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Abstract

programming effort.

architecture suitable for a wider range of problems.
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Background: The extent of data in a typical genome-wide association study (GWAS) poses considerable
computational challenges to software tools for gene-gene interaction discovery. Exhaustive evaluation of all
interactions among hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) may require weeks
or even months of computation. Massively parallel hardware within a modern Graphic Processing Unit (GPU) and
Many Integrated Core (MIC) coprocessors can shorten the run time considerably. While the utility of GPU-based
implementations in bioinformatics has been well studied, MIC architecture has been introduced only recently and
may provide a number of comparative advantages that have yet to be explored and tested.

Results: We have developed a heterogeneous, GPU and Intel MIC-accelerated software module for SNP-SNP
interaction discovery to replace the previously single-threaded computational core in the interactive web-based data
exploration program SNPsyn. We report on differences between these two modern massively parallel architectures
and their software environments. Their utility resulted in an order of magnitude shorter execution times when
compared to the single-threaded CPU implementation. GPU implementation on a single Nvidia Tesla K20 runs twice
as fast as that for the MIC architecture-based Xeon Phi P5110 coprocessor, but also requires considerably more

Conclusions: General purpose GPUs are a mature platform with large amounts of computing power capable of
tackling inherently parallel problems, but can prove demanding for the programmer. On the other hand the new MIC
architecture, albeit lacking in performance reduces the programming effort and makes it up with a more general

Keywords: SNP-SNP interactions, Genome-wide association studies, Graphic processing unit, Many Integrated Core

Background

We are witnessing a dramatic shift in the design of per-
sonal computer systems, where speedups are achieved
by porting the parallel traits of supercomputers into the
world of personal computing. Modern computers are
heterogeneous platforms with many different types of
computational units, including central processing units
(CPUs), graphics processing units (GPUs), digital signal
processors (DSPs), coprocessors and custom accelera-
tion logic. Today’s CPUs contain from two to twelve
cores, each capable of executing multiple instructions
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per clock cycle. Assisting the CPU, graphics processing
units usually render 3D graphics, but can also provide a
general-purpose computing platform. Current GPUs are
designed as massively parallel processors offering sub-
stantially more computing power than CPUs. GPUs are
the most powerful computational hardware available at an
affordable price [1,2]. The availability of general-purpose
GPUs with computing abilities in commodity laptop and
desktop computers has generated a wide interest, includ-
ing applications in bioinformatics [3-9].

The newest addition to the commodity computer
parallel processing hardware is the Intel Xeon Phi
family of coprocessors [10] designed for computation-
ally intensive applications. Xeon Phi implements Intel’s
Many Integrated Core (MIC) architecture and offers
a theoretical performance similar to that of modern
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GPUs, but promises easier porting of existing soft-
ware to the new architecture. Tianhe-2, currently the
world’s fastest supercomputer has 48 000 Xeon Phi
coprocessors [11].

Many computational problems in bioinformatics
require substantial computational resources [12]. Prob-
lems that can be computed with a high degree of parallel
and independent processing are most suited for hetero-
geneous massively parallel hardware. Our aim was to
investigate how these modern architectures cope with
problems that are typical for bioinformatics, such as
the problem of SNP-SNP interaction detection. As a
proof-of-concept, we focused on a parallel implemen-
tation of computational core for the web-application
SNPsyn [13] by exploiting heterogeneous processing
resources, multi-core CPUs, GPUs, and the new MIC
COProcessors.

SNPsyn [13] (Figure 1) was developed as an interac-
tive software tool for efficient exploration and discovery
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of interactions among single nucleotide polymorphisms
(SNPs) in case-control genome-wide association study
(GWAS) data. It uses an information-theoretic approach
to evaluate SNP-SNP interactions [14]. Information gain
is computed for every individual SNP, which allows the
user to identify SNPs that are most associated with the
disease under study. When searching for interesting pairs
of SNPs, SNPsyn estimates the synergy between a pair of
SNPs by computing the interaction gain. Information gain
can identify SNP pairs with non-additive effects. Results
are presented in an interactive graphical user interface
that allows the user to select the most synergistic pairs,
perform Gene Ontology enrichment analysis and visu-
alize the synergy network among the selected SNP-SNP
pairs.

SNPsyn computes the information gain exhaustively
across all SNP pairs to avoid missing any pair where
SNPs on their own provide no information about the
phenotype under study. Because the number of pairs
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Figure 1 SNPsyn graphical user interface. a) A synergy versus information gain plot is used to select SNP-SNP pairs. b) Gene Ontology
enrichment analysis for genes overlapping with selected SNP-SNP pairs. €) Synergy network of selected SNPs.
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is quadratic to the number of SNPs, the exhaus-
tive search quickly becomes computationally intractable
for commodity computer systems. The information-
theoretic-based detection of SNP-SNP interactions has a
high degree of data parallelism and requires much more
processing power than memory storage. This makes it
a perfect candidate for processing on modern massively
parallel architectures.

Implementation

Below we describe the SNP-SNP interaction scoring
approach we use in SNPsyn and discuss its implementa-
tion on CPU, CUDA and MIC architectures. Our partic-
ular concern is to evaluate Intel’s new MIC architecture
and compare its advantages against currently prevailing
CUDA architecture.

SNP-SNP interaction scoring

The SNP-SNP interaction scoring scheduler, written in
Python, partitions and distributes the computational tasks
to all available, user-specified resources: CPUs, GPUs,
and Xeon Phi coprocessors (Figure 2). It then merges the
results from individual units into a final result file. Each
thread (CPU, GPU or Xeon Phi) takes one pair of SNPs
and performs all the calculations needed to compute the
synergy score of the pair. The synergy of a pair of SNPs
X and Y with respect to phenotype P is obtained by

Scheduler
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L GPU J LXeonPhi

SNP - SNP interactions

CPU

C++

N —

-

Figure 2 SNPsyn software architecture. Computation of SNP-SNP
interaction is coded in C++ for the CPU, CUDA and MIC architectures.
The scheduler that invokes the three heterogeneous
implementations is written in Python.
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subtracting the information gains of individual SNPs from
the information gain of the combined pair [13]:

GX,Y)=IX,Y;P)—IX;P) —I(Y;P). (1)

Given the two SNPs and the phenotype as random
variables X, Y and P, respectively, the information gains
required in Equation 1 are calculated as [14]:

q(x,p)
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Computation of marginal probabilities g(x), g(¥), g(p)
and joint probability distributions g(x, p), g(¥, p), q(x,),
q(x,y,p) requires a single scan through case and control
samples. The number of joint probability distributions
q(x,y) and gq(x,y,p) that need to be determined grows
quadratically with the number of SNPs. This ensures
enough computational load to compensate for the mem-
ory transfer costs and makes it efficient for an implemen-
tation on parallel hardware.

Permutation analysis is used to evaluate the significance
of results on true data. Data is randomly shuffled thirty
times. Each time, information gain and synergy for all
pairs are calculated to obtain the null distribution, which
is used to determine the significance of results on true
data. Details on permutation analysis are described in
Curk et al. [13].

Parallel implementations of interaction scoring
Calculations are performed in parallel for as many pairs of
SNPs as allowed by the hardware. We took special care to
efficiently use the GPU and Xeon Phi hardware. We min-
imized memory transfers between the main CPU and the
coprocessors to avoid bottlenecks and vectorized the code
wherever possible. We optimized the number of threads
running on the GPU to maximize throughput. To cope
with the memory limitation of the GPU, SNPsyn includes
optional heuristics to quickly estimate the importance of
SNPs and reduce the data set prior to analysis. In the
following sections we present the implementation details
regarding both architectures.

GPU and CUDA

GPUs gain their computational power from the numer-
ous processing cores packed into one chip. For example,
the modern Nvidia Tesla K20 GPU has 13 streaming
multiprocessors, each containing 192 computational units
called CUDA cores. These cores lack sophisticated control
units and are thus likely to work best when executing the
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same instruction on many data elements in parallel with
no divergent program paths in the algorithm. A program-
mer sees the GPU as a parallel coprocessor and can use
it to speedup computationally intensive parts of the algo-
rithm. Of course, there must be enough data parallelism
in the code to make it worthwhile.

Different tools are available for programming GPUs.
Nvidia offers the CUDA toolkit [15] for programming its
own products. It includes a proprietary compiler and a
set of libraries that extend the C++ syntax with paral-
lel programming constructs. Another popular option is
the OpenCL framework [16]. It supports hardware from
different vendors but usually lags slightly in terms of per-
formance when compared to specialized development kits
such as CUDA.

Regardless of the development tool used, the program-
mer must follow certain rules to obtain maximum per-
formance [17]. The most important one is to partition
the algorithm in blocks small enough to simultaneously
start a sufficient number of threads to utilize all avail-
able resources. For example, consider the code snippet in
Figure 3, a simplified version of a code that scores pairs
of SNPs. Function computelGain calculates the informa-
tion gain of a SNP pair using Equation 1. The details
of the calculation are omitted to emphasize the archi-
tecture specific parts of code. The snippet includes all
the peculiarities of programming for GPUs. The pro-
gram has to implement the GPU-specific part separately
from the CPU code and explicitly transfer data from
the host to the GPU. Special functions called kernels
(marked with the keyword __global ) must be written
to be executed on the GPU. Memory transfer and alloca-
tion functions must be called to supply the necessary data
to the GPU and collect the results afterwards. Usually,
the programmer performs measurements to determine
which thread configuration is most suitable for a particu-
lar problem size and the appropriate number of threads to
launch.

Xeon Phi and MIC

Intel designed the Xeon Phi family of coprocessors around
the new MIC architecture [18] to compete with GPUs
specialized in general-purpose computing. The design
follows a different approach in comparison to GPUs.
Coprocessors consists of many simple, but fully functional
processor cores derived from the Intel Pentium archi-
tecture. Intel improved the original design by adding a
512-bit wide vector unit and Hyper-Threading Technol-
ogy. This enables Xeon Phi to achieve similar theoretical
performance as modern GPUs. The model 5510P, which
we used in this study, includes sixty cores interconnected
with a bidirectional ring bus. Each core is capable of run-
ning four threads in parallel. The cores fetch data from
the 8 GB of on-board RAM and communicate with the
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aevice

Zloat computeMISingle (char =»datalGPU,int N,int S,

{

// computs averags mutual information betwesn

=)

// the phsnotype and SNP? x from data array
// and return the result

—

device_
t computeMIPair (char »dataGPU,int N,int §,

int x,int ¥)

oa

information betwesn
{x,y) from data

/ compute averags mutual
// the phenotype and SNP pair
// array and return the result

m

!
glcbal
computeIGaiu char »datalPU,float »resultGPU,
) int N,int S)
{
int Np = N« (N-1)/2;
int i (blockIdx.y*bleockDim.y+threadIidx.y) «
(blockDim.x*gridDim.x) +
blockIdx.x*blockDim.x+threadIdx.x;
int t = ((isgrt{(Np-8+i-8)}+1))-1)/2;
int x = (N-1)-1-t
int ¥ = i-Np+(({t+1l)«(c+2))/2)+x+1;
if (i < Np)
float Mixy = computeMIPair(dataGPU,N,S, x,v);
float Mix = computeMI (dataGPU,N,S,x);
float Miy = computeMI (dataGPU,N,S,vy);
resultGPU[L] = MIxy-Mix-Miy;
}
// char sdata - points to the data sst with all
'y phenotypes and genotypes
// int N - number of SNPs
/ int § - number of samples
int No N« (N-1)/2;

int blocks (Np+threads-1) /threads) ;

Zloat +result =(flocats*)malloc(Np+sizeof (float));
cudaMalloc( (voids«+) &dataGPU,N«S«sizeof (char)) ;
cudaMalloc ( (voide«) &resultCPU, Npxsizsof (£loat) ) ;
cudaMsmcpy (dataGPU,data, NvSxsizeot (char),

"JdaM:meyhooh‘oD—v-ce,,
computelGain««<blocks, threads->{dataGPU,
resultGPU,N,S) ;
cudaMemepy (result, resultGPU,Npvsizeof (float)
cgdaMunc“ /DeviceToHost) ;

Figure 3 CUDA code snippet. Variables threads and blocks
store the thread configuration. Function cudaMemcpy feeds the
data into the GPU and retrieves the results afterwards. Each of the
preconfigured GPU threads independently executes the

computeIGain function and scores the associated SNP pair.

host CPU through the PCle bus. In comparison to GPUs,
each core on a Xeon Phi can efficiently execute the code
even if threads do not follow the same program path. This
makes it suitable for a wider range of problems, including
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multiplications of sparse matrices [19], and operations on
trees and graphs [20].

Intel provides a C++ compiler suite and all the tools
needed to exploit the hardware [21]. The code can be
parallelized using OpenMP directives or the MPI library
and compiled for the MIC architecture. Resulting appli-
cations can then run only on the Xeon Phi coprocessors.
Another, more general way to specify parallel execution is
to use offload constructs along with OpenMP to mark the
data and the code to be transferred and executed on the
Xeon Phi. All other parts of the program will run normally
on the host computer CPU. A third possibility is to use
OpenCL framework in the same manner as with GPUs.

MIC development tools facilitate data management
through compiler directives. The example in Figure 4
demonstrates this programming paradigm. It performs
the same operation as the snippet from Figure 3. The pro-
grammer marks the data and the code that is needed on
the coprocessor. All memory allocations and transfers are
done implicitly. To obtain best performance, the program-
mer must tailor the algorithms to fully utilize the vector
unit. The Intel compiler automatically vectorizes sections
of code where possible.

If a computer lacks Xeon Phi, the MIC code can be
executed by the main CPU, which is not the case with
CUDA-specific implementation. The MIC code looks
much cleaner and easier to handle than CUDA code. The
current drawbacks of using Xeon Phi are the shortage of
supporting Linux distributions (officially only RedHat and
SuSE) and the pricey development environment for the
Windows operating system. The main aspects (relevant to
the developer) of each of the architectures are shown in
Table 1.

Results

We benchmarked SNPsyn on a workstation with two six-
core Intel Xeon E5-2620 2.00 GHz CPUs capable of run-
ning up to twenty-four threads in parallel, 64 GB of RAM,
two Nvidia Tesla K20 general-purpose computing cards
with 5 GB of RAM each and one Intel Xeon Phi 5110P
coprocessor with 8 GB of RAM. The operating system was
CentOS 6.4.

We evaluated the performance on a series of rep-
resentative  WGAS data sets constructed from the
Infinium_20060727fs1_gt_ MS_GCf data set found in the
WTCCC study [22]. Our goal was to observe the effect
of the number of SNPs and WGAS study subjects to the
execution time on different configurations. We sampled
with replacement the original data on 994 subjects and
15 436 SNPs to obtain data sets with the desired num-
ber of subjects and SNPS. We performed the analysis on
data with 1 000, 6 000, and 20 000 subjects and 10 000,
100 000, and 660 000 SNPs. The study considered only the
data sets that could fit into the GPU memory. Xeon Phi
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_ declspec(target (mic))
float computeMISingle (char xdata,int N,int S,
int x)

// compute average mutual information between
// the phenotype and SNP x from data array
// and return the result

__declspec (target (mic))
float computeMIPair (char *data,int N,int S,
int x,int y)

// compute average mutual information between

// the phenotype and SNP pair (x,y) from data
// array and return the result

// char *data - points tc the data set with all

/7 phenotypes and genotypes
// int N - number of SNPs

// int 8 - number of samples

int Np = Nx (N-1)/2;

fleoat *result =(flcat+)malloc (Np*sizeof (float});

#pragma offload target (mic)
in(data:length(N«S))
out (result:length(N))

#pragma omp parallel for

for (int i = 0; 1 < Np; ++i)

int t = ((isqgrt((Np-8+i-8)+1))-1)/2;

int x = (N-1)-1-t;

int y = i-Np+(((t+1)+{t+2))/2) +x+1;

float Mixy = computeMIPair(data,N,S,x,v)
float Mix = computeMISingle{data,N,S,x);
float Miy = computeMISingle{data,N,S,vy);
results[i] = MIxy-Mix-Miy;

)

Figure 4 MIC code snippet. The first pragma directive marks the
start of a MIC code section. Keywords in and out indicate the data
to be transferred to and from the Xeon Phi. The OpenMP clause omp
parallel for launches all available threads in parallel, which

execute the code in the body of the loop and score the SNP pairs.

is clearly in advantage when compared to K20 regarding
the amount of RAM (8 GB versus 5 GB). We tested six
hardware configurations including one CPU core running
a single thread, twelve CPU cores running twelve threads,
twelve CPU cores running twenty-four threads, one GPU
core, both GPU cores, and Xeon Phi.

Figure 5 reports on execution times of the exhaustive
SNP-SNP interaction analysis and the speedups achieved
using various hardware configurations. For easier compar-
ison, execution times are plotted on a logarithmic scale.
As expected, execution times increase proportionally with
the number of subjects and are quadratic with the number
of SNPs included in the analysis.

The single thread CPU configuration takes more than
30 days to analyze the data on 660 000 SNPs and 1 000
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Table 1 Comparison of parallel computer architecture platforms with key aspects from the viewpoint of software

development
x86/x64 single CPU Nvidia GPU Intel Xeon Phi
Tools Arbitrary compiler CUDA Toolkit or OpenCL framework Intel compiler suite
OS support Many Windows, Linux, Mac OSX Linux (RedHat and SuSE), Windows
Required programming skills Low High Medium
Lines of code* 260 460 360
Programming remarks None Architecture specific optimizations Recommended optimizations using
are crucial vector unit
Platform maturity Mature Extensive documentation, many Bugs in drivers, documentation needs

programming examples

to improve

Lines of code (*) reports on the approximate length of the code that implements the computationally intensive tasks of SNPsyn.

subjects. Running twelve threads in parallel, one on each
of the CPU cores, speeds up the computation by a fac-
tor of 10 and reduces the execution time to approximately
3 days. Increasing the number of threads to twenty-four
reduces the time to perform the analysis to around 2 days
with the speedup peaking at 12.8 compared to a one
thread configuration. Memory bottleneck is the main fac-
tor for the poor speedup, which is far below the theoretical
value of 24. Interestingly, similar speedups are achieved on
all (smaller) data sets, meaning that there is enough data
parallelism to keep the CPU busy.

Nvidia K20 provides for considerable reduction in exe-
cution times, with the analysis of the largest data set
taking only around 17 hours, demonstrating a speedup
of 42 in comparison to a single CPU thread. Sharing
the work between both GPU cards doubles the speedup
and reduces the execution time to 8 hours. Increasing
the number of subjects leads to a noticeable decrease in
speedup, as more data is being transferred between the
main memory and the GPU. On the other hand, increas-
ing the number of SNPs introduces more data parallelism
into the computations, reflecting in an improved speedup.

Time [s]
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| 610s
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Figure 5 Execution times and speedups achieved on various computing resources. Shown are execution times on each hardware
configuration for different problem sizes (a) and speedups in comparison to a single CPU thread execution (b).
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Table 2 Technical specification of hardware platforms
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Intel Xeon E5-2620

Nvidia Tesla K20 Intel Xeon Phi 5110P

Number of transistors 2.3 billion 7.1 billion 5 billion
Peak power consumption 95 W 225W 225W
Single precision floating point performance 96 GFLOPS 3.5 TFLOPS 2.0 TFLOPS
Main memory 64 GB  can be expanded 5GB 8GB

Xeon Phi is positioned somewhere in-between K20 and
CPU-only implementation. It achieves a speedup of nearly
20 on the largest data set, making the analysis run a day
and a half, which is double the time needed on a K20.
The speedup behaves similarly for Xeon Phi as for K20 —
it increases with the number of SNPs and decreases with
the number of subjects. This confirms that the drop is
caused by transferring larger amounts of data without
introducing additional parallelism.

Using only CPUs to analyze the data is unfeasible except
for small data sets since the computations can take days
to complete even on multiple cores. Xeon Phi provides a
considerable performance boost with a maximum speed-
up of nearly 20 and lots of on-board memory to store
the data. Nvidia K20 clearly outperforms every other
configuration in terms of speed and is the perfect choice
when one wants to cut on the execution times as much as
possible. This comes at a price of cumbersome program-
ming and less on-board memory, which limits the size
of data.

Technical specifications presented in Table 2 show sim-
ilar trends: Nvidia K20 offers the highest theoretical per-
formance in terms of TFLOPS and has the most complex
design. Xeon Phi has considerably less computing power,
but interestingly draws the same amount of power as
K20 at maximum load. The Xeon E5-2620 CPU is the
least efficient of all and lacks the performance to remain
competitive at computationally intensive tasks.

Conclusion

We investigated how modern heterogeneous architec-
tures cope with a selected computational problem typical
for bioinformatics. The proof-of-concept implementation
of SNPsyn on heterogeneous systems greatly reduces the
(wall-clock) time needed for analysis of large GWAS data
sets. GPUs proved to be a mature platform that offers a
large amount of computing power to address inherently
parallel problems, but is demanding for the programmer.
A user who is only interested in using SNPsyn to analyze
their data will profit the most by having multiple GPUs
in their system. The new MIC architecture greatly alle-
viates programming but lacks in performance. Its ease of
programming combined with good performance has a lot
to offer to developers who don’t want to spend too much
time optimizing their algorithms. Nevertheless, MIC is a

general platform capable of tackling a wider range of more
complex problems. This makes it very promising to excel
in more complex analysis of SNP-SNP interactions such as
adjustment for covariates [23].
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License: GNU GPLv3
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