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Abstract

Background: In vitro generated dose-response curves of human cancer cell lines are widely used to develop new
therapeutics. The curves are summarised by simplified statistics that ignore the conventionally used dose-response
curves’ dependency on drug exposure time and growth kinetics. This may lead to suboptimal exploitation of data and
biased conclusions on the potential of the drug in question. Therefore we set out to improve the dose-response
assessments by eliminating the impact of time dependency.

Results: First, a mathematical model for drug induced cell growth inhibition was formulated and used to derive
novel dose-response curves and improved summary statistics that are independent of time under the proposed
model. Next, a statistical analysis workflow for estimating the improved statistics was suggested consisting of
1) nonlinear regression models for estimation of cell counts and doubling times, 2) isotonic regression for modelling
the suggested dose-response curves, and 3) resampling based method for assessing variation of the novel summary
statistics. We document that conventionally used summary statistics for dose-response experiments depend on time
so that fast growing cell lines compared to slowly growing ones are considered overly sensitive. The adequacy of the
mathematical model is tested for doxorubicin and found to fit real data to an acceptable degree. Dose-response data
from the NCI60 drug screen were used to illustrate the time dependency and demonstrate an adjustment correcting
for it. The applicability of the workflow was illustrated by simulation and application on a doxorubicin growth
inhibition screen. The simulations show that under the proposed mathematical model the suggested statistical
workflow results in unbiased estimates of the time independent summary statistics. Variance estimates of the novel
summary statistics are used to conclude that the doxorubicin screen covers a significant diverse range of responses
ensuring it is useful for biological interpretations.

Conclusion: Time independent summary statistics may aid the understanding of drugs’ action mechanism on
tumour cells and potentially renew previous drug sensitivity evaluation studies.

Keywords: Dose response experiments, NCI60, Doxorubicin, Mathematical modelling, Differential equation
modelling, Nonlinear regression, Isotonic regression, Bootstrap, Parametric bootstrap

Background
An essential part of discovery and development of anti-
cancer drugs is to assess the induced growth inhibition in
a biologically broad range of tumour derived cell lines by
dose-response experiments [1,2]. The three large cell line
screens NCI60 [3,4], JFCR39 [5,6], and CMT1000 [2,7]
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are among the most well-known high throughput cell line
drug screens.
The approach used in CMT1000 and several other

studies [8-10] is currently the standard approach for con-
ducting dose-response experiments. The experiments are
performed by challenging exponentially growing cell lines
with a serial dilution of drug concentrations and estimat-
ing growth inhibition by relative cell counts between the

© 2014 Falgreen et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited.

mailto:sfl@rn.dk
http://creativecommons.org/licenses/by/2.0


Falgreen et al. BMC Bioinformatics 2014, 15:168 Page 2 of 18
http://www.biomedcentral.com/1471-2105/15/168

treated and untreated cell line. Then, a summary statis-
tic of drug efficiency GIR50 (50% growth inhibition) is
obtained by estimating the concentration at which the rel-
ative cell count is 50% after a fixed period of time. Hence,
neither drug exposure time nor varying cell line growth
rates are considered.
The method is easily comprehended and implemented,

however, as illustrated in Figure 1 this assessment of
growth inhibition leads to summary statistics that are dif-
ficult to interpret. Panels A and B illustrate generated
growth curves for two cell line models with doubling
times 60 and 30 hours, respectively. The cell line models
are treated with 6 increasing concentrations C1, . . . ,C6
of a potent drug for which the effect is assumed con-
stant through time, resulting in 6 growth/decay curves.
For concentration C4 cell line model 1 is in the decay
phase and cell line model 2 is in the growth phase sug-
gesting that cell line model 1 is the more sensitive of the
two.
Panel C illustrates dose-response curves calculated at

three time points: 25, 49, and 73 hours, for the two cell
line models. Because of the fast growth rate of cell line
model 2, the summary statistic GIR50 is obtained at a lower
concentration for this cell line model than for cell line
model 1 for each of the three time points. This indicates
that cell line model 2 is evaluated as the more sensitive of
the two. Hence, this assessment of growth inhibition gen-
erates summary statistics that are incomparable between
cell lines with different growth rates.
The dose-response experiments performed for the

NCI60 and JFCR39 screens are summarised by comparing
net differences between cell counts at observation time
and the initial cell counts for the treated and untreated

cell lines. As we illustrate later this method only partially
solves the problem of growth rate dependency.
The concept behind the present work is that modelling

the growth of a cell line exposed to a drug by a simplified
differential equation will allow us to derive dose-response
curves and summary statistics that are independent of
time under the proposed model. For estimation of the
improved summary statistics a statistical workflow is
suggested consisting of 1) pre-processing of absorbance
measurements to account for multiplicative errors origi-
nating from e.g. cell line seeding [11] and correcting for
background absorbance caused by the drug [12], 2) iso-
tonic regression for modelling the dose-response curve
which is robust against outliers and model misspecifica-
tions [13,14], and 3) a bootstrap method for estimation of
confidence intervals for summary statistics [9]. We also
aim to illustrate a transformation of the model used in
the cell line screen NCI60, which accounts for each cell
line’s doubling time and enables a reanalysis of existing
dose-response data.
Finally, the adequacy of the differential equation for

modelling real data is tested using a doxorubicin screen.
The screen is also used to investigate the applicability of
the proposed statistical analysis workflow by providing
variance estimates for obtained exposure time indepen-
dent summary statistics.

Methods
Themathematical model
To analyse dose-response experiments rigorously we for-
mulate a model of how the growth of a cell line is influ-
enced by a given drug. The growth inhibition is modelled
by the compartment models illustrated in Figures 2A and

Figure 1 Illustration of growth inhibition assessed by relative cell counts. Panels A and B show growth curves for two cell line models with
doubling times of 60 and 30 hours, respectively. The cell line models are treated with 6 increasing concentrations C1, . . . , C6 and growth curves for
each concentration are shown. The red line illustrates total growth inhibition (TGI). Dose-response curves calculated by relative cell counts for time
points 25, 49, and 73 hours are shown in Panel C.
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Figure 2 Illustration of the proposed compartmentmodels.
Panel A illustrates a compartment model where the drug is assumed
to induce cell cycle arrest with halving time T10c and for cells in cell
cycle arrest the death rate is assumed exponential with halving time
T†1c . Panel B illustrates a simplified compartment model in which the

drug is assumed to induce cell death with halving time T†c . In both
models the cell line grows with doubling time T0. Panel C illustrates
growth curves according to Model B for a cell line with T0 = 60 hours
and N0 = 30, 000 cells treated with three different concentrations of a
potent drug. The concentrations correspond to the summary
statistics GI50 = c1, TGI = c2, and LC48 = c3.

B. Panel A shows a compartment model for drugs that
induce cell cycle arrest followed by death. For a cell line
treatedwith drug concentration c ≥ 0 the number of unaf-
fected cells at time t is denoted N0(t, c). The growth of
this cell population is assumed exponential with doubling
time T0 or equivalently a growth rate of 1/T0. The con-
centration dependent rate for cells going into cell cycle
arrest is likewise assumed exponential with halving time
T1
0c > 0, and N1(t, c) denotes the cell count for this pop-

ulation. Finally, the death rate is assumed exponential and
concentration dependent with halving time T†

1c > 0.
We focus on dose-response experiments where the cell

count is estimated indirectly by cell metabolism. However,
cells in cell cycle arrest have a very low metabolism and
such cells are indistinguishable from dead cells in these
experiments [15]. Because of this we use the simplified

compartment model illustrated in Figure 2B for drugs that
induce cell cycle arrest as well as drugs that lead directly
to cell death. In this model N(t, c) denotes the cell count
of metabolising cells at time t for a cell line treated with
drug concentration c ≥ 0. The growth rate is assumed to
be exponential with doubling time T0. Similarly, the death
rates are assumed to be exponential with halving times
T†
c > 0 that decrease concurrently with increasing drug

concentrations c. For drugs that induce cell cycle arrest the
halving time T†

c > 0 is equal to the rate with which cells
go into cell cycle arrest when treated with drug concentra-
tion c. Compartment model B gives rise to the following
differential equation model

dN(t, c)
dt

= log 2
T0

N(t, c) − log 2
T†
c

N(t, c). (1)

The differential equation has the following solution

N(t, c) = N02t/T0−t/T†
c = N02t/Tc , (2)

where the initial condition N0 = N(0, c), with c dropped
for short, denotes the cell count at t = 0,

1
Tc

= 1
T0

− 1
T†
c
, (3)

and Tc corresponds to the net observed doubling or halv-
ing time at concentration c.
The posed differential equation model can be sum-

marised by the following statistics

GI50 :
T0
Tc

= 1
2

TGI : T0 = T†
c LCt :

1
Tc

= −1
t
, (4)

where GI50 (50% growth inhibition) denotes the concen-
tration at which the cell line grows with a doubling time
twice as long as the same cell line untreated, TGI (total
growth inhibition) denotes the concentration at which the
cell line has no net growth, and LCt (lethal concentration
t) denotes the concentration at which the cell count decays
with a halving time of t hours. For example LC48 is the
concentration at which N(48, c) = N0/2.
The growth inhibition induced by these drug concentra-

tions is illustrated in Figure 2C for a cell line model with
doubling time T0 = 60 hours and N0 = 30, 000. At the
concentration corresponding to GI50 the doubling time
for the cell line is doubled to 120, TGI the halving time
T†
c = T0 = 60 such that the growth of the cell line is com-

pletely halted, and LC48 the halving time for the cell line is
48 hours.
This leads us to suggest the following growth based

dose-response model denoted by G for evaluating a dose-
response experiment

G(t, c) =

⎧⎪⎨⎪⎩
T0
Tc

if N(t, c) ≥ N0

1
Tc

otherwise.
(5)
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It is noteworthy that the G-model is independent of the
duration of the dose-response experiment. The model is
summarised by the statisticsGI50, TGI, and LC48 at which
the G(t, c) equals 0.5, 0, and −1/48, respectively. In gen-
eral we defineGIx and LCt to be the concentrations where
G(t, c) = (100 − x)/100 and G(t, c) = −1/t.
The cell line screens NCI60 [3,4] and JFCR39 [5,6] apply

an alternative dose-response model denoted by D, which
is based on net differences between the cell count at time t,
N(t, c), and the initial cell count,N0. The model is defined
as

D(t, c) =

⎧⎪⎨⎪⎩
N(t,c)−N0
N(t,0)−N0

if N(t, c) ≥ N0

N(t,c)−N0
N0

otherwise

=

⎧⎪⎨⎪⎩
2t/Tc−1
2t/T0−1 if N(t, c) ≥ N0

2t/Tc − 1 otherwise.
(6)

The cell counts which the D-model is based upon are
illustrated by the triangle and circles in Figure 2C for
t = 48 hours. For this model x% growth inhibition GIDx
and y% lethal concentration LCD

y are attained at concen-
trations c1 and c2 where D(t, c1) = (100 − x)/100 and
D(t, c2) = −(100 − y)/100. The dose-response model is
usually summarised for a fixed t by GID50, LC

D
50, and TGID

the latter of which is attained at the concentration c where
D(t, c) = 0.
The large cell line screen CMT1000 [2,7] utilises

another commonly used dose-response model based on
relative cell counts which is defined as

R(t, c) = N(t, c)/N0
N(t, 0)/N0

= N(t, c)
N(t, 0)

= 2
(

1
Tc − 1

T0

)
·t = 2−t/T†

c . (7)

The cell counts which the R-model is based upon are
illustrated by circles in Figure 2C for t = 48 hours.
For this model x% growth inhibition GIRx is attained
at concentration c where R(t, c) = (100 − x)/100.
The R-model is usually summarised by GIR25, GI

R
50, and

GIR75.
For a fixed t, the graph of a dose-response model,

say G, {(c,G(t, c)) : c > 0} is denoted the dose-
response curve of G. As the D- and R-models suggest,
the corresponding dose-response curves are dependent
on the time t, whereas the dose-response curve of G
is not.
Notice it is possible to define a fourth summary statistic

AUCq (area under curve) which is the area above a speci-
fied value q and below the dose-response curve [16]. Thus,
for the dose-response models G and D, AUC0 is the area

under the dose-response curve for which the cell count is
still increasing with time.
It is possible to circumvent the time dependency of

models D and R by letting the drug exposure time t equal
the cell line specific doubling time T0 or a multiple hereof,
i.e. t = kT0. Furthermore, the summary statistics for the
G-model are then related with the D-model by

GI50 = GIDx , where x = 2
1
2 k − 1
2k − 1

· 100
TGI = TGID

LC48 = LCD
x , where x =

(
2− 1

48 kT0 − 1
)

· 100
and for the R-model by

GI50 = GIRx , where x = 2− 1
2 k · 100

TGI = GIRx , where x = 2−k · 100
LC48 = GIRx , where x = 2− 1

48 kT0−k · 100.
Even if the drug exposure time is not kT0 it is still possi-

ble to obtain an estimate of the G-model by the following
transformation of the D-model

G(t, c) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

T0
t log2

((
2

t
T0 −1

)
D(t,c)+1

)
if D(t,c)≥0

1
t log2(D(t,c)+1) otherwise.

(8)

Similarly, an estimate of the G-model can be obtained
by the following transformation of the R-model

G(t, c) =
⎧⎪⎪⎨⎪⎪⎩

1+ T0
t log2(R(t,c)) if t

T0
>|log2(R(t,c))|

1
T0

+ 1
t log2(R(t,c)) otherwise.

(9)

Note, however, that both transformations require access
to the cell line specific doubling time T0.

Estimation of cell count
Absorbance measurements can be utilised as surrogates
for the cell count N(t, c) and thereby used to esti-
mate the three dose-response models. This is generally
done using an MTS assay (3-(4,5-dimethylthiazol-2-yl)-
5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetra-
zolium) that exploits the mitochondrial reduction of
tetrazolium to an aqueous soluble formazan product
by the dehydrogenase enzyme in viable cells at 37°C.
The amount of produced formazan is directly propor-
tional to the cell count N(t, c) and can be quantified
colourimetrically by measuring absorbance at 492 nm
[12].
The time line for dose-response experiments utilising

such assays is outlined in Figure 3. At time t′0 each cell line
is seeded into two 96 well plates in which they incubate
until time t′1 = 0 where C decreasing concentrations of
the tested drug are added to each plate in L replicates. This
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Figure 3 Time line for dose-response experiments. The red boxes mark the two time points that are used in the statistical analysis.

time point marks the start of the dose-response experi-
ment. For plate 1 the MTS assay is added immediately
after drug exposure i.e. at time t′1 and for plate 2 the
assay is added at time t′2 a pre-specified time after the
addition of drug. Following the addition of the reagent
each plate incubates for a fixed time tinc after which the
absorbance is measured. The metabolic reduction occurs
from the instant the reagent is added until the absorbance
is measured, thus the amount of formazan is related to
the cell count during this time interval. Since the num-
ber of living cells may differ substantially throughout this
period, the measured absorbance is assumed to estimate
the cell count at the centre of the interval, i.e. at time
t1 = t′1 + tinc/2 and t2 = t′2 + tinc/2.
By seeding cells in an appropriate medium at predeter-

mined concentrations the relationship between the cell
count and the absorbance measure can be assumed linear
[12], i.e.

αti = γN(t, ci), (10)

where γ is a proportionality factor and αti is the
absorbance at time t, for a cell line exposed to drug con-
centration ci, i = 1, . . . , I where 0 = c0 < c1 < · · · <

cI . The proportionality factor is cell line specific due to
individual capabilities of reducing tetrazolium into the
coloured formazan product.
In order to ensure reproducible results the experiment

is repeated K times for each cell line. The measured
absorbance level for the l’th well, treated with concentra-
tion ci, within the k’th cell line replicate, is assumed equal
to

Yktil = δktαti + βkt + εktil,
k = 1, . . . ,K ; t = t1, t2; i = 0, 1, . . . , I; l = 1, . . . , L,

(11)

where δkt is the inter-plate variation assumed to be multi-
plicative, βkt is the plate specific background absorbance

which is assumed to be additive, and, finally, the techni-
cal variation εktil is assumed to be additive and normally
distributed with mean zero and following a heteroscedas-
tic variance model |δktαti + βkt|2ξ σ 2

ε .

Statistical analysis workflow
The proposed statistical workflow has been implemented
in the statistical software R version 3.0.1. The parameter
estimation is performed using the function gnls from the
package nlme [17]. Isotonic regression is implemented by
the function isoreg from the library stats, and the area
under the curve is calculated by the function trapz from
the library pracma.

Model-based pre-processing
Conventionally pre-processing is performed through
the following steps: 1) the background wells contain-
ing only medium are used to measure the plate specific
background absorbance, which are averaged and sub-
tracted from the absorbance measures of all other wells,
2) normalisation is done indirectly through calculation
of growth inhibition by either of the dose-response
models D or R, and 3) summation is done by an aver-
age of the obtained values. In this article, we propose a
model-based approach for the pre-processing. The pre-
processing of the dose-response experiments consists of
outlier detection, background correction, normalisation,
and summation. These steps are done simultane-
ously by estimating the coefficients βkt , δkt , and αti in
absorbance model (11). In order to do this, the absorbance
model is reformulated as a nonlinear regression
model:

Yktbil = φ1tkiφ2tkisb + φ3tki + εktil,

where sb, b = 1, . . . , nkt , is an indicator variable equal to
0 if Yktbil is a background measurement and 1 otherwise,
φtki = Atkiβt , and
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[
φ1tki
φ2tki
φ3tki

]
︸ ︷︷ ︸

φtki

=
k′th[

0 · · · 010 · · · 0
0 · · · · · · · · · 0
0 · · · · · · · · · 0︸ ︷︷ ︸

K

∣∣∣∣
(K+i)′th

0 · · · · · · · · · 0
0 · · · 010 · · · 0
0 · · · · · · · · · 0︸ ︷︷ ︸

I+1

∣∣∣∣
K

0 · · · · · · · · · 0
0 · · · · · · · · · 0
0 · · · 010 · · · 0

]
︸ ︷︷ ︸

(K+I+k)′th︸ ︷︷ ︸
Atki

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ1t...
δKt
αt0...
αtI
β1t...
βKt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

βt

.

The nonlinear regression model corresponds to the for-
malism in Chapter 7 of [17] and can be estimated by the
methods herein. The components of the heteroscedastic
variance is estimated by an iteratively reweighted scheme,
see page 207 of [17]. The I + 1 coefficients α̂ti are the
summarised absorbance measures for each concentration
ci. Since negative absorbance measures are meaningless,
all absorbance estimates below a pre-specified value are
replaced by this value. We use the value 0.025 as the cut
point in the current study.
One of the favourable features of the model-based

approach to pre-processing dose-response experiments is
outlier detection based on residuals. The residuals are the
difference between the observed values and the values
estimated by the regression model. First, the regression
model is fitted to all data. Absorbance measures with
residuals greater than a pre-specified number of standard
deviations are regarded as outliers and removed. Based
on the remaining absorbance measures the model is fitted
again and outliers are detected and removed. This process
is iterated until no outliers are detected or until a pre-
specifiedmaximum number of iterations is reached. In the
current study we use 3 standard deviations and iterate the
process twice.

Estimation of cell line doubling times
When estimating the dose-response curve by theG-model
(5) we need estimates of T0 and the Tc’s. This can be done
by estimating the coefficients N0, T0, and T†

c in the solu-
tion to the proposed differential equation (2). The result-
ing estimates of the absorbance measures α̂tc obtained
by the pre-processing method are used as estimates of
γN(t, c). Thus we consider the following nonlinear model

α̂ti = α02
t
T0

−si t
T†ci , (12)

where α0 is an estimate of γN0, si is an indicator function
equal to 0 when i = 0 and 1 otherwise. This nonlinear
model is also formulated in concordance with Chapter 7
in [17]. This gives the nonlinear regression function

α̂ti = φ12t
(
φ2−si·φ2

3i
)
+ εti, (13)

where φi = Aiβ , and

[
φ1
φ2
φ3i

]
︸ ︷︷ ︸

φi

=
[
1 0
0 1
0 0

(i+2)′th
0 · · · · · · · · · 0
0 · · · · · · · · · 0
0 · · · 010 · · · 0

]
︸ ︷︷ ︸

I︸ ︷︷ ︸
Ai

⎡⎢⎢⎢⎢⎢⎣
α0
Ts0
T†
sc1
...

T†
scI

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

β

.

The additive error term εtc is assumed to be normally
distributed with mean zero and variance σ 2

ε . The esti-
mates of T0 and T†

ci are calculated as T̂0 = 1/T̂s0
T̂†
ci = 1/T̂† 2

sci . The parameterisations T0 = 1/Ts0, T†
ci =

1/(T†
sci)

2 are used to ensure that T†
ci is positive. Finally, the

estimates of the Tci ’s are obtained as

T̂ci =
(

1
T̂0

− 1
T̂†
ci

)−1

, (14)

for i = 1, . . . , I.

Estimation of the dose-response curve
In order to make the estimation method robust against
outliers and model misspecifications we suggest to use
isotonic regression [13,14] for which the dose-response
curve is found by the piecewise linear and decreasing
function that in square norm is closest to the data.
Because theG-model is a piecewise smooth function with
a singularity at the TGI-value a supplementary function
is introduced to circumvent biased estimates. First we
define the function 
(t, c) = 1/Tc which is an ana-
logue to the G-model in (5) without the multiplication by
T0. Then we estimate the function 
 at concentrations
ci, i = 1, . . . , I, by the values γ̂1, . . . , γ̂I which minimises∑I

i=1 (γi − 1/Tc)
2, subject to γ1 ≥ γ2 ≥ · · · ≥ γI .

The 
-function is estimated by linear interpolation in the
following way


̂(t, c) =
I−1∑
i=1

(
γ̂i + γ̂i+1 − γ̂i

ci+1 − ci
(c − ci)

)
I (ci ≤ c < ci+1)
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and the G-model is then estimated by plugging 
̂ and T̂0
into (5)

Ĝ(t, c) =
⎧⎨⎩
T̂0 · 
̂(t, c) if 
̂(t, c) ≥ 0


̂(t, c) otherwise.
(15)

The dose-response model D is similarly estimated
pointwise by (6) with cell counts N̂(t, c) and N̂0 esti-
mated by the absorbance measures α̂tc and α̂0. The
approach used for the G-model is also recommended
for estimating the dose-response curve for the D-model
which also is a piecewise smooth function with a sin-
gularity at the TGI-value. In this case the function

(t, c) is replaced by the function �(t, c) = (N(t, c) −
N0)/N0, and the D-model is subsequently estimated
by

D̂(t, c) =

⎧⎪⎨⎪⎩
N̂0

N̂(t,c)+N̂0
· �̂(t, c) if �̂(t, c) ≥ 0

�̂(t, c) otherwise.
(16)

The dose-response model R is estimated pointwise by
(7) with N̂(t, c) = α̂tc. The dose-response curve for
the R-model R̂(t, c) is obtained using isotonic regres-
sion and linear interpolation between the pointwise
estimates.

Estimation of summary statistics
The estimates for GI50, TGI, and LC48 are obtained
by the concentration c where Ĝ(t, c), equals 0.5, 0, and
−1/48, respectively. The summary statistic AUC0 is esti-
mated by the area under the curve where Ĝ(t, c) ≥
0. To compute confidence intervals for the sum-
mary statistics the following parametric bootstrap algo-
rithm is applied with the number of iterations equal
to J

1. For j in 1 : J

1) Generate K plate sets on basis of the
pre-processing model fitted to each cell line.

2) Fit the pre-processing model without outlier
detection.

3) Fit the growth model to the pre-processed
absorbance measurements.

4) Calculate the growth inhibition on basis of the
G-model.

5) Estimate the summary statistics GI50, TGI,
LC48, and AUC0.

2. Estimate a confidence interval for each summary
statistic by use of the 2.5% and 97.5% percentiles of
the J estimates obtained in step 5).

A similar approach can be used to estimate summary
statistics for the dose-response models D and R with
summary statistics obtained by the concentrations where
D̂(t, c) and R̂(t, c) equal e.g. 0.5, 0, and -0.5 and 0.75, 0.5,
and 0.25, respectively.

Correctionof background absorbance
When the drug under investigation is coloured like e.g.
doxorubicin or interacts with the MTS assay, the back-
ground absorbance measures are elevated for increasing
drug concentrations. This elevation necessitates correc-
tion when estimating the cell count [12]. One method is
to include a background control for each concentration
of the drug. Such an approach, however, requires a large
number of wells. Alternative one may create a number of
background plates with a setup similar to the one used
for evaluating the cell count but without seeding cells into
them. Next, these plates are pre-processed as described
in Model-based pre-processing, which results in measure-
ments of the absorbance caused by the drug. Finally,
the excessive absorbance caused by each concentration
of the drug is subtracted from the raw absorbance. This
is done as an initial step before the Statistical analysis
workflow.

The simulation study
We compare the three dose-response models G, D, and R
with a simulation study where the cell count is estimated
through absorbance measurements based on nine simu-
lated cell line models specified in Table 1. For each cell line
this table includes the doubling time T0 and the summary
statistics GI50, TGI, and LC48.

Table 1 Characteristics of the used cell linemodels

Cell line T0 GI50 TGI LC48

Cell 1 60 −8.40 −8.03 −7.57

Cell 2 30 −8.18 −7.78 −7.47

Cell 3 15 −7.95 −7.49 −7.27

Cell 4 15 −7.72 −7.27 −7.05

Cell 5 30 −7.50 −7.11 −6.80

Cell 6 60 −7.28 −6.91 −6.44

Cell 7 15 −7.05 −6.59 −6.37

Cell 8 60 −6.82 −6.46 −5.99

Cell 9 30 −6.60 −6.21 −5.90

Doubling time T0 and summary statistics GI50, TGI, and LC48 for the nine
simulated cell line models.
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The drug is added in triplicates for C = 18 decreasing
concentrations in 96 well culture plates. Further, three
wells are used as untreated controls and three wells are
used as background controls. In order to illustrate the
time dependence the cell count is estimated at four time
points with 24-hour intervals. The net growth of the cell
lines are modelled using the differential equation (1) with
1/T†

c modelled by the following five parameter logistic
function:

1/T†
c = b − d + b

(1 + exp(a(c − e)))f
(17)

where a = 2, b = 1/5, d = 0, f = 1. The parameter
e is specified such that the summary statistics shown in
Table 1 are obtained.
Each cell line model is simulated withN0 = 10, 000 cells

seeded into each well for all four plates at time t = 0
together with the drug. In order to imitate laboratory con-
ditions the MTS assay is assumed added at time points
t′1 = 0, t′2 = 24, t′3 = 48, and t′4 = 72 hours and
the absorbance is measured after tinc = 2 hours. Conse-
quently, the cell counts are generated at t1 = t′1 + tinc/2 =
1, t2 = 25, t3 = 49, and t4 = 73. In order to attain
absorbance measurements the proportionality factor γ in
(10) is set equal to 0.4/10,000 for all nine cell line models.
In order to investigate the dose-response model G’s

capability of estimating the summary statistics GI50, TGI,
and LC48, noise is added to the system. To mimic real
data this is done according to absorbance model (11) with
parameters chosen in concordance with the estimates
obtained for the B-cell cancer cell line panel introduced
later.
For each cell line model the plate specific background

absorbance βkt is drawn from a lognormal distribution
with mean μβ = −0.8 and standard deviation σβ = 0.13;
the plate specific multiplicative error δkt is likewise drawn
from a lognormal distribution with mean μδ = 0 and
standard deviation σδ = 0.38. The parameters μβ , μδ ,
σβ , and σδ are respectively chosen as the mean and stan-
dard deviation of the log transformed estimates for β and
δ obtained for the B-cell cancer cell line panel. Finally, the
technical variation εktcl is drawn from a mean zero nor-
mal distribution with heteroscedastic variance |δktαtc +
βkt|2ξ σ 2

ε where ξ = 1.42 and σε = 0.074 are chosen as
the medians of the estimates for ξ and σε obtained for the
B-cell cancer cell line panel.
The Statistical analysis workflow is used to obtain esti-

mates of the summary statistics GI50, TGI, and LC48
associated with each cell line for 1,000 simulated datasets.
Finally, the mean bias, standard deviation, and mean
square error (MSE) are calculated for each cell line model
and time point.

The NCI60 cancer cell line panel
The cell line screen NCI60 is utilised to quantify the effect
of a cell line’s doubling time on theGI50-value obtained by
the dose-response model D in real data. Pharmacological
data generated in the screen andmodelled by theD-model
is available online for 49,450 different compounds: http://
dtp.nci.nih.gov. In this study we apply all compounds
available in the September 2012 release that are tested at
least three times on more than half the cell lines and for
which half of the tested cell lines are affected by the drug.
These criteria are satisfied for 1,699 different compounds.
The growth inhibition data is averaged for all experi-

ments that are not already summarised by themean. Next,
the G-model is calculated by use of the transformation
(8). For the dose-response models G and D the sum-
mary statisticsGI50 and GID50 are estimated using isotonic
regression.
The association between the cell lines’ doubling time T0

and the summary statistics GI50 and GID50 is determined
using Pearson’s correlation coefficient for all 1,699 com-
pounds. In order to determine whether or not the trans-
formation causes a significant reduction in the correlation
a paired t-test is used.
The reduction in the aforementioned correlation is

further illustrated for doxorubicin and the drug with
the greatest change. For these compounds the summary
statistics GI50 and GID50 are plotted against the dou-
bling time T0, and the Pearson’s correlation coefficient is
calculated.

The B-cell cancer cell line panel
A doxorubicin dose-response screen of 14 Diffuse Large
B-cell Lymphoma and 12 Multiple Myeloma cell lines
is used to illustrate the proposed Statistical analysis
workflow. The origin of the cell lines is as listed: KMM-1
and KMS-11 were obtained from JCRB (Japanese Col-
lection of Research Bioresources). AMO-1, DB, KMS-12-
PE, KMS-12-BM, LP-1, MC-116, MOLP-8, NCI-H929,
NU-DHL-1, NU-DUL-1, OPM-2, RPMI-8226, SU-DHL-
4, SU-DHL-5, and U-266 were purchased from DSMZ
(German Collection of Microorganisms and Cell Cul-
tures). FARAGE, HBL-1, OCI-Ly3, OCI-Ly7, OCI-Ly19,
RIVA, SU-DHL-8, and U2932 were kindly provided by Dr.
Jose A. Martinez-Climent (Molecular Oncology Labora-
tory University of Navarra, Pamplona, Spain). Finally, Dr.
Steven T. Rosen generously provided MM1S.
The identity of the cell lines was verified by DNA

barcoding performed every time a cell line was thawed
and brought into culture. In brief, PCR analysis of left
over traces of genomic DNA in 0.2 ng/μl extracted
RNA from cell lines was used as template in a mul-
tiplex PCR amplifying specific repeated DNA regions
using the AmpFISTR Identifiler PCR amplification kit
(Applied Biosystems, CA, USA). A fragment analysis

http://dtp.nci.nih.gov
http://dtp.nci.nih.gov
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of the amplified PCR products was performed by cap-
illary electrophoresis (Eurofins Medigenomix GmbH,
Applied Genetics, Germany). The resulting FSA file was
analysed using the Osiris software (ncbi.nlm.nih.gov/
projects/SNP/osiris) confirming the identity of the cell
lines.

B-cell cancer cell lines and culture conditions
The cell lines were cultured under standard conditions
at 37°C; in a humidified atmosphere of 95% air and 5%
CO2 with the appropriatemedium (RPMI1640 or IMDM),
fetal bovine serum (FBS), and 1% penicillin/streptomycin.
The cell lines were maintained for a maximum of 20 pas-
sages to minimize any long-term culturing effects. Peni-
cillin/streptomycin 1%, RPMI1640, IMDM and FBS were
purchased from Invitrogen.

Dose-response experiments
Doxorubicin was added in quadruplicates for C = 18
decreasing concentrations using the 96 well plate setup
shown in Figure 4. All wells marked with a C in the
table were seeded with cells and doxorubicin was added
24 hours later. Proliferation assays were performed using
the CellTiter 96® AQueous one Solution Reagent Cat no.
G3580 (Promega, Madison WI, USA). The plates were
incubated for tinc = 2 hours and absorbance was
estimated at 492 nM using the Optima-Fluostar (BMG
LABTECH). For plate 1, the reagent was added immedi-
ately after drug exposure and for plate 2, 48 hours later.
With this approach the estimates of the cell count were
obtained at approximately t1 = 1 hour, and t2 = 49
hours. To achieve high reproducibility, the entire exper-
iment was repeated at least thrice. In order to avoid
border effects only non-border wells were used for the

Figure 4 Culture plate layout.Wells labelled: M contain medium
alone, C0 contain cell culture with salt water added at time t′1,
C1, . . . , C18 contain cell culture with drug dilutions added at time t′1,
and B contain only medium with salt water added at time t′1. The drug
dilutions are given as 2-fold dilutions from C18 = 10μg/ml, C17 =
5 μg/ml down to C1 = 763 · 10−7 μg/ml.

subsequent analysis, whereby absorbance measurements
are available in triplicates.
Doxorubicin is a coloured agent which was accounted

for according to Correction of background absorbance.
Using the corrected absorbance measurements, the dose-
response model G and time independent summary statis-
tics GI50, TGI, LC48, and AUC0 were estimated according
to the established Statistical analysis workflow. The out-
lined bootstrap algorithm was applied to estimate 95%
confidence intervals for the summary statistics with the
number of iterations J = 200.

Model check
Since different drugs have different action mechanisms
one should investigate whether or not the proposed dif-
ferential equation models data adequately well. This is,
however, not possible if the dose response experiment has
not been conducted for more than two time points. Here
the experiment was expanded to include five time points
t′1 = 0, t′2 = 12, t′3 = 24, t′4 = 36, t′5 = 48. Each
of the five plates are configured with the same setup as
that described in section Dose-response experiments with
tinc = 2 hours. This approach gives estimates of the cell
counts at approximately t1 = 1, t2 = 13, t3 = 25, t4 = 37,
t5 = 49 hours. The experiment was repeated thrice. The
differential equation model is fitted to the data using only
t1 and t5. By plotting the data for all time points together
with the fitted model it is possible to observe whether
or not the model fits adequately well or whether a more
advanced model is necessary.

Results
The simulation study
Dose-response curves for the nine cell line models,
described inMethods, are shown in Figure 5 for the dose-
response models G (5), D (6), and R (7) and time points
t1 = 25, t2 = 49, and, t3 = 73 hours.
The effect of the drug was modelled to be constant

through time. However, according to both the R- and D-
models the cell lines’ sensitivity toward the drug increased
with time.
More specifically, for the R-model this is illustrated

in Panels A, D, and G of Figure 5 which depict the
obtained dose-response curves for the three time points.
For each cell line model the dose-response curves had
the same sigmoidal shape for all time points. As shown
in (7) the R-model is indifferent towards the cell line
doubling time which entailed that the drug sensitiv-
ity increased equivalently for each cell line model as
the drug exposure time was prolonged. Furthermore,
cell line model 1 was simulated as the most sensi-
tive with a GI50-value of −8.4 log10(mmol/ml). How-
ever, for all time points, the R-model evaluated it
as the fourth most sensitive, surpassed by cell line

ncbi.nlm.nih.gov/projects/SNP/osiris
ncbi.nlm.nih.gov/projects/SNP/osiris
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Figure 5 The dose-response curves for the three dose-response models. The dose-response curves for the R-model are shown in Panels A, D,
and G, for the time points 25, 49, and 73 hours, respectively. Similarly for the D- and G-models Panels B, E, and H and C, F, and I show the
dose-response curves obtained for time points 25, 49, and 73 hours, respectively.

models 2, 3, and 4 which were simulated with GI50-
values of −8.18, −7.95, and, −7.72 log10(mmol/ml),
respectively.
For the D-model the increase in sensitivity was related

to the growth rate of the cell line such that the order of the
cell lines’ sensitivity interchanged through time. This is
illustrated in Panels B, E, and H where the dose-response

curves obtained by the D-model are shown for the three
time points. The cell line models 3, 4, and 7 and 1, 6, and
8 were respectively fast and slowly growing. Accordingly,
the increase in sensitivity through time was much more
pronounced for cell line models 3, 4, and 7 than for 1, 6,
and 8. In particular the fast growth rate of cell line model
7 and slow growth rate of cell line model 6 caused the
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obtained GID50-values to interchange throughout the three
time points.
The cell lines 1, 2, and 3 were simulated with GI50-

values of −8.40, −8.18, and, −7.95 log10(mmol/ml),
respectively; however, the GID50-values obtained by the D-
model were indistinguishable in Panel H. Additionally, the
sensitivity level for cell line models 6 and 7 were reversed
such that cell line 7 was evaluated to be more sensitive to
the drug than cell line 6.
This implied that the summary statistics obtained by the

R- and D-models were biased and relative to the cell lines’
sensitivity they were ordered incorrectly. Time indepen-
dent summary statistics obtained by theG-model equalled
those shown in Table 1.
The dose-response models G and D are continuous

everywhere and differentiable everywhere except at the
TGI-value. The latter results in the singularity occurring
at that value for both functions. Since the R-model is con-
tinuous and differentiable everywhere such singularities
do not occur for this model.
For each cell line model, 1,000 independent datasets

were simulated with a culture plate and noise setup as
outlined in Methods. The mean bias, standard devia-
tion, and MSE for the summary statistics GI50, TGI, and
LC48 obtained by the outlined statistical analysis work-
flow applied to the G-model are shown in Table 2 for
the nine cell line models and three time points. The
Statistical analysis workflow combined with the G-model
was capable of producing unbiased estimates of the time
independent summary statistics. The standard deviation
andMSEwere generally smallest for fast growing cell lines
and decreased as the drug exposure time was prolonged.

Model check
To check if the proposed differential equation models
the dose response data adequately a time experiment was
conducted. As an example of the model check the model-
based pre-processed absorbance data for five different
time points are shown in Figure 6 for the cell line SU-
DHL-4. Model (12) was fitted using only the t1 = 1 and
t2 = 49 hour time points. In this instance the model was
found to fit the data adequately and that restricting the
model fit to two time points yielded satisfactory results.
However, it seems that the growth inhibition was under-
estimated for the large concentrations. This was the case
for most cell lines and was a consequence of only using the
1 and 49 hour time points for estimating model (12).

The NCI60 cancer cell line panel
The NCI60 dose-response screen was used to illustrate
how data obtained by the D-model can be transformed
into theG-model by use of (8) and thereby be corrected for
the cell line doubling time T0 and duration of the experi-
ment. For the 1,699 compounds that satisfied the selection

criteria the association between growth inhibition and
growth rate was determined by Pearson’s correlation coef-
ficient between T0 and the summary statistics GI50 and
GID50 estimated by the dose-response models G and D,
respectively. Kernel estimated density functions of the
correlations obtained using the two models are shown in
Figure 7A. Because the bias associated with the D-model
renders fast growing cell lines overly sensitive, the cor-
relation between T0 and the summary statistic GID50 was
biased upwards. The average decrease of the aforemen-
tioned correlation, by adjusting for the cell line doubling
time, was 0.145 (95% CI: (0.14; 0.15), p-value < 0.001).
More specifically, a significant negative correlation was
found for 50 compounds using the D-model and 123
compounds using the G-model. In contrast, a significant
positive correlation was found for 705 compounds using
the D-model and only 278 using the G-model.
In Figure 7B to 7E the considered correlation is illus-

trated for the single agent doxorubicin and the drug giving
rise to the greatest change in correlation by plotting the
summary statistics GID50 and GI50 against T0. For doxoru-
bicin the correlation was 0.16, (95% CI: (−0.1, 0.4)) for the
uncorrected D-model and −0.03, (95% CI: (−0.28, 0.22))
for theG-model. The drug with NSC number 624806 gave
rise to the greatest change in correlation, specifically, from
0.41, (95% CI: (0.15, 0.62)) for the uncorrected D-model
to −0.26, (95% CI: (−0.5, 0.02)) for the G-model.
The ten drugs with the greatest negative correlation

between T0 and GI50 for model G have NSC numbers:
38721, 343513, 338720, 638850, 637404, 624807, 59729,
630684, 698673, and 353882. For model D the drugs were:
637404, 638850, 19994, 698673, 627666, 637603, 626734,
630684, 690134, and 37364. Out of these drugs four were
found through both model G and D.

The B-cell cancer cell line panel
A doxorubicin dose-response screen was used to illustrate
the proposed Statistical analysis workflow. Doxorubicin
is a coloured agent that elevates the absorbance mea-
surements with increasing concentrations. In Figure 8
the background absorbance associated with each concen-
tration is plotted. This was corrected for according to
Correction of background absorbance prior to the applica-
tion of the suggested pre-processing procedure.
In Figure 9 the result of the pre-processing proce-

dure is illustrated for the cell line SU-DHL-4. Panels A
and B show the raw absorbance measures for the four
replicated experiments whereas the effect of the colour
correction is shown in Panels C and D. In Panels E
and F the results of the conventionally applied back-
ground correction are depicted. Finally, the result of the
Model-based pre-processing is illustrated in Panels G and
H. When comparing panels E and F to G and H we
noticed that the mean absorbance was estimated with a
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Table 2 Summary of the simulation study

Mean bias Standard deviation MSE

GI50 TGI LC48 GI50 TGI LC48 GI50 TGI LC48

Cell line 1, T0 = 60

Time 25 0.01 0.04 0.07 0.49 0.49 0.22 0.24 0.24 0.05

Time 49 −0.07 −0.06 0.00 0.36 0.36 0.14 0.13 0.14 0.02

Time 73 −0.05 −0.05 −0.01 0.25 0.25 0.11 0.06 0.07 0.01

Cell line 2, T0 = 30

Time 25 −0.10 −0.08 −0.01 0.41 0.41 0.24 0.17 0.17 0.06

Time 49 −0.04 −0.04 −0.02 0.18 0.19 0.13 0.03 0.04 0.02

Time 73 −0.02 −0.02 −0.01 0.11 0.12 0.09 0.01 0.01 0.01

Cell line 3, T0 = 15

Time 25 −0.05 −0.04 −0.02 0.21 0.25 0.21 0.05 0.06 0.05

Time 49 −0.01 −0.01 0.00 0.08 0.11 0.10 0.01 0.01 0.01

Time 73 −0.02 −0.01 0.00 0.07 0.09 0.08 0.01 0.01 0.01

Cell line 4, T0 = 15

Time 25 −0.02 0.00 0.01 0.20 0.22 0.20 0.04 0.05 0.04

Time 49 −0.01 0.00 0.00 0.09 0.11 0.10 0.01 0.01 0.01

Time 73 −0.04 −0.04 −0.03 0.10 0.11 0.11 0.01 0.01 0.01

Cell line 5, T0 = 30

Time 25 −0.08 −0.06 0.00 0.43 0.43 0.23 0.19 0.19 0.05

Time 49 −0.03 −0.03 −0.01 0.17 0.18 0.12 0.03 0.03 0.01

Time 73 −0.03 −0.03 −0.01 0.12 0.13 0.09 0.02 0.02 0.01

Cell line 6, T0 = 60

Time 25 −0.07 0.00 0.07 0.69 0.63 0.23 0.47 0.40 0.06

Time 49 −0.08 −0.06 0.00 0.41 0.38 0.14 0.18 0.15 0.02

Time 73 −0.04 −0.03 0.00 0.25 0.23 0.10 0.06 0.06 0.01

Cell line 7, T0 = 15

Time 25 −0.05 −0.03 −0.02 0.22 0.24 0.20 0.05 0.06 0.04

Time 49 −0.02 −0.01 0.00 0.09 0.11 0.10 0.01 0.01 0.01

Time 73 −0.10 −0.11 −0.04 0.22 0.23 0.10 0.06 0.06 0.01

Cell line 8, T0 = 60

Time 25 −0.10 −0.03 0.06 0.73 0.65 0.22 0.54 0.42 0.05

Time 49 −0.14 −0.09 −0.02 0.49 0.41 0.15 0.26 0.18 0.02

Time 73 −0.06 −0.05 −0.01 0.29 0.27 0.11 0.09 0.08 0.01

Cell line 9, T0 = 30

Time 25 −0.09 −0.06 0.00 0.46 0.44 0.23 0.22 0.20 0.05

Time 49 −0.04 −0.03 −0.01 0.17 0.19 0.12 0.03 0.04 0.02

Time 73 −0.02 −0.02 −0.01 0.11 0.12 0.08 0.01 0.01 0.01

The mean bias, standard deviation, and mean squared error of the summary statistics GI50, TGI, and LC48 obtained by the G-model for the 1,000 simulated datasets
and the three time points.

considerable lower variance when the model-based pre-
processing was used. A cross marks the measurements
that are found to be outliers and for example two of the
un-treated control measurements for plate 2 were deemed
to be outliers as illustrated in Panel H. In panel H these

measurements were clearly extreme values, however, prior
to the model-based pre-processing this was not the case.
For each cell line residual plots of the final pre-

processing models were investigated to ensure that the
absorbance model fitted the data reasonably well. For
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Figure 6 The adequacy of the proposed differential equation model is checked. Absorbance measurements Growth curves for the cell line
SU-DHL-4 for five time points: t1 = 1, t2 = 13, t3 = 25, t4 = 37, and t5 = 49 hours are shown for the control C0 and under influence of the ten
strongest concentrations of doxorubicin C9, . . . , C18. The growth curves are fitted using only the time points t1 and t49. The points correspond to the
model-based pre-processed absorbance measurements. In the last panel the fitted growth curves for the cell line untreated (green) and for all ten
concentrations (grey) are shown. In this panel the blue, red, and black curves correspond to the estimated growth curves at the summary statistics
GI50, TGI, and LC48.

Figure 7 Correction of the summary statistic GI50. Panel A: Kernel estimated density functions of correlations between T0 and summary statistics
GID50 and GI50 for 1699 compounds obtained by the D-model (blue) and the G-model (green), respectively. Panel B: Correlation between T0 and the
uncorrected summary statistic GID50 obtained by the D-model for the single agent doxorubicin. Panel C: Correlation between T0 and the time
independent summary statistic GI50 obtained by the G-model for doxorubicin. Panel D: Correlation between T0 and the uncorrected summary
statistic GID50 obtained by the D-model for NSC = 624806. Panel E: Correlation between T0 and the time independent summary statistic GI50
obtained by the G-model for NSC = 624806.
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Figure 8 Background absorbancemeasures as a function of the
concentrations of doxorubicin. The bars depict 95% CI’s associated
with the absorbance.

cell line KMS-12-BM the residual plot is illustrated in
Figure 10. Panel A shows the residual plot obtained
when the heteroscedasticity of the variance was ignored,
whilst Panel B shows the residual plot when the vari-
ance model was fitted. These plots confirm that the
variance model was capable of fitting the heteroscedastic
variance observed in dose-response experiments.
The dose-response curves obtained for the 14 DLBCL

and 12 MM cancer cell lines are illustrated in Panels A
and B of Figure 11. The first quadrant of the plots depicts

the percentage growth for the treated cell line compared
to the same cell line un-treated, e.g. the values 75, 50,
and 25 were attained at the concentrations where the
doubling time for the control was 75, 50, and 25% of
that for the treated cell line, or equivalently, the growth
rate of the treated cell line was 75, 50, and 25% of that
for the un-treated cell line. The fourth quadrant depicts
cell decay, e.g. the values −1/48, −1/24, and −1/16 were
attained at the concentrations where the cell line popu-
lation was halved in 48, 24, and 16 hours, respectively.
None of the curves contained points where the treated
cell line outgrew the controls, i.e. values greater than
100. This was an effect of forcing 1/T†

c to be positive
which was of great importance for the summary statistic
AUC0. The estimated cell line doubling time and sum-
mary statistics GI50, TGI, LC48, and AUC0 are shown
in Table 3 with associated 95% confidence intervals. The
bootstrapped summary statistics GI50, TGI, LC48, and
AUC0 are also illustrated by box plots in Panels C, D, E,
and F of Figure 11.

Discussion
In the present study a differential equation that mod-
els drug induced growth inhibition of human tumour
cell lines was established. Based on this equation a novel

Figure 9 The result of the pre-processing procedure is illustrated for the cell line SU-DHL-4. The circles represent absorbance measures for
the particular concentration at which it is plotted, the triangles represent the un-treated controls, the plusses represent background absorbance
measurements, and, finally, the crosses illustrate outliers. The figure is divided into eight panels, where Panels A, C, E, and G show the results for time
t1 = 1 hour and Panels B, D, F, and H for time t2 = 49 hours. Panels A and B show the raw absorbance measures for the four replicated
experiments. The effect of the colour correction is shown in Panels C and D. Panels E and F illustrate the result of the conventionally applied
background correction. Finally, the result of the model-based pre-processing procedure is illustrated in Panels G and H.
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Figure 10 Residual absorbance for cell line KMS-12-BM at 49
hours plotted against the pre-processed absorbancemeasure.
The three colours represent the triplicates. The triangles and circles
represent background values and all other values, respectively. Panel
A shows the result of ignoring the heteroscedasticity of the variance
and Panel B shows the result of using the variance model.

model for summarising dose-response experiments was
produced, that in combination with a statistical workflow,
is capable of generating unbiased time independent sum-
mary statistics.
To determine if the differential equation is adequate for

modelling real data a time experiment based on doxoru-
bicin was conducted. The experiment included five time
points of which only the first and last were used to fit the
differential equation. The differential equation was found
to model the data adequately, albeit the use of only two
time points may lead to an underestimated drug efficiency
for large doses. Since the differential equation was found
adequate, a simulation study was performed to document
the potential bias when using existing methods, and the
robustness of the workflow. We deduced that under the
proposed differential equation these summary statistics
are biased estimators of growth inhibition so that the drug
effect is amplified concurrently with increasing growth
rate of the cell lines.
In Kondoh et al. [18] 40 representative anticancer

drugs from the NCI60 screen were used to illustrate
the association between cell line growth rate and drug

Figure 11 Illustration of dose-response curves for the B-cell cancer cell line panel. Panels A and B illustrate dose-response curves obtained by
the G-model for the 14 DLBCL and 12 MM cancer cell lines. Panels C, D, E, and F depict boxplots of the bootstrapped summary statistics GI50, TGI,
LC48, and AUC0, respectively. The green and blue colours are used for DLBCL and MM cell lines, respectively.
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Table 3 Summary statistics for the B-cell cancer cell line panel

Cell Line T0 G-Model

Hours GI50 TGI LC48 AUC0

DLBCL

OCI-Ly7 24 (21;26) -6.23 (-6.31;-6.18) -5.96 (-6.05;-5.84) -5.57 (-5.74;-5.31) 325 (310;332)

RIVA 68 (55;91) -6.35 (-6.39;-6.27) -5.87 (-6.18;-5.79) -4.97 (-5.36;-4.82) 327 (316;337)

U2932 34 (33;35) -6.53 (-6.56;-6.51) -6.28 (-6.29;-6.25) -5.60 (-5.68;-5.48) 295 (285;299)

DB 37 (35;39) -6.58 (-6.65;-6.52) -6.19 (-6.25;-6.15) -5.71 (-5.76;-5.65) 276 (260;285)

SU-DHL-4 36 (34;39) -6.59 (-6.64;-6.52) -6.33 (-6.39;-6.24) -5.92 (-6.05;-5.73) 289 (277;294)

MC-116 50 (41;70) -6.64 (-6.87;-6.48) -6.29 (-6.38;-6.20) -5.57 (-5.62;-5.53) 272 (233;300)

HBL-1 46 (42;51) -6.83 (-6.89;-6.78) -6.46 (-6.55;-6.37) -5.76 (-5.83;-5.68) 272 (266;277)

OCI-Ly3 91 (69;119) -7.02 (-7.06;-6.94) -6.89 (-6.96;-6.81) -6.67 (-6.73;-6.59) 253 (244;259)

NU-DUL-1 48 (40;63) -7.27 (-7.33;-7.21) -7.13 (-7.14;-7.11) -7.02 (-7.04;-7.00) 224 (191;231)

SU-DHL-8 85 (53;175) -7.32 (-7.39;-7.21) -7.19 (-7.32;-7.10) -7.01 (-7.07;-6.93) 222 (207;231)

NU-DHL-1 29 (27;32) -7.39 (-7.49;-7.29) -6.94 (-6.98;-6.89) -6.66 (-6.70;-6.63) 201 (184;213)

SU-DHL-5 32 (30;35) -7.42 (-7.44;-7.40) -7.29 (-7.32;-7.26) -7.12 (-7.16;-7.08) 202 (189;209)

FARAGE 58 (49;72) -7.79 (-7.93;-7.49) -6.93 (-7.23;-6.80) -6.44 (-6.52;-6.37) 180 (158;198)

OCI-Ly19 39 (36;45) -7.87 (-7.95;-7.79) -7.13 (-7.25;-6.83) -6.39 (-6.46;-6.31) 167 (157;178)

MM

KMS-11 48 (45;51) -5.91 (-5.94;-5.88) -5.65 (-5.68;-5.63) -5.46 (-5.48;-5.44) 356 (340;361)

KMM-1 44 (40;52) -6.03 (-6.13;-5.95) -5.87 (-5.91;-5.85) -5.70 (-5.74;-5.66) 346 (316;350)

KMS-12-PE 24 (20;29) -6.04 (-6.24;-5.91) -5.73 (-5.82;-5.61) -5.50 (-5.61;-5.32) 340 (310;353)

LP-1 33 (30;36) -6.07 (-6.12;-6.02) -5.82 (-5.85;-5.80) -5.60 (-5.62;-5.59) 316 (294;336)

U-266 48 (43;54) -6.13 (-6.20;-6.06) -5.86 (-5.91;-5.80) -5.42 (-5.47;-5.37) 325 (299;339)

OPM-2 57 (47;71) -6.24 (-6.33;-6.13) -5.98 (-6.07;-5.91) -5.61 (-5.64;-5.57) 329 (313;339)

KMS-12-BM 47 (42;57) -6.25 (-6.33;-6.16) -5.92 (-6.02;-5.85) -5.59 (-5.61;-5.56) 331 (307;337)

RPMI-8226 30 (29;32) -6.42 (-6.45;-6.40) -6.11 (-6.14;-6.09) -5.87 (-5.89;-5.85) 297 (292;306)

NCI-H929 28 (25;31) -6.50 (-6.54;-6.48) -6.39 (-6.42;-6.34) -6.25 (-6.31;-6.17) 291 (270;300)

AMO-1 32 (30;34) -6.74 (-6.76;-6.72) -6.61 (-6.64;-6.58) -6.30 (-6.40;-6.17) 269 (265;283)

MOLP-8 34 (21;48) -6.78 (-6.93;-6.62) -6.52 (-6.67;-6.27) -6.23 (-6.37;-6.10) 253 (229;290)

MM1S 37 (26;51) -7.20 (-7.29;-7.10) -7.05 (-7.12;-6.95) -6.87 (-6.94;-6.60) 227 (208;239)

The doubling time T0 and summary statistics GI50, TGI, LC48, and AUC0 for the dose-response model G.

sensitivity assessed by the D-model. They found the
growth rate was positively correlated with drug sensitivity.
We propose that this finding is partly caused by system-
atic bias induced by the experimental setup of the cell
line screens. Since the difference between the treated and
un-treated cell line will increase with time, the effect of
the drug will seem greater for fast growing cell lines. We
showed that by transforming data obtained by the D-
model into theG-model the correlation between doubling
time and drug resistance decreased significantly. We do
not argue against drug resistance being associated with
growth rate as the authors successfully discover and val-
idate a potential new anticancer drug, we merely suggest
that removing the design-based bias may lead to a range
of new potential drugs to be investigated.
In order to illustrate the suggested workflow for dose-

response experiments, a study of 26 cell lines tested for

drug resistance at 18 different concentrations of dox-
orubicin was presented. The results illustrate that it is
possible to gain realistic estimates of the variance of the
growth inhibition characteristics, which is of great value
in the application of dose-response studies.

Practical considerations
Since the establishment of NCI60, dose-response screens
of human tumour cell lines have been one of the most
commonly used methods for discovering new anticancer
drugs [2]. The approach has mostly been used to discover
drugs that are potent in a considerable part of the tested
cell lines originating from various tumour types. With
this purpose in mind, the bias introduced by analysing
cell lines with different doubling times has little or no
influence on the conclusions. More recently, the cell line
screens have been used to discover treatments that are
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only potent in a small proportion of the tested cell lines
and hence in a small proportion of the cancer patients.
Ignoring the doubling time of the cell lines may reduce the
capability of discovering such drugs since slowly growing
cell lines may appear resistant to the drug.
The issue of growth rate bias may be remedied by using

cell lines with approximately the same doubling time or
alternatively by conducting the experiments using individ-
ual time spans corresponding to a given number of dou-
bling times for each cell line. Based on the latter approach
Bracht et al. [19] took the doubling times into account
by conducting the dose-response experiments such that
each of the 77 cell lines was exposed to the drug for three
cell line specific doubling times. For large cell line screens
it is neither feasible to generate diverse panels consisting
of cancer cell lines with similar doubling times nor is it
practical to conduct each experiment for different time
spans. The latter option is further complicated since it
may not be possible to keep slowly growing cell lines in
the exponential growth phase for several doubling times
throughout the experiment. The models used in cell line
screens NCI60 [3], JFCR39 [5], and CMT100 [2] are based
on fixed drug exposure times.We established transforma-
tions of these models so that each cell line’s doubling time
can be accounted for.

Methodological considerations
Modelling the growth of a cell line exposed to an anti-
cancer drug by the simple differential equation (1) facili-
tated a meticulous analysis of existing summary statistics
for cell line based dose-response studies of growth inhibi-
tion. It may be possible to establish a differential equation
that leads to either the D or R model. However, the
authors have not been able to do so in an unblemished
fashion. It is thus difficult to determine which assump-
tions must be met for the results of these models to be
unbiased.
The differential equation was based on exponential cell

growth which seems a reasonably assumption since all
drug response assays strive toward using the exponential
growth phase of the cell lines for the out-read window.
Similarly, the rate for cells going into cell cycle arrest or
death is assumed exponential and concentration depen-
dent, partly due to computational convenience and partly
because no obvious alternative is present. It should be
emphasized the assumption of an exponential rate for cells
going into cell cycle arrest or death induce a constant
drug efficiency throughout the experiment. However,
since different drugs induce growth inhibition by differ-
ent mechanisms, the established differential equation (1)
is oversimplified and may therefore model the growth of
a cell line exposed to a drug inadequately. It would be
interesting to establish more complex systems of differ-
ential equations of cell culture growth in combination

with more measurements during drug exposure time
[20-25]. This would allow estimation of drug induced
growth inhibition with improved precision and hence
increased biological understanding.
A model-based approach to pre-processing based on a

nonlinear regression model was introduced. This model
efficiently and simultaneously addresses a number of
issues such as background absorbance correction, multi-
plicative seeding effects and heteroscedastic variance of
absorbance measures. All are well-known nuisance effects
in cellular/bacterial growth studies [11,26]. Themodelling
approach also facilitated outlier detection by residual
analysis and standard model checks from regression the-
ory [17]. The dose-response relationship was modelled by
the growth curves arising from the solution to the posed
differential equation. This lead to pointwise estimates of
the dose-response curve of the G-model and interpola-
tion of the curve was done by isotonic regression which
is robust against outliers and model misspecifications
[14,27].
Providing precision estimates of the growth inhibition

characteristics in this complex setting is not straightfor-
ward, so parametric bootstrap of the nonlinear model
of the absorbance measurements was used [28]. Alterna-
tively the statistical delta method could have been applied
[11,29]. Although feasible, this would have required com-
plicated approximations by Taylor series expansions, and
bootstrapping is generally considered to have superior
small sample properties [30].
The dose-response model R (7) based on relative cell

counts is very appealing due to its simplicity. Moreover,
it is a smooth function so it is possible to fit parametric
models to the dose-response curve of R which facilitates
extrapolation. When extrapolation is necessary it is possi-
ble to fit a parametric model to the dose-response curve
of R [31,32] and subsequently transform the result into the
dose-response curve of G using (9). This approach facil-
itates estimation of time independent summary statistics
by extrapolation.

Conclusions
In this study we have shown that conventionally used
dose-response models can give rise to biased summary
statistics erroneously correlated to the growth rate of the
cell lines. We have developed novel summary statistics of
dose-response experiments that are applicable on existing
data and independent of time under the proposed differ-
ential equation. Consequently, we expect that the present
approach will be able to improve future drug evaluation
studies.
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