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Abstract

Background: Cancers are highly heterogeneous with different subtypes. These subtypes often possess different
genetic variants, present different pathological phenotypes, and most importantly, show various clinical outcomes
such as varied prognosis and response to treatment and likelihood for recurrence and metastasis. Recently, integrative
genomics (or panomics) approaches are often adopted with the goal of combining multiple types of omics data to
identify integrative biomarkers for stratification of patients into groups with different clinical outcomes.

Results: In this paper we present a visual analytic system called Interactive Genomics Patient Stratification explorer
(iGPSe) which significantly reduces the computing burden for biomedical researchers in the process of exploring
complicated integrative genomics data. Our system integrates unsupervised clustering with graph and parallel sets
visualization and allows direct comparison of clinical outcomes via survival analysis. Using a breast cancer dataset
obtained from the The Cancer Genome Atlas (TCGA) project, we are able to quickly explore different combinations of
gene expression (MRNA) and microRNA features and identify potential combined markers for survival prediction.

Conclusions: Visualization plays an important role in the process of stratifying given population patients. Visual tools
allowed for the selection of possibly features across various datasets for the given patient population. We essentially
made a case for visualization for a very important problem in translational informatics.
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Background

During the past fifteen years, high-throughput genomic
experiments, which involve the usage of micro-arrays or
next generation sequencing technologies, have signifi-
cantly changed biomedical research and clinical practice.
These technologies have expedited the process of dis-
covering genes implicated in important biological phe-
nomena and molecular markers for disease. However, for
a better understanding of large high-dimensional data
associated with high-throughput experiments, intuitive
visualization tools are needed in order to effectively inter-
pret the data and extract new biological knowledge and
insights. Specifically, there is an important and unmet
need to integrate collected data with previous biologi-
cal and clinical knowledge. It is thus important to access
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large repositories of often structured biological knowl-
edge and further to have access to interactive tools that
facilitate the required integration and analysis of all data,
especially against the backdrop of prior knowledge. The
specific need of integrative visual analytics is of particular
importance given the growing trend of using integra-
tive genomics (or panomics) approaches for personalized
treatment of diseases, including cancer.

Most types of cancers are highly heterogeneous with dif-
ferent identifiable subtypes. These subtypes often possess
different genetic variants, present different pathological
phenotypes, and most importantly, confer different clin-
ical outcomes such as varied prognosis and response to
treatment as well as different likelihood for recurrence
and metastasis. Patient stratification is necessary for pre-
scribing viable regimens of treatment and also towards the
discovery of prognostic and/or predictive biomarkers.

For instance, there are four main subtypes of breast
cancer: Luminal A (LumA), Luminal B (LumB) and
Triple Negative/Basal-like, and HER2-type. The luminal
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subtypes are associated with the expression of estro-
gen receptor (ER) and progesterone receptor (PR), while
HER2-type usually lacks hormone receptor expression (e,
ER- and PR-) but have amplification and/or over-
expression of HER2. Basal-like tumors are commonly
described as triple-negative breast cancers (TNBCs) lack-
ing in expression of hormone receptors and the oncogene
HER2 (HER2-). In order to robustly characterize patient
subtype demographics to achieve precision medicine,
panomics approaches are being increasingly used espe-
cially in tandem with the development of large collabora-
tive projects such as TCGA (The Cancer Genome Atlas).
In these projects, large cohorts of patients were recruited
and many different types of “omics” data including geno-
types (e.g., single nucleotide polymorphism), copy num-
ber variance, and somatic mutations), gene/microRNA
expression, epigenomics (e.g., DNA methylation), pro-
teomics, pathology images and clinical records as well as
outcome information were collected from these patients.
It is conceivable that by integrating the data ranging from
genotype to multiple levels of phenotypes, more precise
and robust stratification of the patients with clinical out-
come difference can be achieved. Very least, conflicting
stratifications arising from the consideration of each data
collection separately are avoided, leading to identification
of potentially more robust biomarkers.

However, integrative analysis is a challenging task. Most
of such analysis requires extensive analysis and develop-
ment of complicated algorithms such as network inte-
gration [1], statistical association and regression [2], and
partial least square analysis [3]. Since many of the algo-
rithms are still in the development and testing stage,
users are often required to have extensive preparation in
quantitative analysis, algorithm development and compu-
tational methods. These requirements severely hinder the
wide utilization of such data by clinicians and biomedi-
cal researchers who are often only trained in clinical and
biological sciences. Therefore, there is an urgent need for
effective tools that allow biomedical researchers achieve
tangible exploration of patient population using multiple
types of “omics” and patient outcome data.

Here we present a visual analytic system called
interactive Genomics Patient Stratification explorer
(iGPSe), designed to help biomedical researchers to per-
form patient stratification on-the-fly and visually explore
disease subtypes in heterogeneous genomic data. In
iGPSe, we employ machine learning algorithms that iden-
tify sub-populations based on molecular feature sets cho-
sen by users. To be effective, iGPSe relies on an interactive
realization of parallel sets and patient survival plots
between selected patient groups. Thus, investigators are
able to quickly examine how a selected list of molecu-
lar features of interest can separate patients into different
groups and whether these groups show a difference in
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clinical outcomes. In addition, iGPSe offers several visu-
alization techniques to help users evaluate the quality of
the stratification results and thus assess the effects of clus-
tering algorithms. In this work, we demonstrate the use
of iGPSe on the stratification of breast cancer patients
using both mRNA and microRNA (miRNA) expression
data.

The most distinctive feature of iGPSe is a novel visual-
ization scheme to explore combinations of different data
types and identify combined markers for robust survival
prediction of a given population. Additionally, iGPSe inte-
grates standard patient stratification workflows into an
intuitive, user friendly interactive platform.

Related work

Cancer tumors that seem very similar when examined
through conventional diagnostic methods might look dif-
ferent at the molecular level leading to different and effec-
tive outcomes and/or treatment responses. Therefore,
molecular features are being increasingly used to stratify
patients to support more accurate and robust clinical and
therapeutic decisions. Over the past decade, molecular
stratification of tumors using gene expression microarrays
has been an important area of cancer research [4-9]. A
typical stratification study often includes the application
of statistical techniques to population groups including
supervised learning and unsupervised cluster analysis.
Heatmaps have been widely used in many tools [10] to
visualize molecular signature patterns manifesting in var-
ious subgroups.

One of the popular genome tools is the UCSC Cancer
Genomics Browser [11]. It allows researchers to iden-
tify and assess genomic signatures in cancer subtypes,
to compare and contrast subtypes, and to assess their
role in stratifying patients into different groups. How-
ever, this ability is restricted to one dataset at a time
and offers no integrative capabilities. Many methods have
been recently reported to discover characteristics from
multiple classes of measurements [12-15]. These compu-
tational methods either build statistical models [13,14]
or construct multiple networks or patient samples [15].
In bioinformatics, integrative analysis is becoming more
prevalent with the increased adoption of the integrative
genomics or the panomics [16-20]. A major challenge in
any such integrative study is that the patient population
is very heterogeneous for any given type of measurement
data and thus the ensuing stratifications are often very dif-
ferent. Integrated visualization of heterogeneous data has
not received much attention [21,22].

A salient integrative visualization tool, StratomeX [23],
was proposed towards the visualization and exploration
of subtypes in a population afflicted with cancer using
the TCGA data. StratomeX relies on on the visual acuity
of heatmaps and the discriminative efficacy of clustering
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of collected genomics data. It is however difficult to dis-
cover the underlying structure that exists in a population
and pose hypotheses that compares and contrasts char-
acteristics and outcomes across sub-populations. Addi-
tionally, the high dimensionality of the data makes it
difficult to display all of the relationships in a meaningful
manner.

Methods

We developed the visual analytics system iGPSe, a web
based tool facilitating patient stratification and explo-
ration of disease subtypes in heterogeneous genomic
data. We first elaborate the overall requirements of our
system and the underlying design rationale. We con-
tinue by presenting visualization techniques adopted in
iGPSe. We then describe the iGPSe workflow design and
implementation.

Requirements analysis and design

In this subsection we outline various design decisions
that ultimately guided our choices for computational
methods and platforms. Our methods share commonal-
ities with genome wide association studies (GWAS). To
begin with, our studies will require a large population of
patients. In addition, our collections of datasets are of
multiple modalities (imaging, molecular expression, etc.),
high-dimensional, large, and highly heterogeneous. In this
section, we first describe input data under consideration
and then enumerate various functionalities that will be
required in a typical patient subtyping study. Eventually,
we will make a strong case for the use of iGPSe to perform
and evaluate patient stratification.

Data characteristics

The population data used in iGPSe is extracted from the
TCGA. For our current prototype, we limit our collec-
tion to include gene expression (MRNA) and micro-RNAs
(miRNA) expression. The expression data were subject to
log transformation and normalization following standard
bioinformatics practice. Clinical information includes the
age, tumor grade, survival time and survival status for
each patient.

User wish list for iGPSe

In order to identify the system requirements, we worked
closely with domain experts. The suggestions and advise
collected from our collaborators helped us to design,
implement and improve our system. Accordingly, we iden-
tified the following functions, which are directly based on
observations of the domain experts’ standard data analysis
workflows.

a) Interactive feature selection: Molecular features
such as genetic variance and expression levels for
selected genomic regions and genes are often used as

c)
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potential biomarkers for identifying cancer subtypes,
which helps in early diagnosis and effective
treatment of cancer patients. Given the nature of
cancer microarray data, which usually consists of a
few hundred samples with thousands of genes as
features, the selection of molecular features is
important for effective gene expression data analysis.
The feature selection step is a commonly addressed
problem in machine learning especially in the
context of supervised learning where different
subtypes are labelled with prior domain knowledge.
Thus, one can effectively eliminate the potentially
irrelevant or obvious features.

Users, therefore, should be able to add/drop/modify
features interactively. Then by examining effects of
eventual stratification, researchers can verify the
quality of the selected feature set and refine it
accordingly.

Clustering: It is now widely acknowledged that
cancer is biologically heterogeneous. This complexity
accounts partly for the variation in clinical outcome
[16]. Given the large variations in genetic and
environmental factors, there is a need to detect
sub-populations and examine them under different
annotations such as clinical outcome or histological
types. One of the common methods is to cluster the
patient population into subgroups of patients who
share similar expression patterns. However, there is
no one-size-fits-all solution to clustering. Each
algorithm and similarity measurement impose
certain assumptions on the data set. Different
clustering algorithms can give widely differing
stratifications, especially when deployed on gene
expression data. Thus, the application should offer
multiple choices of clustering algorithms for the user
to choose. Moreover, the application should allow
users to run clustering on-the-fly, rather than use
precomputed results. In this way, users can choose
the algorithm that works the best on their input data
set and have more control over the stratification
process. The details of our implementation is
described in Section Results.

Cluster refinement: In many cases, the notion of a
patient subgroups is not well defined in the selected
feature space. The stratification of the population is,
in most cases, not unique. Moreover, the number of
the viable subgroups is also mostly unknown. It is
important to do an evaluation of how well an
algorithm performs on expression data sets. The
application should provide some clues for the user to
evaluate the quality of the clustering results, e.g,
whether the chosen number of clusters is
appropriate, the high-similarity within a cluster and
the low-similarity between clusters. Visualization
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techniques can provide the evaluations. We
integrated three visualization techniques into our
system to help users analyze and improve the
clustering results.

d) Integrated analysis for patient stratification: Our
main goal is to provide various ways to form
combinations of data types interactively. The
visualization of these combinations should be
intuitive and easy to navigate. The user must be able
to detect patterns in the data through rearrangement
and grouping. Further, he/she must be able to drill
down to interesting details and obtain biological
insight.

It is also important to include all collected types of
expression data [23].

Clustering results heavily depend on chosen
parameters and different types of expression data will
give rise to different clusters. Consequently the
application should be able to compare stratification
results from different data types, which could help
researchers answer more complicated questions
including whether there exist dependencies between
stratification results from different data types. It
should also offer interactive functions which help the
user explore various combinations of subtypes. In
order to perform the integrative analysis we adopt an
interactive visualization method, parallel sets, which
give an intuitive evaluation of the cluster coherence
across different types of expression data and enable
the user to interactively explore the various
combinations of clustering. Details of our integrated
analysis are described in Section Results.

e) Interactive user interface: Interactivity is an
essential requirement given the complex nature of
variation inherent in the datasets and the multitude
of measurements and outcomes. The user needs to
be able interactively to select sub-populations and
clusters and compare outcomes and intrinsic labels
between them. The user interface should be clear
and intuitive, so that users with no computer science
background are still able to operate the application.
Moreover, it should be feasible to customize certain
aspects of the visualization.

Visualization components

In this section we describe the visualization components
that are designed to address the aforementioned require-
ments. We adopted four visualizations techniques in our
system. The heatmap helps users to examine the expres-
sion patterns in clusters. The silhouette plot provides an
assessment of the relative quality of patient clustering.
Graph visualization facilitates the exploration of the over-
all population in the selected feature space. The parallel
sets display enables users to evaluate cluster coherence
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between two data modalities. Moreover, representing sub-
populations of patients in parallel sets allows the user to
interactively visualize the data, as well as to perform sta-
tistical tests to ascertain differences in clinical outcomes.

Heatmap

The heatmap is a popular and intuitive visualization tech-
nique for encoding quantitative measurements. In the
context of gene/microRNA expression data, the color
assigned to a cell in the heatmap grid indicates expression
value of a particular gene in a given patient sample. The
heatmap provides an overview summary of the data. An
example is shown in Figure 1(a); the given patient pop-
ulation is stratified into four subgroups. Each subgroup
corresponds to one block of the heatmap. The height of
each block indicates the number of patients in the cor-
responding cluster. The main goal of heatmap in our
system is to help the user to examine gene expression
patterns related to the stratification. In our example, one
can observe that the genes show distinct patterns between
the clusters while the patterns are consistent within each
cluster.

Silhouette plot

Clustering results depends heavily on the parameters (e.g.,
the number of clusters) and distribution of the data points.
In order to evaluate the results (and hence the choice
of parameters), we incorporated the silhouette plot [24]
into our system. The silhouette plot displays the degree
of certainty of each sample belonging to its cluster. For
our application, this is measured by the difference of a
patient’s average dissimilarity to other patients of its clus-
ter and the patient’s average dissimilarity to all patients
to the next closest cluster. The dissimilarity is measured
by the squared Euclidean distance between patients in
the selected feature space. These dissimilarities are stan-
dardized between —1 and 1 and a horizontal bar chart of
differences is plotted for each cluster. Thus the silhouette
plot allows the user to assess the relative quality of the
clusters and provides cues to determine the appropriate
number of clusters. Figure 1(b) shows an example of sil-
houette plot where the number of clusters is 4. The blue
and purple clusters are relatively tight and also close to its
neighbouring cluster.

Graph visualization

Graphs have been widely used to capture relationships
among data points. In this work we employ interactive
graph visualization of similarity matrices to provide a per-
spective of the population structure in the feature space
and allow users explore patient population. The graph is
constructed such that each patient is represented by a
vertex, and similarities between patients are represented
by edges connecting these vertices. Graph visualizations
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Figure 1 Heatmaps and Silhouette Plot of the patient population. Both Heatmaps (a) and Silhouette Plot (b) are from the same K-means
clustering result (k=4).

allows one to browse complex relationships and deter- and the Euclidean distance, two of the most
mine community structures. Generating the graph visual- commonly used similarity metrics in bioinformatics.
ization consists of the following steps: b) Graph sparsification: The similarity matrix
provides a fully connected graph, which needs to be
a) Similarity matrix: The similarity matrix reveals the pruned down for effective visualization. The goal of
intrinsic relationships among the entire population. pruning the graph is to extract and summarize the
Similarity between two vertices (ie, two patients) can topology of the underlying feature space. We apply a
be computed in various ways depending on the global threshold, keeping only those edges with
property of the measurement data. In our application, similarity values exceeding the chosen threshold.

the user can choose between Pearson’s correlation With this approach, the resulting graph captures the
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population structure by connecting only highly
similar vertices.

c) Graph layout and vertex labelling: Graph layout
algorithms project N dimensional data onto two
dimensional space for visualization, with the aim of
best preserving actual pairwise distances between
vertices in the original high dimensional space. We
use the force-directed graph layout method of [25]
which was shown to be effective in creating
uncluttered visualizations.

An example of the graph visualization based on the gene
expression features is shown in Figure 2. Since we use a
global threshold to sparsify the graph, there are a few iso-
lated nodes. The color labelling of the nodes is consistent
with the heatmap and silhouettes plot (Figure 1). It should
be observed that several purple and blue nodes are densely
connected with nodes of the same color. This confirms our
previous observation made with the use of the silhouette
plot (see above).

Parallel sets

In order to perform the integrative analysis of different
types expression data we employ the parallel sets method.
Parallel sets enables users to interactively explore vari-
ous subgroups obtained as clusters from the clustering
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step. For each data type, user-selected features (nRNA or
microRNAs) are used to separate the patient population
into a number of mutually exclusive subgroups by a clus-
tering algorithm. Our application offers k-means, spectral
clustering and community detection as choices for the
clustering algorithm.

Similar to our setting for the heatmap, in parallel sets,
patient subgroups are represented as columns. Differ-
ent types of data are placed independently side-by-side.
In each column, subgroups are encoded by boxes whose
height is proportional to the number of patients within
that subgroup. The color of the boxes indicates the cor-
responding subgroups, which is consistent with the node
color in the graph visualization for the same measure-
ment. The ribbons connecting boxes represent the match-
ing patients in different types of measurements. The width
of the ribbons is proportional to the number of patients.
The main goal of the ribbons is to offer an intuitive view of
the consistency of the clustering result between different
measurements. A user can combine multiple subgroups
into a larger subgroup by selecting the corresponding
regions.

A user can interactively generate a Kaplan-Meier plots
[26] by selecting subgroups from the parallel sets visu-
alization. This allows users to evaluate the difference in
clinical outcome between selected subgroups. In contrast
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Figure 2 Graph visualization of the patient population.




Ding et al. BMC Bioinformatics 2014, 15:203
http://www.biomedcentral.com/1471-2105/15/203

to the purely data-driven approaches, our application
enables the user to treat ribbons as subgroups and can
interactively combine subgroups from the clustering algo-
rithm. Thus, a new stratification of the population based
on multiple measurements is now obtained. An example
is shown in Figure 3.

Implementation

In this section, we describe the workflow design of iGPSe
and discuss how users interact with the system. Our
system workflow has three phases: feature selection, clus-
tering analysis, and integrative patient stratification.

Our system, iGPSe, is developed in Javascript and R
using the R/Apache module running on an Apache server.
The data processing is implemented with R script which
is triggered by Javascript. The interactive visualization
part is created using d3.js [27], a visualization JavaScript
library.

Feature selection

Within the high-dimensional expression data space, each
patient is defined by thousands of genes and hundreds
of miRNAs. Inevitably, the data sets contain noisy or
irrelevant genes/miRNAs which makes subtyping more
complicated. Therefore we need to filter out irrelevant
genes and only focus on the genes in which the user is
interested. iGPSe offers an interactive gene/miRNA list
selection panel (Figure 4). There are three ways to input
the feature list: 1)users can select genes/miRNAs of their
interest from the table, or 2) type or copy-and-paste the
gene names into the input areas or 3) upload a text file
(comma delimited format) of the gene list. Once the lists
for both genes and miRNAs features are determined, the
following patient clustering and stratification will only
be based on these selected features. Users can cluster
patients in the next step by clicking the ‘Next’ button.
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As shown in the Figure 4, the gene list is extracted
from a recent Nature manuscript describing the TCGA
BRCA (breast cancer) project [28]. It has been shown that
somatic mutations in these three genes occurred at 10%
incidence across all breast cancers, which are the highest
among all genes. For the miRNA, we picked hsa-mir-
130a, hsa-mir-222, hsa-mir-29a, hsa-mir-23a,hsa-mir-24-
1, hsa-mir-24-2, hsa-mir-30a, hsa-mir-27a, hsa-mir-22,
and hsa-mir-100 as suggested in [29]. This framework
can be easily extended to accommodate all kinds of com-
monly used high throughput molecular data types and
signatures.

Clustering analysis

Once the molecular features are selected, iGPSe offers
a Clustering section which performs the stratification
and help users evaluate and refine the clustering results.
The Clustering section provides an interactive interface
for tuning parameters of clustering algorithms. We pro-
vide users three clustering methods: K-means, spectral
clustering, and community detection.

Following the stratification, iGPSe generates the
heatmap, silhouette plots and population graph visual-
ization to help user evaluate the validity and quality of
the stratification result. iGPSe also provides visualization
for an overview of demographic and clinical information
such as patients’ age distribution and tumorous grades. A
Clustering analysis example for the TCGA BRCA dataset
using afore-mentioned features is shown in Figure 5.

Integrative patient stratification

Integrative patient stratification section allows users to
review the clustering results and provides an interactive
interface to compare clinical outcomes, such as patient
survival and patients ages/tumour grades. Users can select
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Figure 3 Parallel set visualization and survival analysis panels in iGPSe. Left: The clusters of patients using different feature sets are shown as
bars. On the left side, the blue/yellow/purple/pink bars indicate the four patient groups separated using the PAM50 breast cancer genes [31]. The
gray/green/light blue bars indicate three groups separated using the above discussed miRNAs. The gray bands linking matched patients. Right: The
Kaplan-Meier curves of the survival times for the two groups of selected patients. The colors of lines matches the colors of the selected bands. In
addition, the p-value of the difference in survival times between the two groups based on log-rank test is also listed (p-value = 3.8173e-06 in this
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Figure 4 Feature selection and input panel in iGPSe. Left: The user can select list of genes (for mRNA data) from the left list (extracted from input
files) by left clicking on the genes or input the gene list (e.g., copy and paste) into the window on the right side. The user can also load gene/miRNA
list from text files. The selected genes will also show up in this window. Right: The selection and input for miRNA is similar to that for genes.
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subgroups from the parallel sets to carry out survival anal-
ysis including Kaplan-Meier curves and a log-rank test. An
example is shown in Figure 6

e Parallel sets view shows clustering results of patients
using different feature sets which are arranged as
columns side-by-side. The columns are split up into
disjoint blocks representing clusters. Ribbons connect
blocks of two columns, whose width represents how
many patients shared between the two clusters.

e Survival plot view shows the Kaplan-Meier plots
(survival curves) of selected subgroups. If more than
one groups is selected, the p-value which tests the
null hypothesis that the survival curves are identical
in the overall populations using the log-rank test, will
be given. Users can select the subgroups by clicking
the blocks or ribbons in the parallel sets view.

e Population graph view provides an interactive
similarity graph visualization. User can drag the graph
to adjust the layout, and select a node to acquire
correspondence patient’s clinical information.

The application also allows users to export the visualiza-
tion into high quality figures. The users can save a figure to

selected format using the ‘Save Figures’ button. Currently
we support PDF, SVG, JPG, and PNG formats.

Results
Use case studies
We demonstrate the use of iGPSe on a patient cohort
obtained from the TCGA invasive breast carcinoma
(BRCA) project. The TCGA BRCA dataset contains 623
patients’ mRNA and miRNA expression profiles as well
as clinical outcome information. One of the major advan-
tages of iGPSe is that it enables the user to select
genes/miRNAs for use as features to study the patient
population.

We are especially interested in the relationship between
a group of cell cycle/genome stability genes and the well-
known mir-17-92 cluster of miRNAs. In a previous study,
we identified a group of more than 400 genes which are
frequently co-expressed in multiple types of cancers but
not in normal tissues [30]. This gene group is highly
enriched with genes involved in cell cycle, mitosis, and
genome stability maintenance. It also includes the well-
known breast cancer gene panel, PAM 50 [31], which
purports to possess prognostic capabilities. The mir-17-
92 cluster contains a group of six miRNAs which are
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proximal on human chromosome 13 and often co-express.
They have been shown to be involved in the progression
of many types of cancers including lymphoma [32]. There-
fore it is of interest to explore if there is any relationship
between the frequently co-expressed gene and miRNAs
groups in the patient populations and if a combination
of them can lead to better prognosis of the breast cancer
patients.

Since the data has been log transformed we set
Euclidean distance as the similarity function in the pre-
view section. By selecting an appropriate threshold value
we get the population graph as in Figure 6 (left graph is
constructed from mRNA, right graph is constructed from
miRNA). We chose K-means as the clustering method to
separate patients mRNA and miRNA metric into four and
three subgroups, respectively.

Figure 6 shows the parallel view and the network view
after the K-means clustering of the patients. In the graph
visualization, one can note that the population strati-
fications suggested by the mRNA and miRNA display
very different subtyping of patients. In the mRNA graph,
patients in the green and brown groups are strongly sep-
arated from the orange group, while in the miRNA graph,
members in the yellow and grey groups are relatively
mixed.

With iGPSe using the parallel sets in the interactive
visualization stage, we associate the clustering results
with clinical outcomes for the two selected subgroups.
We also compare other subgroups from one or more
data modalities. Figure 7(a) shows the survival analy-
sis for different choice of subgroups from mRNA only
and miRNA only (Figure 7(b)). We can observe that in
both mRNA and miRNA exist one subgroup has very
different survival times than the others. A similar obser-
vation was reported by others [31,33]. Interestingly, the
two patient stratifications are not independent. The blue
cluster in mRNA stratification is dominated by samples
from grey and green clusters in the miRNA stratification.
This observation suggests that combination of mRNA
and miRNA features can improve the patient stratifica-
tion. As shown in Figure 7(c), we can quickly test the
choice of other combinations and the result shows a
much more significant difference in survival times than
just using any single data type to stratify the patient
population.

Users’ feedback

We collected comments from three domain experts (Bio-
statistician, clinician and basic scientist) on the use of
iGPSe, providing some evidence that our visualization and
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Figure 6 Screen shot of the interactive analysis page. On the top left, patient samples are clustered based on both mRNA expressions (left panel)
and miRNA expressions (right panel). Heatmaps of the clustered data are shown aligned with the parallel sets. On the top right panel, the survival
plot shows the patient outcome information and the power of statistical significance (p-value). On the bottom, force directed graph demonstrates
the affinity between patient samples. The patient samples selected in the parallel sets are circled. The color of the nodes correspond to the ones in

interaction design, grounded in a characterization of the
domain requirements, supported efficient explorations of
subtypes. We prepared datasets for the TCGA breast
invasive carcinoma (BRCA) cohorts and invited our
domain experts to perform population stratification using
iGPSe. The initial user feedbacks on the utility of iGPSe
are positive.

Before we present the feedbacks and evaluation details,
we outline typical analysis workflow in genomics based
cancer patient stratification. As we stated earlier, a stan-
dard genomic based cancer patient stratification work-
flow includes steps of data curation and pre-processing,
clustering, subtype characterization and validation. Tra-
ditionally, these steps involve scripts written in different
platforms which requires researchers possess at least a
basic level of programming skills. Using separate static
scripts makes the analysis of large populations with
multiple modalities laborious, in particular when studying

the interactions between different data types. The design
of iGPSe was directly motivated by these shortcomings
and the following observations reflect how domain sci-
entists used iGPSe to analyze the model described in
previous section.

e Feature Selection — The identification of
discriminant genes is of fundamental and practical
interest. A small subset of highly discriminant genes
can be extracted to build more reliable cancer
classifiers.

For users who do not have experience in writing
scripts to process the input data, iGPSe interactive
GUI offers a more convenient way than writing
scripts to select the target genes list. A collaborator
mentioned that scroll down table of genes and
input genes can help users adding and dropping
genes from the selected list effectively, especially
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Figure 7 Comparisons of different choices of subgroups. (a) Compare the blue and yellow/purple/pink groups based only on mRNA data.
(b) Compare the grey/green and light blue groups based only on miRNA data. (€) Two groups with different mRNA profiles and different miRNA
profiles. (d) Two groups with different mRNA profiles but similar miRNA profiles.
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for people who do not have a programming
background.

¢ Clustering section — The general aim of the
clustering section is clustering patient population
into subgroups and examine the results’ quality for
each data type. Our collaborators agreed that the
interactive clustering parameters control panel allows
users who have no prior knowledge of machine
learning to guide the stratification process. In
addition, the graph visualization of the patient
population gives an overview of the population
density in the selected feature space which helps
users to verify the clustering results are consistent
with the proximity graph. The silhouette plot of the
stratification gives a rapid overview of the quality of
the clustering result. This immediate visual access
makes the judgment of simulation output faster and
more intuitive. Moreover, all views can be compared
across runs simply by launching the visualization
multiple times. The traditional workflow would have
forced scientists to manually run scripts.

¢ Integrative analysis — our collaborators noted that
parallel set visualization helps them to explore the
relationship between stratification results from two
different types of data. They also told us that the
interactive combination of two types of data
stratification results with the parallel sets is very
useful, especially interactively generating the survival
plot. Eventually experts are able to answer more
challenging questions such as whether patient groups
which share similar gene expression have very
different clinical outcomes when they are expressed
differently with the miRNA.

In general, very positive outcome of the evaluation ses-
sions with our collaborators was that in all cases they
asked us to load further data to explore with iGPSe. This
is convenient especially for testing or replicating reported
gene lists.

Discussion

Visual analytics is an emerging discipline that combines
visualization methods with data analysis and human-
computer interaction. As shown in this paper, application
of visual analytics methods in integrative genomics can
enable quick integration of different types of data and sig-
nificantly facilitate the discovery of integrated molecular
markers for cancer subtyping and outcome prediction.

In our case study, it is observed that the two groups of
patients with different gene (mMRNA) expression profiles
for the previously identified genome stability genes show
differences in survival times only when they have similar
specific expression profiles for the miRNAs in the mir-
17-92 cluster. This observation suggests that the genome
stability genes and mir-17-92 cluster may influence breast
cancer development and progression in different path-
ways even though the genes such as PAM50 and mir-17-92
cluster interact with each other. Thus it is of great interest
to study the genes and pathways targeted by the mir-17-92
clusters in order to elucidate the different mechanisms.

While we have demonstrated the functionalities of
iGPSe using only mRNA and miRNA signatures, it
nevertheless can accommodate other types of patient
information such as genome-specific information, DNA
methylation, and even morphological features extracted
from pathological images. In addition, the system
can accommodate comparison among more than two
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subgroups as well as more than two types of data, which
makes iGPSe highly versatile for biomedical researchers to
use and generate highly interpretable results much more
promptly than the cumbersome script-based approach.

Our evaluation with domain experts shows that major
strengths of iGPSe is that it eliminated the needs of
programming and scripting from users while still grant
users sufficient control during the steps including feature
selection, clustering, subgroup selection and compari-
son. The automatic comparison of clinical outcome (i.e.,
survival) is of particular interests to the users.

Conclusion

In the future, we plan to make this a publicly acces-
sible web tool as it is currently implemented using an
Apache server. Users will be able to upload and analyze
their own data with iGPSe. In addition, more choices on
the clustering algorithms will be implemented. From the
machine learning point of view, our approach provides
an alternative way of carrying out consensus clustering in
order to reconcile different clustering results from differ-
ent features. This system can be combined with existing
consensus clustering approaches to further streamline
the subgroup selection process. Since graph visualiza-
tion allows interactive manipulation of the data points, a
feedback mechanism for interactively assigning clustering
membership based on visualization can be deployed to
enable iterative feature selection.

Overall, we have demonstrated that by combining graph
visualization with parallel views and bioinformatics anal-
ysis, we can significantly reduce the computing burden
for biomedical researchers in order to explore the compli-
cated integrated genomics data. This approach is gener-
alizable to enable more sophisticated analysis for cancer
biomarker discovery and subtyping in order to achieve
precision medicine.
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