
Veliz-Cuba et al. BMC Bioinformatics 2014, 15:221
http://www.biomedcentral.com/1471-2105/15/221

METHODOLOGY ARTICLE Open Access

Steady state analysis of Boolean molecular
network models via model reduction and
computational algebra
Alan Veliz-Cuba1,2*, Boris Aguilar3, Franziska Hinkelmann4 and Reinhard Laubenbacher5

Abstract

Background: A key problem in the analysis of mathematical models of molecular networks is the determination of
their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular
modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by
exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase
space grows exponentially with the dimension of the network. The dimension of published models is growing to over
100, so that efficient methods for steady state determination are essential. Several methods have been proposed for
large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over
exhaustive enumeration, the problem for large networks is still unsolved in general.

Results: This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of
the wiring diagram of the network, while preserving all information about steady states. The second part formulates
the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of
polynomial equations over the finite number system with two elements. This problem can be solved with existing
computer algebra software. This algorithm compares favorably with several existing algorithms for steady state
determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically
and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark
networks, is available upon request from the corresponding author.

Conclusions: The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks
with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate
connectivity. The problem for large Boolean networks with high average connectivity remains an open problem.

Keywords: Steady state computation, Boolean model, Discrete model

Background
Boolean network (BN) models are widely used in molecu-
lar and systems biology to capture coarse-grained dynam-
ics of a variety of regulatory networks, with a particular
focus on features such as steady state behavior [1-22]. One
advantage of discrete models of this type is that, for small
models, the entire dynamics can be explored by exhaus-
tive enumeration of all state transitions. Since the size

*Correspondence: alanavc@math.uh.edu
1Department of Mathematics, University of Houston, 651 PGH Building,
Houston TX, USA
2Department of Biochemistry and Cell Biology, Rice University, W100 George
R. Brown Hall, Houston TX, USA
Full list of author information is available at the end of the article

of the state space of a Boolean model with n nodes is
2n, this approach becomes unfeasible for larger models,
those with more than approximately 30 variables, depend-
ing on the computational resources available. Also, for
larger models, finding steady states (fixed points in this
manuscript) through sampling is not effective anymore
either, since even large attractors can bemissed entirely by
this approach. On the theoretical side, it has been shown
that the problem of finding, or even counting, steady
states of Boolean networks is NP-hard [23,24], so that any
algorithm for this problem will eventually encounter seri-
ous limitations. Since the size of published models has
increased in recent years, including models with 100 or

© 2014 Veliz-Cuba et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

mailto: alanavc@math.uh.edu
http://creativecommons.org/licenses/by/4.0

Veliz-Cuba et al. BMC Bioinformatics 2014, 15:221 Page 2 of 8
http://www.biomedcentral.com/1471-2105/15/221

more nodes [15,17,21,22], it is important to develop more
efficient methods that find all steady states of a Boolean
model.
Several methods have been proposed in the literature

for dealing with this problem, including exact as well as
heuristic methods. We provide a brief review of the differ-
ent types here. For this purpose, we represent a Boolean
network as follows. Let K = {0, 1}, and assume that the
network has n nodes x1, . . . , xn. Each node xi has associ-
ated to it a Boolean function fi : Kn −→ K . Thus, we can
represent the Boolean network as a function

f = (f1, . . . , fn) : Kn −→ Kn.

One can represent the variable dependencies through the
dependency graph of the network, whose nodes are the
variables x1, . . . , xn. There is an edge xi → xj if xi appears
in the function fj, that is, the state of xj depends on the
state of xi. The problem of finding steady states is then
formulated as finding all states x ∈ Kn such that f (x) = x.
One approach to the problem is model reduction. Some

existing reduction methods use a “steady-state approxi-
mation” [25-28] to reduce the number of variables. Intu-
itively, if a function depends on a variable, e.g., fi =
fi(xj, xk , xl), then we can remove variable xj from the
network by replacing fi(xj, xk , xl) with the new func-
tion fi(fj(x1, . . . , xn), xk , xl). By repeating this process, one
obtains a reduced network that in practice is much smaller
than the original network. The stopping criteria for reduc-
tion methods is that variables can be removed only if the
steady state information is preserved. The steady states of
the reduced network are in algorithmic one-to-one corre-
spondence with the steady states of the original network.
More precisely, the reduction algorithm decomposes a
large system into a smaller system and a set of equations
in triangular form, so that when the steady states of the
reduced system are found, the steady states of the original
systems can be found simply by backwards substitution.
That is, the existence of the one-to-one correspondence is
not just theoretical.
Another method uses the fact that one can represent

a Boolean function as a polynomial function in the vari-
ables x1, . . . , xn, with coefficients in the finite number
system K = {0, 1} (with integer addition and multiplica-
tion modulo 2). The problem of finding the steady states
of a Boolean network in n variables, as above, can then be
reformulated as the problem of finding the solutions to a
system of polynomial equations pi := fi(x1, . . . , xn) − xi =
0; i = 1, . . . , n [29-31]. Then, the roots of the system of
polynomial equations is encoded by the set {p1, . . . , pn}.
Using tools from computational algebra it is possible to
find another set that has the same roots (a Gröbner basis),
such that it is possible to do a generalized version of
Gaussian elimination. These computations can be done

using several different software packages developed for
this purpose.
A graph-theoretic method, Minimal Feedback Vertex

Sets, consists of finding a set of vertices in the dependency
graph of the network that “generate” all steady states.
More precisely, one finds a set S ⊂ {1, . . . , n} such that
knowing the coordinates xi, for all i ∈ S, of a steady
state completely and algorithmically determines the other
coordinates of the steady state. It turns out that so-called
feedback vertex sets have this property. In practice, by
finding a minimal feedback vertex set, one reduces the
problem from checking 2n states to the problem of check-
ing 2|S| states, where |S| is typically much smaller than
n [23]. A feedback vertex set can be found by removing
vertices from the graph until the graph has no directed
cycles. A minimal feedback vertex set can be found by
finding the smallest number of vertices that we need to
remove from the graph so that it does not have directed
cycles.
SAT methods have also been used for the purpose of

finding steady states of Boolean networks, which are used
to determine whether a Boolean expression in several
variables has a variable assignment that makes the expres-
sion true; see [32-35]. In essence, the system of Boolean
equations, fi = xi, is rewritten as a single equation
G(x) = 1, and then the problem of finding the steady
states becomes the problem of finding when the equation
G(x) = 1 is satisfied. For example, Melkman, Tamura, and
Akutsu [33,35] used SAT algorithms to find steady states
of AND/OR Boolean networks, i.e., Boolean networks in
which the fi contain only the AND and OR operators, with
a time complexity of O(1.587n) (where n is the number of
nodes). Dubrova and Teslenko [34] also developed a SAT-
based algorithm to find all attractors of a Boolean network
with very good performance characteristics. The method-
ology was tested on Boolean networks with sizes ranging
from 12 to 52. It was also tested using random networks
with up to 7000 nodes and average in-degree less than
2. For a fixed in-degree of 2 the maximum size networks
tested have 2000 nodes.
Integer programming-based method have also been

used to find the steady states of Boolean networks,
Tamura, Hayashida, and Akutsu [36]. In essence, the sys-
tem of Boolean equations is rewritten as a set of inequal-
ities Ax ≤ b, x ≥ 0 and the goal is to maximize a linear
function of the form cTx.
Strategic Sampling, (Zhang, Hayashida, Akutsu, Ching,

and Ng, [37]) is a recursive search approach to identify
all steady states of a random Boolean network with max-
imum in-degree 2, with an average time complexity of
O(1.19n) (where n is the number of nodes). The idea is
that the equations are solved recursively: First one con-
siders the solutions of the equation f1 = x1. Since the fi’s
depend on few variables in practice, one only has to keep

Veliz-Cuba et al. BMC Bioinformatics 2014, 15:221 Page 3 of 8
http://www.biomedcentral.com/1471-2105/15/221

track of the variables that appear in f1. Then, one finds
the solutions of f2 = x2 that are compatible with the solu-
tions previously found. The process continues until one
finds solutions of all equations. In the worst case, however,
algorithm complexity can be O(n2n) [31].
Finally, the problem of finding attractors has also

been studied by using Binary Decision Diagrams (BDD)
[38-41]. The idea is to represent the Boolean functions
as a directed graph that efficiently encodes the functions
by allowing fast evaluation. Then, by combining the BDD
representation of all the Boolean functions, the problem
of finding steady states becomes a search problem in the
larger BDD. Many of these methods were tested on some
biologically relevant networks with fewer than 100 nodes.
In this paper, we present a new method for comput-

ing steady states of a Boolean network, combining a
graph theoretic reduction/transformationmethodwith an
approach using computational algebra. We show that the
method performs favorably on some types of networks in
comparison with other methods on a collection of bench-
mark networks, consisting of both published models and
random networks with certain properties, namely Kauff-
man networks and networks whose in-degree distribution
satisfies a power law.

Methods
The method we propose for steady state analysis is a com-
bination of network reduction/transformation and com-
putational algebra (see Figure 1). The reduction technique
we use is based on results in [42,43]. In [42] it was shown
that any Boolean network can be “transformed” into an
AND-NOT network, namely a network whose Boolean
functions are all of the form y1 ∧ y2 ∧ . . ., where yi ∈
{xi,¬xi}. The AND-NOT network has the property that
its steady states are in one-to-one correspondence with
the steady states of the original network. Furthermore,
the one-to-one correspondence between steady states is
algorithmic. In [43], the authors proposed a method to
reduce an AND-NOT network to another, smaller AND-
NOT network in polynomial time, in such a way that the
steady states of the original and the reduced network are
in one-to-one correspondence, in a constructive way. This
reduction algorithm looks for motifs (e.g. feed-forward
loops) in the wiring diagram and removes nodes in such
motifs; the reduction stops when there are nomore motifs
to be reduced (attempting to do further reductions would
destroy the 1-1 correspondence of steady states). Once
the reduced network is constructed, one can compute its
steady states by converting the Boolean functions into
polynomial functions and then solving a system of poly-
nomial equations, as explained above. The computational
algebra technique is based on [29,30]. The idea is that by
computing a Gröbner basis (a special set of polynomials
with the same roots as the original equations), it is possible

to find the roots of the system of polynomial equations
using a generalized version of Gaussian elimination.
The correspondence between Boolean and polynomial

functions is accomplished via the “dictionary” x ∧ y ↔
x · y, x ∨ y ↔ x + y + xy,¬x ↔ x + 1. The correspon-
dence is unique if we limit the degree with which each
variable appears in the polynomial function to 1, since any
function Kn −→ K can be represented uniquely as a poly-
nomial function that is square-free, that is, in which every
variable appears with exponent 1.
The algorithm is summarized in the following pseu-

docode and a more detailed description follows. The
source code can be found at github.com/PlantSimLab/
ADAM.

Algorithm 1 Steady state computation.
Input: Boolean network f = (f1, . . . , fn)
Output: List L = {s1, . . . , sr} of steady states of f
Procedure:
1. Compute g =AND-NOT representation of f , with vari-
ables x1, . . . , xn, xn+1, . . . , xm
2. LetWg =wiring diagram of g
3. ComputeW =reduction ofWg
4. Let h =AND-NOT network associated toW
5. Compute p =polynomial representation of h
6. Solve the equations hi = xi, using computational
algebra (i.e. compute the Gröbner basis to perform a gen-
eralized version of Gaussian elimination) and let L′′ =
{s′′1, . . . , s′′r } be the set of solutions
7. Use backtracking to compute the steady states of g:
L = {s′1, . . . , s′r}
8. Project each s′j to its first n coordinates to obtain sj

The input of our algorithm is an n−dimensional
Boolean network f = (f1, . . . , fn). In Step 1, we use the
formulas from [42] to compute an AND-NOT network
g = (g1, . . . , gm), with m ≥ n, which has the same num-
ber of steady states as f . The idea is to introduce variables
to rewrite the Boolean operations using only the opera-
tors AND and NOT; for example, f1 = ¬x2 ∧ (x3 ∨ x4)
can be written as f1 = ¬x2 ∧ ¬x5, where f5 = ¬x3 ∧ ¬x4.
Furthermore, the steady states of f are given by project-
ing the steady states of g to their first n coordinates. In
Step 2, we simply consider the wiring diagram of g, which
is a signed directed graph that encodes which variable
depends on which others and whether the interactions are
activating or inhibiting. In Step 3, we use the algorithm
from [43] to reduce the wiring diagram of g to another
signed directed graph, W . Then, in Step 4, we construct
the AND-NOT network that hasW as its wiring diagram,
h = (h1, . . . , hl); the steady states of g can be computed
from the steady states of h by backtracking [43]. In Step

Veliz-Cuba et al. BMC Bioinformatics 2014, 15:221 Page 4 of 8
http://www.biomedcentral.com/1471-2105/15/221

Figure 1 Flow chart of steady state computation.Main steps in our method highlighting the intermediate systems. S denotes the set of steady
states of a given network; f is an arbitrary Boolean network, g is an AND-NOT network (in possibly more variables), h is a reduced AND-NOT network,
p is the polynomial representation of h.

5, we compute the polynomial representation of h. This is
done by replacing ¬xi with 1 + xi, and xi ∧ xj with xixj,
as explained earlier. In Step 6 we solve the system of poly-
nomial equations hi = xi, i = 1, . . . , l; this is done using
tools from computational algebra as done in [29,30]. The
solutions of the system, L′′ = {s′′1, . . . , s′′r }, will also be solu-
tions of h. In Step 7, we use backtracking to compute the
steady states of g, L′ = {s′1, . . . , s′r}. And finally, in Step 8,
we project each s′j to its first n coordinates and obtain the
steady states of f (See Additional file 1 for an example and
Additional files 2 and 3 for the code version used for this
publication).

Results and discussion
We first tested the software implementation of our algo-
rithm on 1,000,000 Boolean networks with 50 nodes each,
for which we also computed all steady states by a custom-
made algorithm based on minimal feedback vertex sets.
For each graph we found the minimal number of ver-
tices that had to be removed so that the graph had no
directed cycles; call this set S. Then, for each element in
{0, 1}|S|, the values of the other variables are completely
determined. This gave us 2|S| candidates for steady states
which we then checked by exhaustive search. In all cases
our algorithm computed correctly all steady states. We
are therefore confident that our implementation is error-
free. This extends to the relevant functionalities of other
software packages we used for intermediate computations
(Macaulay2 [44], Boost Library [45], BoolStuff Library
[46]).
Then we used over 100,000 Boolean networks to bench-

mark our method against others. The methods we used
for comparison were those with published benchmarks or
those for which the code was readily available. As we will
see later, for Kauffman networks with K = 2, the timing
of our method grows linearly with the number of nodes;
thus, it was not necessary to include in our benchmarks
methods that were reported to grow exponentially for
such networks (e.g. [34,37]). We selected three methods

with good computational efficiency for K = 2: Zanudo
and Albert [26]; Devloo, Hansen, and Labbé [32]; and
Tamura, Hayashida, and Akutsu [36]. For the most recent
algorithm, Zañudo and Albert [26] use a method that
identifies motifs (subsets of nodes) that stabilize in one
or a small number of states. The steady states from these
motifs are used to reduce the network to find the attrac-
tors. It is important to mention that this method can find
not only the steady states of Boolean networks, but also
information about all the attractors of the network, which
our method is not currently designed to do.
We used random biologically meaningful Boolean net-

works [47-49] and published networks [13-22] (the
Boolean representation of these models was obtained
from The Cell Collective [50]). The results for Zañudo
and Albert and our algorithm were generated by us and
the other results are reported from published benchmarks
[32,36]. The computations for our algorithm and that of
[26] were done on a 3.4 GHz Linux machine. The com-
putations for Tamura’s and Devloo’s algorithms were done
on a Linux system with 3GHz and a Sun SPARC Ultra
10 machine, respectively, as reported in [32,36]. Consid-
ering that the different computers described above have
processors with similar speed and that the computations
were done in a single processor, the use of results from
different machines will not affect the main conclusions
of our comparison. Moreover, some methods did not
have reported results for certain network sizes; in that
case, we computed an approximate timing using inter-
polation/extrapolation of the reported values; we linear
and exponential fits for the timings that grew linearly and
exponentially, respectively.
First, we compare the performance of different methods

on Kauffman networks with connectivity K = 2 and K =
3. For our and the Zañudo algorithm, each reported num-
ber is the average or standard deviation of 1000 Boolean
networks. In Table 1 we report the timings for Kauffman
networks with K = 2. We can see that the algorithm
in [36] performs best, followed by our algorithm. Note

Veliz-Cuba et al. BMC Bioinformatics 2014, 15:221 Page 5 of 8
http://www.biomedcentral.com/1471-2105/15/221

Table 1 Timing in seconds for Kauffman networks with
K = 2

Zañudo [26] Devloo [32] Tamura [33] Our method

n mean stdev. mean stdev. mean stdev. mean stdev.

2000 7.341 3.192 107.1∗ 83.49∗ 0.022 NR 0.490 0.023

4000 12.084 3.636 223.0∗ 173.9∗ 0.035 NR 1.123 0.049

6000 31.174 340.213 338.9∗ 264.3∗ 0.047 NR 2.172 0.114

8000 28.091 11.572 454.8∗ 354.8∗ 0.069 NR 3.642 0.212

10000 38.394 13.301 570.8∗ 445.2∗ 0.072 NR 5.218 0.235

The best results are in bold. *=interpolated/extrapolated from reported results.
NR=not reported.

that all timings grow linearly with the number of nodes.
As mentioned in [36], the good results with Tamura’s
algorithm may be due to the fact that the authors opti-
mized the computations for Boolean functions that have 2
inputs. The results for Kauffman networks with K = 3 in
Table 2, however, show that our method performs better
by an order of magnitude. These results show that, while
our algorithm is not optimized for very low in-degree
networks, it is more scalable for networks with higher
connectivity.
Not all molecular networks have properties similar to

Kauffman networks, but can exhibit power law proper-
ties for their degree distribution. Thus, we supplemented
the results from Tables 1 and 2 with benchmark networks
whose connectivity follows a power law distribution [51].
We considered power-law networks with average connec-
tivity 〈k〉 = 2 and 〈k〉 = 3. That is, the average number
of edges is the same, but the connectivity distribution is
more biologically realistic. There were no bechmarks for
these types of networks for Tamura’s and Devloo’s algo-
rithms, so we only report Zañudo’s and our algorithm. In
Table 3, we see that our algorithm can handle networks
with 〈k〉 = 2 with up to 1000 nodes in under 7 seconds
on average. It is important to mention that these timings
differ considerably from the timings for K = 2 (Table 1).

Table 2 Timing in seconds for Kauffman networks with
K = 3

Zañudo [26] Devloo [32] Tamura [33] Our method

n mean stdev. mean stdev. mean stdev. mean stdev.

20 1.024 0.403 0.110 0.090 0.011 NR 0.273 0.040

40 DF DF 0.340 0.270 0.296 NR 0.300 0.126

60 DF DF 2.251∗ 2.120∗ 2.414 NR 0.415 0.552

80 DF DF 10.05∗ 10.84∗ 17.07 NR 1.143 8.414

100 DF DF 60.10 59.10 94.08 NR 2.878 16.74

120 DF DF 200.5∗ 283.6∗ 714.4∗ NR 9.278 51.79

The best results are in bold. *=interpolated/extrapolated from reported results.
DF=did not finish in a day. NR=not reported.

Table 3 Timing in seconds for power-law networks with
average connectivity 〈k〉 = 2

Zañudo [26] Our method

n mean stdev. mean stdev.

25 1.264 1.778 0.254 0.011

50 2.488 3.807 0.257 0.018

100 5.255 9.172 0.260 0.022

250 DF DF 0.271 0.046

500 DF DF 0.358 1.429

1000 DF DF 6.798 65.39

DF = did not finish in a day.

Table 4 shows the results for networks with connectivity
〈k〉 = 3. Not surprisingly, increasing the average connec-
tivity has a dramatic effect on the size of networks that can
be studied; for example, the network sizes that can be dealt
with in under 7 seconds decreases from 1000 to about
140 when we increase 〈k〉 from 2 to 3. Further increasing
the average connectivity will have a much more dramatic
effect.
Finally, our results on published networks are shown in

Table 5, sorted by average connectivity. Since all models
have external parameters corresponding to environmen-
tal conditions (i.e. we have one BN for each parameter
set), we sampled the parameter space and computed the
average timing of each algorithm. The numbers we report
are the averages of 10000 simulations for each model. As
expected, for all networks with small average connectiv-
ity (less than 3) our algorithm performed very well and
finished in less than half a second, consistent with the
timings from Tables 3 and 4. Four models have average
connectivity greater than 3 and our algorithm performed
very well on three of them. However, for the largest net-
work (225 nodes and 〈k〉 = 5.16), there were parameter
sets (51% of the sampled parameters) which could not be
analyzed.

Table 4 Timing in seconds for power-law networks with
average connectivity 〈k〉 = 3

Zañudo [26] Our method

n mean stdev. mean stdev.

20 3.828 5.133 0.251 0.029

40 DF DF 0.259 0.055

60 DF DF 0.288 0.222

80 DF DF 0.543 4.724

100 DF DF 1.331 7.752

120 DF DF 3.033 25.94

140 DF DF 7.185 57.23

DF = did not finish in a day.

Veliz-Cuba et al. BMC Bioinformatics 2014, 15:221 Page 6 of 8
http://www.biomedcentral.com/1471-2105/15/221

Table 5 Timimg in seconds for publishedmodels

Zañudo [26] Our method

Ref. n 〈k〉 mean stdev. mean stdev.

[13] 62 1.62 1.678 0.729 0.231 0.010

[14] 94 1.65 1.300 0.074 0.234 0.012

[15] 302 1.71 4.698 0.116 0.236 0.011

[16] 60 2.10 4636.245 89.311 0.239 0.013

[17] 120 2.45 2023.954 18448.754 0.312 0.141

[18] 54 2.59 6878.594 22059.317 0.256 0.030

[19] 54 3.62 3.789 3.903 0.492 0.247

[20] 76 4.01 DF DF 0.242 0.013

[21] 130 5.00 DF DF 23.19 98.42

[22] 225 5.16 DF DF 4186* 12284

DF=did not finish in a day. *=49% of simulations reported, 51% of simulations
were stopped because they did not finish in a day or had a large memory
consumption.

The computational complexity of our algorithm
depends on the type of networks used as well as the
connectivity. The algorithm seems to run in polyno-
mial time for Kauffman networks with K = 2 (Table 1),
but slower for power-law networks with the same con-
nectivity (Table 3). For other types of networks the
complexity is much harder to infer, but Table 2 suggests
that the complexity is exponential. Also, the complexity of
the mathematical tools we use is not well understood in
the context of Boolean models. For example, the algebraic
step of our algorithm can be doubly exponential, but it
has been shown to work much faster in practice and, as
our work shows, it runs much faster for sparse Boolean
models.

Conclusions
The capability to analyze the attractors of discrete
dynamic models of biological networks is a key technol-
ogy in any systems biology toolkit that incorporates this
popular type of model. This capability needs to include
steady state analysis as well as the determination of peri-
odic points of larger periods. And it needs to apply to
models that allow an arbitrary (finite) number of states
for its variables, such as logical models. In this paper,
we have focused on Boolean networks as the model type
most commonly used currently. And we have focused
only on steady state analysis, at the exclusion of periodic
limit cycles. As is the case in many situations, algorithms
available for this purpose, some of which we used here
for comparison, perform well on some types of models
and not so well on others. For instance, for Kaufmann
networks with connectivity 2, the method in [36] outper-
forms all other methods, including ours. The method in
[26] is generally slower than our method in computing

steady states, but has the added capability that it also finds
limit cycles of larger lengths, which our method is not
currently equipped to do.
We have used three types of networks for benchmark-

ing: Kauffman networks, power law networks, and pub-
lished networks. Kauffman networks are commonly used
for this purpose, but they don’t capture all properties of
molecular networks, which include a power law distri-
bution of node connectivities. Our analysis of published
networks shows that some of them have high average con-
nectivity, not generally considered in theoretical studies.
These pose serious challenges to computational methods,
as we demonstrate. As more large published networks
become available, they will represent the most important
suite of benchmark models to be used, in our opinion.
We believe that this study also holds another impor-

tant lesson. Our method is a combination of twomethods,
neither one of which performs particularly well when
applied on its own (see Additional file 1). In combination,
however, they are quite powerful: model reduction plus
polynomial algebra. This might point towards a general
strategy for other algorithms of this type. Nonetheless,
as our calculations show, the challenge of finding steady
states is far from solved in general, even for existing
published models. Thus, much work remains to be done.

Additional files

Additional file 1: Example and individual performance of network
reduction and computational algebra.

Additional file 2: Instructions for usage.

Additional file 3: Source code.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AV-C designed and applied the graph reduction methods, and combined
them with the computer algebra algorithm. He also generated the suite of
benchmark networks used in the study. BA implemented the graph reduction
methods. He also surveyed the literature for other available methods and
carried out and collected performance data for the other methods used in the
study for comparison. FH carried out Gröbner basis calculations for a subset of
the benchmark networks. RL conceived, planned, and directed the project. All
authors contributed to the writing of the manuscript. All authors read and
approved the final manuscript.

Acknowledgements
The work of R.L. was supported in part by the grant PlantSimLab: A Simulation
Laboratory for Plant Biology, funded by NSF, Award Number DBI-1146819. F.H.
did the work at MBI (NSF award 0635561).

Author details
1Department of Mathematics, University of Houston, 651 PGH Building,
Houston TX, USA. 2Department of Biochemistry and Cell Biology, Rice
University, W100 George R. Brown Hall, Houston TX, USA. 3Department of
Computer Science, Virginia Tech,Blacksburg VA, USA. 4TNG Technology
Consulting GmbH, Unterföhring, Germany. 5Center for Quantitative Medicine,
University of Connecticut Health Center and Jackson Laboratory for Genomic
Medicine, Farmington CT, USA.

http://www.biomedcentral.com/content/supplementary/1471-2105-15-221-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-15-221-S2.txt
http://www.biomedcentral.com/content/supplementary/1471-2105-15-221-S3.zip

Veliz-Cuba et al. BMC Bioinformatics 2014, 15:221 Page 7 of 8
http://www.biomedcentral.com/1471-2105/15/221

Received: 17 February 2014 Accepted: 17 June 2014
Published: 26 June 2014

References
1. Zhang Y, Qian M, Ouyang Q, Deng M, Li F, Tang C: Stochastic model of

yeast cell-cycle network. Physica D: Nonlinear Phenomena 2006,
219(1):35–39.

2. Davidich M, Bornholdt S: Boolean network model predicts cell cycle
sequence of fission yeast. PLoS ONE 2008, 3(2):1672.

3. Kauffman S, Peterson C, Samuelsson B, Troein C: Random Boolean
network models and the yeast transcriptional network. PNAS 2003,
100(25):14796–14799.

4. Sahin O, Frohlich H, Lobke C, Korf U, Burmester S, Majety M, Mattern J,
Schupp I, Chaouiya C, Thieffry D, Poustka A, Wiemann S, Beissbarth T, Arlt
D.:Modeling ERBB receptor-regulated g1/s transition to find novel
targets for de novo trastuzumab resistance. BMC Syst Biol 2009, 3(1):1.

5. Klamt S, Saez-Rodriguez J, Lindquist J, Simeoni L, Gilles E: A
methodology for the structural and functional analysis of signaling
and regulatory networks. BMC Bioinformatics 2006, 7(1):56.

6. Li F, Long T, Lu Y, Ouyang Q, Tang C: The yeast cell-cycle network is
robustly designed. Proc Natl Acad Sci USA 2004, 101(14):4781–4786.

7. Albert R, Othmer H: The topology of the regulatory interactions
predicts the expression pattern of the segment polarity genes in
Drosophilamelanogaster. J Theor Biol 2003, 223:1–18.

8. Mai Z, Liu H: Boolean network-based analysis of the apoptosis
network: Irreversible apoptosis and stable surviving. J Theor Biol
2009, 259(4):760–769.

9. Veliz-Cuba A, Stigler B: Boolean models can explain bistability in the
lac operon. J Comput Biol 2011, 18(6):783–794.

10. Mendoza L, Xenarios I: Amethod for the generation of standardized
qualitative dynamical systems of regulatory networks. Theor Biol Med
Model 2006, 3(1):13.

11. Murrugarra D, Veliz-Cuba A, Aguilar B, Arat S, Laubenbacher R:Modeling
stochasticity and variability in gene regulatory networks. EURASIP J
Bioinformatics Syst Biol 2012, 2012(1):5.

12. Hinkelmann F, Murrugarra D, Jarrah A, Laubenbacher R: Amathematical
framework for agent based models of complex biological networks.
Bull Math Biol 2011, 73(7):1583–1602.

13. Singh A, Nascimento J, Kowar S, Busch H, Boerries M: Boolean approach
to signalling pathway modelling in hgf-induced keratinocyte
migration. Bioinformatics 2012, 28(18):495–501.

14. Saez-Rodriguez J, Simeoni L, Lindquist J, Hemenway R, Bommhardt U,
Arndt B, Haus U, Weismantel R, Gilles E, Klamt S, Schraven B: A logical
model provides insights into t cell receptor signaling. PLoS Comput
Biol 2007, 3(8):163.

15. Raza S, Robertson K, Lacaze P, Page D, Enright A, Ghazal P, Freeman T: A
logic-based diagram of signalling pathways central to macrophage
activation. BMC Syst Biol 2008, 2(1):36.

16. Kazemzadeh L, Cvijovic M, Petranovic D: Boolean model of yeast
apoptosis as a tool to study yeast and human apoptotic regulations.
Front Physiol 2012, 3:446.

17. Madrahimov A, Helikar T, Kowal B, Lu G, Rogers J: Dynamics of influenza
virus and human host interactions during infection and replication
cycle. Bull Math Biol 2013, 75(6):988–1011.

18. Saadatpour A, Wang R, Liao A, Liu X, Loughran T, Albert I, Albert R:
Dynamical and structural analysis of a T-cell survival network
identifies novel candidate therapeutic targets for large granular
lymphocyte leukemia. PLoS Comput Biol 2011, 7(11):1002267.

19. Zhang R, Shah M, Yang J, Nyland S, Liu X, Yun J, Albert R, Loughran T:
Network model of survival signaling in large granular lymphocyte
leukemia. PNAS 2008, 105(42):16308–16313.

20. Samaga R, Saez-Rodriguez J, Alexopoulos L, Sorger P, Klamt S: The logic
of EGFR/ErbB signaling: theoretical properties and analysis of
high-throughput data. PLoS Comput Biol 2009, 5(8):1000438.

21. Helikar T, Konvalina J, Heidel J, Rogers J: Emergent decision-making in
biological signal transduction networks. PNAS 2008,
105(6):1913–1918.

22. Helikar T, Kochi N, Kowal B, Dimri M, Naramura M, Raja S, Band V, Band H,
Rogers J: A comprehensive, multi-scale dynamical model of ErbB
receptor signal transduction in humanmammary epithelial cells.
PLoS ONE 2013, 8(4):61757.

23. Akutsu T, Kuhara S, Maruyama O, Miyano S: A system for identifying
genetic networks from gene expression patterns produced by gene
disruptions and overexpressions. Genome Inform 1998, 9:151–160.

24. Zhao Q: A remark on “scalar equations for synchronous Boolean
networks with biological applications” by C. Farrow, J. Heidel, J.
Maloney, and J. Rogers. IEEE Trans Neural Netw 2005, 16(6):1715–1716.

25. Veliz-Cuba A: Reduction of Boolean network models. J Theor Biol 2011,
289:167–172.

26. Zañudo J, Albert R: An effective network reduction approach to find
the dynamical repertoire of discrete dynamic networks. Chaos:
Interdiscip J Nonlinear Sci 2013, 23(2):025111.

27. Saadatpour A, Albert I, Albert R: Attractor analysis of asynchronous
Boolean models of signal transduction networks. J Theor Biol 2010,
266(4):641–656.

28. Naldi A, Remy E, Thieffry D, Chaouiya C: A reduction of logical
regulatory graphs preserving essential dynamical properties. In
Computational Methods in Systems Biology. Lecture Notes in Computer
Science. Volume 5688. Edited by Degano P, Gorrieri R. Heidelberg.
Germany: Springer; 2009:266–280.

29. Veliz-Cuba A, Jarrah A, Laubenbacher R: Polynomial algebra of discrete
models in systems biology. Bioinformatics 2010, 26(13):1637–1643.

30. Hinkelmann F, Brandon M, Guang B, McNeill R, Blekherman G, Veliz-Cuba
A, Laubenbacher R: ADAM: Analysis of discrete models of biological
systems using computer algebra. BMC Bioinformatics 2011, 12(1):295.

31. Zou Y: An algorithm for detecting fixed points of Boolean network.
In Complex Medical Engineering (CME), 2013 ICME International Conference
On. Piscataway, New Jersey: IEEE; 2013:670–673.

32. Devloo V, Hansen P, Labbé M: Identification of all steady states in large
networks by logical analysis. Bull Math Biol 2003, 65(6):1025–1051.

33. Tamura T, Akutsu T: Detecting a singleton attractor in a Boolean
network utilizing SAT algorithms. IEICE Trans Fundam Electron Commun
Comput Sci 2009, E92-A(2):493–501.

34. Dubrova E, Teslenko M: A SAT-based algorithm for finding attractors
in synchronous Boolean networks. IEEE/ACM Trans Comput Biol
Bioinformatics 2011, 8(5):1393–1399.

35. Melkman A, Tamura T, Akutsu T: Determining a singleton attractor of
an AND/OR Boolean network inO(1.587n) time. Inform Process Lett
2010, 110(14–15):565–569.

36. Tamura T, Hayashida M, Akutsu T: Integer programming-based
methods for attractor detection and control of boolean networks. In
Proceedings of the 48th IEEE Conference on Decision and Control held jointly
with the 28th Chinese Control Conference. CDC/CCC 2009. Piscataway, New
Jersey; 2009:5610–5617. doi: 10.1109/CDC.2009.5400017.

37. Zhang S, Hayashida M, Akutsu T, Ching W, Ng M: Algorithms for finding
small attractors in Boolean networks. EURASIP J Bioinformatics Syst Biol
2007, 2007:4.

38. Zheng D, Yang G, Li X, Wang Z, Liu F, He L: An efficient algorithm for
computing attractors of synchronous and asynchronous Boolean
networks. PLoS ONE 2013, 8(4):60593.

39. Garg A, Di Cara A, Xenarios I, Mendoza L, De Micheli G: Synchronous
versus asynchronous modeling of gene regulatory networks.
Bioinformatics 2008, 24(17):1917–1925.

40. Dubrova E, Teslenko M, Martinelli A: Kauffman networks: analysis and
applications. In Proceedings of the 2005 IEEE/ACM International Conference
on Computer-aided Design. ICCAD ’05. Piscataway, New Jersey: IEEE
Computer Society; 2005:479–484.

41. Naldi A, Thieffry D, Chaouiya C: Decision diagrams for the
representation and analysis of logical models of genetic networks.
In Computational Methods in Systems Biology. Lecture Notes in Computer
Science. Edited by Calder M, Gilmore S. Heidelberg. Germany: Springer;
2007:233–247.

42. Veliz-Cuba A, Buschur K, Hamershock R, Kniss A, Wolff E, Laubenbacher R:
AND-NOT logic framework for steady state analysis of Boolean
network models. Appl Math Inform Sci 2013, 4(7):1263–1274.

43. Veliz-Cuba A, Laubenbacher R, Aguilar B: Dimension reduction of large
AND-NOT network models. 2013. arxiv.org/abs/1311.6868.

44. Grayson D, Stillman M:Macaulay 2, a software system for research in
algebraic geometry. Available at [http://www.math.uiuc.edu/
Macaulay2/]

45. Siek J, Lee L, Lumsdaine A: Boost graph library. 2000. [http://www.
boost.org/libs/graph/]

http://www.math.uiuc.edu/Macaulay2/
http://www.math.uiuc.edu/Macaulay2/
http://www.boost.org/libs/graph/
http://www.boost.org/libs/graph/

Veliz-Cuba et al. BMC Bioinformatics 2014, 15:221 Page 8 of 8
http://www.biomedcentral.com/1471-2105/15/221

46. Sarrazin P: BoolStuff Library. 2013. [http://perso.b2b2c.ca/sarrazip/dev/
boolstuff.html]

47. Murrugarra D, Laubenbacher R: Regulatory patterns in molecular
interaction networks. J Theor Biol 2011, 288(0):66–72.

48. Kauffman S, Peterson C, Samuelsson B, Troein C: Genetic networks with
canalyzing Boolean rules are always stable. PNAS 1710,
101(49):2–17107.

49. Raeymaekers L: Dynamics of Boolean networks controlled by
biologically meaningful functions. J Theor Biol 2002, 218(3):331–341.

50. Helikar T, Kowal B, McClenathan S, Bruckner M, Rowley T, Madrahimov A,
Wicks B, Shrestha M, Limbu K, Rogers J: The cell collective: toward an
open and collaborative approach to systems biology. BMC Syst Biol
2012, 6(1):96.

51. Albert R: Scale-free networks in cell biology. J Cell Sci 2005,
118(21):4947–4957.

doi:10.1186/1471-2105-15-221
Cite this article as: Veliz-Cuba et al.: Steady state analysis of Boolean
molecular network models via model reduction and computational
algebra. BMC Bioinformatics 2014 15:221.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://perso.b2b2c.ca/sarrazip/dev/boolstuff.html
http://perso.b2b2c.ca/sarrazip/dev/boolstuff.html

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Results and discussion
	Conclusions
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3

	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

