection nonempty mode of HTSeq was applied and the query-name
sorted alignment (BAM) file along with the reference GTF file obtained from BEERS were provided as input files to HTSeq for
accurate assignment of paired-end reads to genomic features. Comparison of the gene counts (RPKM) obtained from MAP-RSeq
with counts for respective genes simulated by BEERS yielded a Pearson correlation of 0.87. The genomic regions where gene
expression reported by HTSeq did not completely correlate with simulated expression are due to ambiguous reads or due the

fact that either mate of the paired-end read mapped to a different genomic feature, thus categorizing the read as ambiguous

by the MAP-RSeq workflow regarding the alignment of
reads to transcriptome and junctions, gene and exon
abundance as well as number of SNVs identified and
annotated using GATK. An example of MAP-RSeq gene
counts table, exon counts table, and normalized counts

Table 4 Alignment statistics from MAP-RSeq using
simulated dataset from BEERS

MAP-RSeq features Statistics
Total number of single reads 4000000
Reads used for alignment 3999995

Total number of reads mapped 3851539 (96.3%)
3401468 (85.0%)

450071 (11.3%)

Reads mapped to transcriptome

Reads mapped to junctions

Reads contributing to gene abundance 1395844
Reads contributing to exon abundance 11266392
Number of SNVs identified 6222

(RPKM) along with annotations for each run are shown in
Figure 4.

Differential expression

Each sample is associated to a phenotype, such as tumor,
normal, treated, control, etc and that meta-data needs to
be obtained to form groups for differential expression
analysis. To remove any outlier samples, it is required to
perform detailed quality control checks prior to gene ex-
pression analysis. There are a variety of software packages
that are used for differential expression analysis using
RNA-Seq gene expression data [4,30-32]. Several studies
have been published comparing the differential expression
methods and concluded that there are substantial differ-
ences in terms of sensitivity and specificity among the
methods [33-35]. We have chosen edgeR software [4]
from R statistical package for gene expression analysis. In
our source code for MAP-RSeq pipeline, we have Perl, R
scripts and instructions that can be used post MAP-RSeq
run for differential expression analysis.
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Chr_|GenelD Start___ |Stop CodingLength |s AB GeneCount |[s AB RPKM |s CO GeneCount |s CD_RPKM
chi1_|AADACL3 12776118] 12788726 4049 0 0 0 [)
chr1 |AADACL4 12704566| 12727037 1575 0 0 0 0|
chrl |ABCA4 | 94458394| 94586705 @ 7325 6] 0003122855 4] 0.001556949]
chrl |ABCB10 229652329) 229694442 3857 2180 2.154633008 3150 2328536104
chr1 |ABCD3 94883933| 94984219 3797 1658| 1.664601889 227s| 1.71054767
chil |ABL2 |179068462[ 179198819 12649]  4442[1338717115]  6520] 1.469648461
chr1 |ACADM 76190043| 76229355 2615 524| 0.763881598 544 0.59312914
chr1 |ACAP3 1227764 1243269 3759 849 861505818$\' 11564| 8.771175857
chr1 |ACBD3 226332380] 226374423 3565 7540 8% 10676| 85382937
chr1 |ACBD6 180257352| 180472022 1616| S“: 1 1554] 2.74177441
chr1 |ACOT11 55013807| 55100417| 3391 E*p(e 0094431731 140] 0.1177124
chr1 |ACOT7 6324332| 6453826 412 0.657426976 546/ 0.65162622!
ehe1 |ACPS 0,G€ 566| 1.193395674 374] 0589787
chi1 |ACTAT V1492 94| 024017372 54| 0.1031922
chr1 |ACTLS 1861 0 0 0
chr1 |ACTN2 4528] 2| 0.001683798 ~4] 0.0025186!
chr1 |ACTRT2 ; X B 1422 0 ) 0 )
chr1 |ADAM15 155023762| 155035252 2967 8386| 10.77466474 12116| 11.6429700.
chr1 |ADAM30 120436156 120439147 2992 2| 0.002548208 8| 0.007623431
chr1 |ADAMTS4 161159538 161168845 4332 678 059663359 910| 05989285
chr1 |ADAMTSLA 150521898 150533412 4299 22900] 2030647268 36388| 24 1330827
chr1 |ADAR 154554534 154600456 7092 95346 5125074763 203616| 81.85877.
chr1 |ADC 33546714 33585995 2182 146 0.255073043 154] 0.201227
chr1_|ADCK3 227127938 227175246, 2924 10182| 13 27462246 8164] 7.96063458
Chr_|Start Stop Gene s AB_ExonCount |s AB RPKM [s CD ExonCount [s CD RPKM |
chr1 11874 12227|0DX11L1 0 ]|
chrl | 12613]  12721|DDX11L1 o o 0
chrl | 13221)  14408|DDX11L1 3] 0009626563] 6] 0.0
chri 14362]  14829|WASH7P 66| 0.537606532| )| 0.48128
chr1 14970 15038|WASHTP 6] 0.331488612 12] 0.495854452
chr1 15796 15947 |WASHTP 17| 0.426355419 19] 0.356395387
chri 16607)  16765|WASH7P 3] 0.071926774) 0.125522904
chrl | 16858)  170S5|\WASHTP | 5|0 I
chri 17233 17368| WASHTP 0 0 0
chr1 17606 17742|WASHTP o S'\@ 0 of
chrl | 17915  18061)WASHTP ,Ey.pf‘:’ 0 11 0.019395667,
chr 18268 18366|WASHTP _ v OJ(\ 0 1| 0.028799627
chri 24738 24891V A | 1] 002475402 of 0
chri 29321 P 1] 0.076242381 0 0
thr1 34611 35174|FAM138A 1] 0.006759076| 0 0
hr1 34611 35174|FAM138F 1] 0.006759076 0 0
chrl | 35277)  35481|FAM138A 110018595703 0| 0
chrl | 35277 35481|FAM138F 1] 0.018595703 0 0
chrl | 35721  36081|FAM138A 11 0.010559887 0 0
chri 35721 36081|FAM138F 1] 0.010559887 0 0
chri 69091 70008|OR4FS 1] 0.004152635 0 0
chrl | 134773 139696|LOC729737 | ~~ 6090(4.7 7659| 4.434820909
chr1 9790 139847|LOC729737 952 1099| 54.02462488
Figure 4 Screenshots of gene and exon expression reports by MAP-RSeq. An example of the gene and exon expression counts from the
output reports of MAP-RSeq.
A

Expressed SNVs (eSNVs) from RNA-Seq
After filtering out multiple mapped and fusion reads,
the MAP-RSeq calls SNVs using UnifiedGenotyper
v.1.6.7 and VariantRecalibrator from Genome Analysis
ToolKit (GATK) with the alignment files generated by
Tophat. The UnifiedGenotyper from GATK is a single
nucleotide variant (SNV) and indel caller developed by
the BROAD institute [18]. SN'Vs are further annotated
by the variant quality score recalibration (VQSR)
method. The annotated SN'Vs are further filtered based
on read quality (QD), coverage (DP), strand bias (FS),
and positional bias (ReadPosRankSum) to identify true
variants.

A 1000 genome sample (NA07347) with both exome
and RNA-Seq data was used to validate the SNV calling
module of MAP-RSeq workflow. A concordance rate of

95.6% was observed between the MAP-RSeq SNV calls
and the exome sequencing variant calls for NA07347.
Figure 5 shows a screenshot of the MAP-RSeq variant
calling file. Confident variant calls from MAP-RSeq
workflow at high and low read depths of sequencing
are shown in Figure 6A and 6B respectively.

Fusion transcript detection

The TopHat-Fusion algorithm identifies fusion transcripts
accurately [36]. MAP-RSeq uses the TopHat-Fusion algo-
rithm and provides a list of expressed fusion transcripts.
In addition to the output from TopHat-Fusion, we have
implemented modules to visualize fusion transcripts using
circos plots [16]. Fusion transcript candidates are reported
and summarized by MAP-RSeq. As shown in Figure 7,
intra and inter fusion transcripts along with annotations
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Figure 5 Screenshot of a MAP-RSeq VCF files after VQSR annotation. An example of SNV data representation from MAP-RSeq runs.
N

ling=false invalidatePreviousFilters=

are provided for each sample by the workflow. A circos
plot is generated to visualize fusion transcripts across an
entire RNA-Seq run (see Additional file 1). MAP-RSeq
also generates 5'—3" fusion spanning sequence for PCR
validation of fusion transcripts identified. These primer
sequences can be selected by researchers to validate the
fusion transcripts.

Summarization of data and final report

The workflow generates two main reports for end users:
1) summary report for all samples in a run with links to
detailed reports and six QC visualizations per sample 2)
final data report folder consists of exon, gene, fusion and
expressed SNV files with annotations for further statistical
and bioinformatics analysis.

A screenshot of an example report from MAP-RSeq
is shown in Figure 2. A complete form of the report is
presented in the additional file provided (see Additional
file 1). Detailed descriptions of the samples processed by
MAP-RSeq along with the study design and experiment
details are reported by the workflow. Results are sum-
marized for each sample in the report. Detailed quality
control information, links to gene expression counts,
exon counts, variant files, fusion transcript information
and various visualization plots are also reported.

Conclusions

MAP-RSeq is a comprehensive simple-to-use applica-
tion. MAP-RSeq reports alignment statistics, in-depth
quality control statistics, gene counts, exon counts,
fusion transcripts, and SNVs per sample. The output
from the workflow can be plugged into other software
or packages for subsequent downstream bioinformatics
analysis. Several research and clinical projects at the
Mayo Clinic have used the gene expression, SNVs and
fusion transcripts reports from the MAP-RSeq workflow
for a wide range of cancers and other disease-related stud-
ies. In future, we plan to extend our workflow such that
alternate splicing transcripts and non-coding RNAs can
also be obtained.

Availability and requirements

Project name: MAP-RSeq

Project home page: http://bioinformaticstools.mayo.edu/
research/maprseq/

Operating system(s): Linux or VM

Programming language: PERL, Python, JAVA, R and
BASH

Other requirements: none

License: Open Source

Any restrictions to use by non-academics: none


http://bioinformaticstools.mayo.edu/research/maprseq/
http://bioinformaticstools.mayo.edu/research/maprseq/

Kalari et al. BMC Bioinformatics 2014, 15:224
http://www.biomedcentral.com/1471-2105/15/224

Page 8 of 11

A= ol

e A PSR R R Fuheee

DNA

s e mms tam ¢ soaase

AT HAT srama bom (wiaiage 1 ]

DNA

AT haT PAL ben Ceeeege

Read depth: 22

JE oo ee i ce i tas oo iotioidadiocsFagidds it s tudd taiasFaddaoaddd toraner

A

Ceddstecdtidanadt locd Tul laadacocsnne
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Figure 7 Fusion transcripts reported by MAP-RSeq. An example of the fusion transcripts output file from MAP-RSeq workflow.
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Additional file

Additional file 1: Summary report from the MAP-RSeq workflow.
Complete report in HTML format which summarizes the study design,
alignment and expression statistics per sample, links to pre- and post-QC
plots as well as to the resulting files on gene and exon expression, fusion
transcripts and SNVs identified per sample.
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