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Abstract

Background: Improving accuracy and efficiency of computational methods that predict pseudoknotted RNA
secondary structures is an ongoing challenge. Existing methods based on free energy minimization tend to be very
slow and are limited in the types of pseudoknots that they can predict. Incorporating known structural information
can improve prediction accuracy; however, there are not many methods for prediction of pseudoknotted structures
that can incorporate structural information as input. There is even less understanding of the relative robustness of
these methods with respect to partial information.

Results: We present a new method, Iterative HFold, for pseudoknotted RNA secondary structure prediction. Iterative
HFold takes as input a pseudoknot-free structure, and produces a possibly pseudoknotted structure whose energy is
at least as low as that of any (density-2) pseudoknotted structure containing the input structure. Iterative HFold
leverages strengths of earlier methods, namely the fast running time of HFold, a method that is based on the
hierarchical folding hypothesis, and the energy parameters of HotKnots V2.0.
Our experimental evaluation on a large data set shows that Iterative HFold is robust with respect to partial
information, with average accuracy on pseudoknotted structures steadily increasing from roughly 54% to 79% as the
user provides up to 40% of the input structure.
Iterative HFold is much faster than HotKnots V2.0, while having comparable accuracy. Iterative HFold also has
significantly better accuracy than IPknot on our HK-PK and IP-pk168 data sets.

Conclusions: Iterative HFold is a robust method for prediction of pseudoknotted RNA secondary structures, whose
accuracy with more than 5% information about true pseudoknot-free structures is better than that of IPknot, and with
about 35% information about true pseudoknot-free structures compares well with that of HotKnots V2.0 while being
significantly faster. Iterative HFold and all data used in this work are freely available at http://www.cs.ubc.ca/~hjabbari/
software.php.
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Background
RNA molecules are crucial in different levels of cellular
function, ranging from translation and regulation of genes
to coding for proteins [1-6]. Understanding the structure
of an RNA molecule is important in inferring its function
[7-10]. Since experimental methods for determining RNA
structure, such as X-ray, crystallography and NMR, are
time consuming, expensive and in some cases infeasible,
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computational methods for prediction of RNA structure
are valuable.
Currently computational RNA structure prediction

methods mainly focus on predicting RNA secondary
structure—the set of base pairs that form when RNA
molecules fold. When multiple homologous (evolutionar-
ily related) RNA sequences are available, the secondary
structure of the sequences can be predicted using multi-
ple sequence alignment and comparative sequence anal-
ysis [11-22]. Alternative approaches, which can be used
to predict secondary structure of a single sequence, are
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based on thermodynamic parameters derived in part from
experimental data [23]. While thermodynamics-based
approaches can be less accurate than comparative-based
algorithms, thermodynamics-based approaches are appli-
cable in cases of novel RNAs such as the many RNAs
of unknown function recently reported by the ENCODE
consortium [24]. Thermodynamics-based approaches can
also be easier to apply to prediction of the structure of
interacting RNA molecules, for example, in gene knock-
down studies.
Many computational thermodynamics-based methods

find the structures with the minimum free energy (MFE)
from the set of all possible structures, when each structure
feature is assigned a free energy value and the energy of
a structure is calculated as the sum of the features’ ener-
gies. There has been significant success in prediction of
pseudoknot-free secondary structures (structures with no
crossing base pairs) [23,25,26]. While many small RNA
secondary structures are pseudoknot-free, many biologi-
cally important RNA molecules, both in the cell [27,28],
and in viral RNA [29] are found to be pseudoknotted.
Since finding the MFE pseudoknotted secondary struc-

ture is NP-hard [30-32], polynomial time MFE-based
methods for prediction of pseudoknotted secondary
structures predict a restricted class of pseudoknotted
structures [33-35]. These methods trade off run-time
complexity and the generality of the class of structures
they can predict. For example, the most general algorithm
of Rivas and Eddy [33], whose running time is �(n6) on
inputs of length n, is not practical for RNA sequences
of length more than 100 nucleotides. This has been the
main reason for development of heuristic methods for
prediction of pseudoknotted structures [36-41]. Although
heuristic methods may not find the MFE structure, they
usually run faster than the MFE-based methods that han-
dle the same class of structures. For example, HotKnots
V2.0 [36,41] is a heuristic approach that uses carefully
trained energy parameters, is guided by energy minimiza-
tion and can handle kissing hairpin structures. However,
HotKnots is still slow on long sequences.
Other methods for prediction of pseudoknotted struc-

tures, such as the IPknot method of Sato et al. [42], are
motivated by the finding of Mathews [43] that base pairs
with high base pairing probabilities in the thermodynamic
ensemble aremore likely to be in the known structure. In a
comprehensive comparison performed by Puton et al. [44]
on the performance of publicly available non-comparative
RNA secondary structure prediction methods that can
handle pseudoknotted structures, IPknot ranks first for
general length RNA sequences.
Incorporating known structural information can

improve the accuracy of structure prediction. For exam-
ple, Mathews et al. [45] used SHAPE reactivity data to
improve the prediction accuracy from 26.3% to 86.8% for

5S rRNA of E. coli. Roughly, the larger the SHAPE reac-
tivity value for a given nucleotide, the more likely it is that
the nucleotide is unpaired in the structure. However, lim-
ited SHAPE reactivity data is available, and the data does
not unambiguously determine whether a base is paired or
not or, if it is paired, to what other nucleotide. Deigan et al.
[46] created pseudo energy terms from SHAPE reactivity
data, as a means of integrating such data into prediction
software. They reported prediction accuracy of 96% to
100% for three moderate-sized RNAs (< 200 nucleotides)
and for 16S rRNA ( 1500 nucleotides). ShapeKnots [47]
is a new method for incorporating SHAPE reactivity
data for pseudoknotted structures that incorporates the
pseudo energy terms into a heuristic method similar to
that of Ren et al. [41].
We previously presented HFold [48], an approach for

prediction of pseudoknotted structures, motivated by two
goals, namely to avoid the high running time complexity
of other methods for pseudoknotted secondary structure
prediction and to leverage the hierarchical folding hypoth-
esis. This hypothesis posits that an RNA molecule first
folds into a pseudoknot-free structure; then additional
base pairs are added that may form pseudoknots with the
first structure so as to lower the structure’s free energy
[49]. Given a pseudoknot-free structure as input, HFold
predicts a possibly pseudoknotted structure from a broad
class that contains the given input structure and, relative
to that constraint, has minimum free energy. HFold’s run-
ning time isO(n3), significantly faster than other methods
for predicting pseudoknotted structures. Several experts
have provided evidence for, and support, the hierarchi-
cal folding hypothesis [49-52]. The class of structures that
HFold can handle, density-2 structures, is quite general
and includes many important pseudoknots including H-
type pseudoknots, kissing hairpins and infinite chains of
interleaved bands, with arbitrary nested (pseudoknotted)
substructures. (Roughly, a structure is density-2 if no base
is enclosed by more than two overlapping pseudoknotted
stems.)
Another advantage of HFold over heuristic methods

such as HotKnots or ShapeKnots is that unlike these
methods, HFold minimizes the free energy of the possibly
pseudoknotted output structure relative to the given input
structure. Therefore HFold’s method of adding pseudo-
knotted stems is better motivated energetically than that
of HotKnots or ShapeKnots.
While HFold is fast, our earlier implementation of

HFold had its own shortcomings. First, due to a high pseu-
doknot initiation penalty in its underlying energy model,
many of its predicted structures did not have pseudo-
knots. Also low band penalty (i.e., penalty for addition
of pseudoknotted stems or bands) in its energy model
encouraged addition of pseudoknotted stems when a
pseudoknot was predicted. Second, if the first structure
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input to HFold contains base pairs that are not in the true
pseudoknot-free structure for the given RNA sequence
or is not the complete pseudoknot-free structure (i.e., it
does not include all the base pairs in the pseudoknot-free
structure), HFold is often unable to predict the known
pseudoknotted structure as output.
To summarize, existing methods for prediction of pseu-

doknotted structures suffer from one or both of the fol-
lowing shortcomings: 1) slow running time, or 2) poor
prediction accuracy. Moreover there is limited oppor-
tunity for the user to provide structural information,
or constraints, that can guide prediction. In cases of a
prediction method that incorporates user-defined con-
straints, it is also useful to understand the degree to which
the method’s accuracy persists as the input information
degrades. We use the term robustness with respect to par-
tial information or robustness to refer to this property of
a method. (We note that in our definition of robustness
we do not mean robust with respect to noise.) To the
best of our knowledge, the concept of robustness in sec-
ondary structure predictionmethods has not been studied
before.
In this work we present a new method that addresses

these shortcomings. Our method, Iterative HFold, takes a
pseudoknot-free input structure and produces a possibly
pseudoknotted structure whose energy is at least as low
as that of any (density-2) pseudoknotted structure con-
taining the input structure. Iterative HFold incorporates
four different methods and reports as its final structure
the structure with the lowest energy, among all structures
produced by these methods. While one of its underlying
methods, HFold, strictly adheres to the hierarchical fold-
ing hypothesis, the other three use iterations to extend or
remove the base pairs of input structure, with the goal of
finding a structure that has lower energy than the struc-
ture found by HFold. Thus, unlike HFold, iterative HFold
is able to modify the input structure (while the class of
structures handled by both methods is the same). This
is valuable since 1) computationally produced structures
may not be completely accurate and 2) while the hierarchi-
cal folding hypothesis is a useful guiding principle, there is
evidence that allowing for disruption of some base pairs in
the initially formed pseudoknot-free secondary structure
can improve prediction [53,54].
All of Iterative HFold’s underlying methods use the

energy model of HotKnots V2.0 DP09 [36]; with this
model, HFold obtained predictions with higher accuracy
than those obtained with our earlier implementation of
HFold. One of Iterative HFold’s underlying methods is
HFold-PKonly, which given the input structure only adds
pseudoknotted base pairs. HFold-PKonly is especially use-
ful for cases when the user has either complete informa-
tion about the true pseudoknot-free structure or wants to
check whether a single stem of the input structure can

be part of a pseudoknot since, if the input structure only
has the specific stem in question, the output structure of
HFold-PKonly will determine if the given stem can be part
of a pseudoknot.
Based on our experiments on our HK-PK and HK-PK-

free data sets that include 88 pseudoknotted structures,
and 337 pseudoknot-free structures respectively, ranging
in length from 10 to 400 nucleotides, a single run of Iter-
ative HFold does not take more than 9 seconds time and
62 MB of memory. In contrast, one of the best heuristic
methods, HotKnots V2.0, takes 1.7 hours and 91 GB of
memory for a sequence with 400 nucleotides. Therefore
our method is practical for prediction of long RNA struc-
tures. Iterative HFold bootstrap 95% percentile confidence
interval for average accuracy of pseudoknotted structures
of the HK-PK data set is significantly higher than that
of IPknot, ((72.83%, 83.37%) vs. (54.56%, 66.25%)) and
is comparable to that of HotKnots V2.0, (vs. (73.60%,
83.35%)) two of the best prediction methods available.
Iterative HFold’s accuracy is significantly higher than that
of IPknot andHotKnots on our IP-pk168 data set. Iterative
HFold also has higher accuracy thanHFold evenwhen just
partial information about the true pseudoknot-free struc-
ture is provided, so it is more robust than HFold. Specifi-
cally, Iterative HFold’s average accuracy on pseudoknotted
structures steadily increases from roughly 54% to 79% as
the user provides up to 40% of the input structure, and
improves with a more modest but still positive improve-
ment in accuracy when further structural information is
provided.

Methods
We represent an RNA molecule by a sequence, S, of its
four bases, Adenine (A), Cytosine (C), Guanine (G) and
Uracil (U). We denote the length of the RNA molecule by
n and refer to each base by its index i, 1 ≤ i ≤ n.
When an RNAmolecule folds, bondsmay form between

canonical pairs of bases (A-U, C-G, and G-U) (see
Figure 1). Throughout this work, we consider only cases
where each base may pair at most with one other base, and
represent base pairing between i and j by i.j. We define
a secondary structure, R, as a set of pairs i.j, 1 ≤ i <

j ≤ n; i.j and k.j can belong to the same set if and only if
i = k.
If i.j and k.l are two base pairs of a secondary structure,

R, and 1 ≤ i < k < j < l ≤ n, we say i.j crosses k.l.
We refer to a secondary structure with crossing base pairs
as a pseudoknotted secondary structure and a secondary
structure with no crossing base pairs as a pseudoknot-free
secondary structure (see Figure 1). Figure 1 shows different
kinds of loops in a secondary structure. We refer the read-
ers to Jabbari et al. [48] or Rastegari et al. [56] for precise
definition and illustration of terms used in the figure.
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Figure 1 Pseudoknotted and pseudoknot-free secondary structures. Examples of loops and canonical base pairs in a pseudoknotted and a
pseudoknot-free secondary structure. The blue base pairs belong to the Gbig structure and the green base pairs belong to the Gsmall structure, as
defined in Section ‘Definition of Gbig and Gsmall ’. This figure was produced using the VARNA software [55].

Energy model
Many computational methods for predicting the sec-
ondary structure of an RNA (or DNA) molecule are based
on models of the free energy of loops [23,25,26,33-36,48].
Table 1 summarizes the energy constants and functions
used in our energy model for pseudoknotted structures.
The values of these energy parameters are those of the
DP09 parameter set of Andronescu et al. [36], used by the
HotKnots V2.0 prediction software.

Data sets
Weuse three data sets to analyze performance of our algo-
rithms. Our first data set is the test data set of Andronescu
et al. [36], that contains 446 distinct RNA sequences and
their reference structures, of which 348 are pseudoknot-
free and 98 are pseudoknotted. This set has four struc-
tures that are not in the class of structures our methods
can handle (i.e., have densities higher than 2 [48]). Since
the number of such structures is too small to be useful in
an experimental analysis, we removed them from our set
of pseudoknotted structures, resulting in a set of size 442.
There are eight cases in this data set for which

the original sequence and structure were shortened to

accommodate restrictions in length. We removed them
from our data set, resulting in a set of size 425. From
now on we use “HK-PK” to refer to the pseudoknotted
structures in this set (with 88 structures) and “HK-PK-
free” to refer to the pseudoknot-free structures in this
set (with 337 structures). RNA sequences in HK-PK and
HK-PK-free have length between 10 and 400 nucleotides.
Our second data set is the pk168 data set of Sato et al.

[42]. This set contains 168 pseudoknotted structures from
16 categories of pseudoknots. The sequences in this set
have at most 85% similarity and have length of at most 140
nucleotides. We refer to this data set as “IP-pk168”.
Our third data set is the test data set of Sperschneider

et al. [57]. This set contains 16 pseudoknotted structures
with strong experimental support. RNA sequences in this
set have length between 34 and 363 nucleotides. We refer
to this data set as “DK-pk16”.

Definition of Gbig and Gsmall

To test the robustness of our methods on a given RNA
sequence, we need to provide partial information about
the true pseudoknot-free structure as input structure
for that sequence. To obtain the true pseudoknot-free
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Table 1 Energy parameters

Name Description Value (Kcal/mol)
Ps Exterior pseudoloop −1.38

initiation penalty

Psm Penalty for introducing pseudoknot 10.07
inside a multiloop

Psp Penalty for introducing pseudoknot 15.00
inside a pseudoloop

Pb Band penalty 2.46

Pup Penalty for unpaired base 0.06
in a pseudoloop

Pps Penalty for closed subregion 0.96
inside a pseudoloop

eH(i, j) Energy of a hairpin loop closed by i.j

eS(i, j) Energy of stacked pair closed by i.j

estP(i, j) Energy of stacked pair that 0.89× eS(i, j)
spans a band

eint(i, r, r′, j) Energy of a pseudoknot-free
internal loop

eintP(i, r, r′, j) Energy of internal loop 0.74× eint(i, r, r′, j)
that spans a band

a Multiloop initiation penalty 3.39

b Multiloop base pair penalty 0.03

c Penalty for unpaired base 0.02
in a multiloop

a′ Penalty for introducing a multiloop 3.41
that spans a band

b′ Base pair penalty for a multiloop 0.56
that spans a band

c′ Penalty for unpaired base in a multiloop 0.12
that spans a band

This table provides the names, description and values of the energy parameters
and functions that we used in our methods. The names and definitions are the
same as in our original HFold [48], and the values were updated based on the
work of Andronescu et al. [36]. These parameters were derived for a temperature
of 37°C and 1 M salt concentration.

structure, Gbig , we remove the minimum number of
pseudoknotted base pairs from the reference struc-
ture to make the reference structure pseudoknot-free. If
the reference structure is pseudoknot-free, then Gbig is
the same as the reference structure itself. We call the
removed base pairs from the reference structure Gsmall.
Blue base pairs in Figure 1 represent base pairs of the
Gbig structure and green base pairs represent the Gsmall
structure.

Accuracy measures
Following common practice [36,58], wemeasure the accu-
racy of a predicted RNA secondary structure relative to a
reference secondary structure by F-measure, which is the

harmonic mean of sensitivity and positive predictive value
(PPV ). We define these values as follows:

Sensitivity = Number of correctly predicted base pairs
Number of base pairs in the reference structure

PPV = Number of correctly predicted base pairs
Number of predicted base pairs

and

F-measure = 2 × sensitivity × PPV
sensitivity + PPV

We also define these values as 0 when their denomina-
tors are 0. When a prediction agrees with the reference
structure, the value of F-measure is equal to 1 (so are the
values of sensitivity and PPV). When the values of sensi-
tivity or PPV is equal to 0, the predicted structure does
not have any base pairs in common with the reference
structure.

Bootstrap percentile confidence intervals
To formally assess the dependency of measured predic-
tion accuracy of results of a method on a given set of RNA
we use bootstrap confidence intervals, a well-known sta-
tistical resampling technique [59,60]. Following the recent
work of Aghaeepour and Hoos [61] and Hajiaghayi et
al. [58] we calculate the bootstrap 95% percentile confi-
dence interval of average F-measure as follows. For each
vector f of F-measures (where, for example, f may be
the F-measures of predictions obtained by Iterative HFold
on pseudoknotted structures) we first take 104 resam-
ples with replacement, where the resamples have the same
length as the original sample vector f (|f |), and then cal-
culate their average F-measures. These 104 calculated
average F-measures represent the bootstrap distribution
for the vector f . We then report the 2.5th and 97.5th per-
centile of this distribution (i.e., the bootstrap distribution
of the 104 average F-measures calculated above) as the
lower and upper bounds of the confidence interval respec-
tively, and call it the bootstrap 95% percentile confidence
interval. By reporting the bootstrap 95% percentile confi-
dence interval for average F-measure of a method, A, on
a data set, D, we say that we are 95% confident that the
average F-measure of method A on data set D is in the
reported interval. All calculations are performed using the
“boot” package of the R statistics software environment
[62].

Permutation test
Following the recent work of Hajiaghayi et al. [58], we use
a two sided permutation test to assess the statistical signif-
icance of the observed performance differences between
twomethods. The test proceeds as follows, given a data set
and two structure prediction procedures, A and B. First,
we calculate the differencemean(fA)−mean(fB) in means
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between sets of F-measure values obtained by A and B.
Then we combine the two sets fA and fB and record the
difference in sample means for 104 randomly chosen ways
of choosing two sets with the same size as |fA| and |fB|
from the combined set. The p-value is the proportion of
the sampled permutations where the absolute difference
was greater than or equal to that of absolute difference of
the means of sets fA and fB. Then, if the p-value of this
test is less than the 5% significance level, we reject the null
hypothesis that methods A and B have equal accuracy and
thus accept the alternative hypothesis that the difference
in accuracy of method A and B is significant. Otherwise,
we cannot reject the null hypothesis. All calculations are
performed using the “perm” package of the R statistics
software environment.

Iterative HFold
We provide a high level description of our Iterative HFold
algorithm.
Pseudocode of our Iterative HFold algorithm is available

in Additional file 1. The algorithm builds on two simpler
methods, the first being our original HFold algorithm [48]:

HFold: Given an RNA sequence, S, and a pseudoknot-
free input structure, G, find a pseudoknot-free structure,
G′ such thatG∪G′ is the lowest energy structure that con-
tains G. We note thatG∪G′ might not be pseudoknotted.

The second method on which Iterative HFold builds,
called HFold-PKonly, is similar to HFold except that G′
may only contain base pairs that cross base pairs in G.
The prediction provided by HFold-PKonly can be useful
in cases where HFold does not produce a pseudoknotted
structure.

HFold-PKonly: Given an RNA sequence, S, and a
pseudoknot-free input structure, G, find a pseudoknot-
free structure, G′ such that every base pair in G′ crosses
some base pair of G and such that G ∪ G′ is the lowest
energy structure that contains G among all suchG′s. Note
that G′ may contain no base pairs.

Iterative HFold also uses the SimFold RNA secondary
structure predictionmethod [63], which predicts themin-
imum free energy pseudoknot-free secondary structure
for a given RNA sequence. SimFold uses a dynamic pro-
gramming method similar to Zuker’s MFold method [64].
In this work we used the HotKnots energy parameters
when running SimFold. In addition to an RNA sequence,
S, SimFold can also take a pseudoknot-free secondary
structure, G, as input and predict the MFE pseudoknot-
free secondary structure that contains all base pairs of G.
Iterative HFold is distinguished from the above three

methods, namely HFold, HFold-PKonly and SimFold, in
two important ways. First, the output of HFold, HFold-

PKonly and SimFold methods must contain the given
pseudoknot-free input structure, G, whereas Iterative
HFold may modify the input structure. This can be use-
ful when the given input structure is not a high-accuracy
estimate of Gbig , the true pseudoknot-free substructure of
the reference structure. Second, while HFold and HFold-
PKonly can add base pairs that cross those in G, they
cannot add base pairs that cross each other, and nei-
ther can SimFold. In contrast, Iterative HFold can add
base pairs that cross each other. This is particularly use-
ful when the input structure contains limited informa-
tion about Gbig , and so it is necessary both to predict
base pairs in Gbig and in Gsmall in order to get a good
prediction.
Iterative HFold is comprised of four different itera-

tive methods. Following the description of each method,
we motivate why we chose to include it as part of our
overall algorithm. Iterative HFold takes as input both
an RNA sequence, S and a pseudoknot-free secondary
structure, G; later we show that structure G can be pro-
duced by computational methods, for example, HotKnots
hotspots or SimFold suboptimal structures, when only the
sequence S is initially available.

Iterative HFold: Given an RNA sequence, S, and a pseu-
doknot free input structure, G, run the following four
methods and pick the structure with the lowest free
energy among these four as the output structure.
Iterative HFold runs in O(n3) time, as it runs four

methods sequentially, when each one is O(n3).

Method 1: Run HFold on S and G, and store the
resulting G ∪ G′.
Motivation: This is the core HFold
method, motivated by the hierarchical
folding hypothesis.

Method 2: First run HFold-PKonly on S and G. If
HFold-PKonly results in a structure G ∪ G′
such that G′ is not the empty structure,
then run HFold with sequence S and
structureG′, and store the result.
Otherwise, simply store G as the result. See
the following example. (We note that
running HFold with S and G′ results in a
structureG′ ∪ G′′, where it may be the case
that G′′ �= G (i.e., Gmay not be part of the
result of method 2).)
Motivation: When input structureG does
not agree with the reference Gbig structure,
it may still be the case that HFold-PKonly
finds the pseudoknotted structureGsmall
(or a good approximation to Gsmall). A call
to HFold with input Gsmall may then find a
better approximation to Gbig . In this
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Example 1: Example of results ofmethod 1 and method 2 of Iterative HFold.

S = GGGCUCUGGAGCCCCCCCCGAGCCCCGGCUAACUCUAUCUGUAGGGGGGC

G = ...........(((((...........................)))))..

Method 1: HFold on S and G
[[[[[[.[[..(((((]].]]]]]]..................))))).. -12.75

Method 2:
HFold Pkonly on S and G

[[[[[[.[[..(((((]].]]]]]]..................)))))..

G1
[[[[[[.[[.......]].]]]]]].........................

HFold on S and G1
[[[[[[.[[.((((((]].]]]]]]...................)))))) -14.67

example, method 2 of Iterative HFold
outperforms method 1: although both
HFold and HFold PKonly produce the same
result on sequence S and input structureG,
namely the structureG ∪ G′ , the additional
iteration in method 2, in which HFold is
run with S and G′ , finds a structure with
lower energy than that of G ∪ G′ .

Method 3: First run SimFold on S and G to obtain
result G′—a pseudoknot-free structure that
contains G. Then let Gupdated be the
secondary structure of S containing the
relaxed stems of G′ that include the base
pairs of G. By a relaxed stem, we mean a
secondary structure containing stacked
base pairs, bulges of size 1 and internal
loops of maximum size of 3 (i.e., either the
symmetric loop of 1 × 1 or the
non-symmetric loop of 1 × 2 or 2 × 1 but
no other loop types; this is motivated by
common practice [65]). Then run method

2 on S and Gupdated, and store the result.
See Example 2.
Motivation: This method can work well
when the given input structure has a small
number of base pairs from Gbig , because
Gupdated contains stems that includes these
base pairs, but avoids “overcrowding” with
further base pairs that might prevent
HFold-PKonly from finding pseudoknotted
stems.
In this example, method 3 of Iterative
HFold outperforms the other methods.
Because the input structure G consists of
just one base pair, method 1 (HFold)
outputs a pseudoknot-free structure
containing G. The output of both methods
2 and 4 are pseudoknotted but do not
contain the base pair of the input structure
G. In contrast, method 3 first adds base
pairs to G, resulting in the pseudoknot-free
structureGupdated, and then adds

Example 2: Example of result ofmethod 3 compared to all four methods of Iterative HFold.

S = GUUUGUUAGUGGCGUGUCCGUCCGCAGCUGGCAAGCGAAUGUAAAGACUGAC

G = ............(..........)............................

Method 1: HFold on S and G
((((((((((.(((........))).))))))))))................ -11.01

Method 2 and 4:
(((.......))).[[[[.[[.(((.]].]]]].)))............... -5.08

Method 3:
Simfold on S and G

((((((((((.(((........))).))))))))))................

Gupdated
((((((((((.(((........))).))))))))))................

Method 2 on S and Gupdated
((((((((((.(((.[[[.[[[))).)))))))))).........]]].]]] -11.26
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additional pseudoknotted base pairs via
method 2.

Method 4: Let S1 be the subsequence of S obtained by
removing bases that are external unpaired
bases with respect to input structureG.
Run SimFold on S1 and G (with base
indices renumbered to agree with S1), to
obtain pseudoknot-free structureG′. Then

continue exactly as in method 3. See
Example 3.
Motivation: This method is very similar to
method 3, but further constrains G′ since
the base pairs in G′ cannot involve bases
that are removed from S to obtain S1. This
potentially increases the possibilities for
pseudoknotted base pairs to be added by
method 2.

Example 3: Example of result of method 4 compared to all four methods of Iterative HFold.

S = CCGAGCUCUGUAGCGAGUGCUUGUAACCCGAGCGGGGGC

G = .(..................................)..

Method 1 and 3:
((..((((.((.((((....)))).))..))))...)). -5.10

Method 2:
.(..................................).. +3.04

Method 4:
S1 and G1
S1 = CGAGCUCUGUAGCGAGUGCUUGUAACCCGAGCGGGG

G1 = (..................................)

Simfold on S1 and G1:
(..((((.((.((((....)))).))..))))...)

Gupdated
.(..((((.((.((((....)))).))..))))...)..

Method 2 on S and Gupdated
((..((((.((.((((..[[)))).))..))))..))]] -6.05

In this example, method 4 of Iterative
HFold outperforms the other methods.
The input structureG has a high energy
value and neither method 1 (HFold) nor
method 2 (HFold-PKonly) can expand the
pseudoknot-free structure to add the
pseudoknotted stem. Also, by adding too
many pseudoknot-free base pairs, method
3 fails to find the pseudoknotted base pairs.
Thus, method 4 performs better than
methods 1, 2 and 3.

Experimental settings
In this section we explain details of our computational
experiments.

Robustness test
One of our goals is to understand the degree to which our
methods are robust with respect to partial information,
that is, provide a reliable prediction even when lim-
ited information about the true pseudoknot-free struc-
ture, Gbig , is available. For this purpose we generate
subset structures of the correspondingGbig , for each RNA
sequence in the HK-PK and HK-PK-free data sets. For
each α, 0.05 ≤ α ≤ 0.95 with 0.05 steps, we choose each
base pair of Gbig structure with probability α. We also

generate 1% information and 99% information about the
Gbig structure (i.e., α = 0.01 and α = 0.99). We repeat
this step 100 times to generate 100 substructures of Gbig
for each value of α for each RNA sequence in our data
sets. We then run our methods on all 100 substructures
for each RNA sequence in our data sets and α value and
calculate the bootstrap 95% percentile confidence interval
for average F-measure of these 100 cases as the accuracy
interval for each method and each RNA sequence and α

value in our data set.
We also compare our methods when the true

pseudoknot-free structure, Gbig is provided.

Accuracy comparison tests
We compare the accuracy of HFold, HFold-PKonly and
Iterative HFold with each other on different input struc-
tures, and with other methods, namely SimFold [63],
HotKnots V2.0 [36,41] and IPknot [42]. We first describe
the latter two methods and the settings we choose for
our experiments. We then describe the ways in which we
choose input structures for HFold and its variants.

HotKnots HotKnots is a heuristic program that given an
RNA sequence, first finds about 20 lowest energy stems
(from the set of all stems for the given RNA sequence),
called hotspots. Then keeping all these stems, it adds other
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non-overlapping low energy stems to the stems found
in the first step, so as to minimize the energy of the
overall structure, eventually producing up to 20 output
structures. In our experiments, we choose the structure
with the lowest energy value among the 20 output struc-
tures as the final structure predicted by HotKnots. When
reporting prediction accuracy for HotKnots, we report the
bootstrap 95% percentile confidence interval for the aver-
age F-measure of the lowest energy structure for all RNA
sequences in our data set.

IPknot IPknot is a secondary structure prediction
method based onMaximum Expected Accuracy (MEA) of
the base pairs. In addition to the RNA sequence, IPknot
gets several parameters as input. Following, we describe
each of these parameters and settings briefly.

• level: If structureG can be decomposed into k
disjoint pseudoknot-free structures, G1,G2, . . . ,Gk ,
such that every base pair in Gi crosses the base pairs
of Gj, 1 ≤ i ≤ j ≤ k, Sato et al. say that structureG
has k levels. For example, a pseudoknot-free structure
has level 1, and an H-type pseudoknot has level 2. In
another example, when representing the secondary
structure in dot bracket format, the number of
different brackets used to represent the structure is
the level of the structure. IPknot can handle
structures up to level 3.

• scoring model: The energy model used to produce
posterior probabilities for each base pair is called
“scoring model”. IPknot has 3 different scoring
models, namely “CONTRAfold”, “McCaskill” and
“NUPACK”.

• refining parameters: The procedure of recalculating
the base pair probabilities based on the original
prediction results is referred to as “refining
parameters”.

• base pair weights for each level: Positive numbers
representing the rate of true base pairs in each level.

We run IPknot using the provided source code and the
default parameters for scoring model and level (i.e., scor-
ing model = McCaskill and level = 2). The default values
provided for base pair weights are not the same on the
IPknot website (i.e., γ1 = 2 and γ2 = 16), its source code
(i.e., for some cases γ1 = 2 and γ2 = 4 and for others γ1 =
1 and γ2 = 1) and the provided perl script (i.e., γ1 = 4 and
γ2 = 8). We run IPknot with all of these values with and
without refinement and provide IPknot’s bootstrap 95%
confidence intervals for average F-measures for all of our
data sets as a table in the Additional file 2. Based on its
performance we present IPknot’s results with default set-
tings (i.e., no refinement, scoring model = McCaskill and

level = 2) and γ1 = 4 and γ2 = 8, for comparison with
other methods.

Different versions of HFold We compare the average
accuracy of HFold, HFold-PKonly and Iterative HFold
with different input structures.
To determine which input structures are good to use

when Gbig is not known, we compare two different
options. Since HFold (HFold-PKonly and Iterative HFold)
cannot accept pseudoknotted input structures we use
the following methods to produce pseudoknot-free input
structures to HFold (HFold-PKonly and Iterative HFold).
First, we use HotKnots hotspots [36], i.e., the 20 low-
est energy pseudoknot-free stems produced in the first
phase of HotKnots. We choose the lowest free energy
structure predicted by each of our methods as their
final prediction given these hotspots. Second, we use
SimFold’s MFE structure [63] where the energy parame-
ters of SimFold are changed to match that of HotKnots
V2.0.

Running time
We ran all methods on the same platform (Macbook pro.
OS X 10.5.8 with 2.53 GHz Intel Core 2 Duo processor
and 4 GB 1067 MHz DDR3 RAM). We use the time com-
mand to measure the running time of our methods on
each sequence, and record the wall clock time.

Memory usage
To find the memory usage of the programs, we use the
Valgrind package [66] and record the total heap usage as
memory usage of each program. IPknot and HotKnots are
completely written in C and so we can easily find their
memory usage by running Valgrind. However, Iterative
HFold program is a perl script that runs a few C programs
(HFold, HFold-pkonly and SimFold) sequentially. So we
find the memory usage of each C component using Val-
grind and assign the maximum as the memory usage of
Iterative HFold.

Results
As mentioned in Section ‘Background’, in the literature
on hierarchical folding, there are reports of counter
examples to the hierarchical folding hypothesis where
bases that are initially part of the pseudoknot-free struc-
ture for a molecule later change as the pseudoknot forms.
This motivates a comparison of HFold versus Iterative
HFold, in order to see how a method that sticks strictly
with the hypothesis (i.e., HFold) compares with a method
that allows for some base changes (i.e., Iterative HFold).
In Section ‘Robustness comparison’, we compare the
robustness of HFold and Iterative HFold with respect
to partial information; that is, the degree to which they
provide accurate predictions as a function of how much
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information about Gbig , the true pseudoknot-free sec-
ondary structure, is provided as input. Then in Section
‘Accuracy comparison of different versions of HFold’
we compare HFold, HFold-PKonly and Iterative
HFold when a (possibly inaccurate) computational
prediction of Gbig is provided as input. In Section
‘Accuracy comparison with existing methods’ we com-
pare Iterative HFold—the method that performs
best overall in Sections ‘Robustness comparison’ and
‘Accuracy comparison of different versions of HFold’ —
with existing methods for pseudoknotted secondary
structure prediction. Sections ‘Running time comparison’
and ‘Memory consumption comparison’ report on the
running time and memory usage of our methods.

Robustness comparison
One of our goals is to learn what is the accuracy of each
of our methods when partial information about Gbig is
available (see Section ‘Robustness test’ for experimen-
tal settings). Figure 2 shows the results of this robust-
ness evaluation, for pseudoknotted structures (Figure 2A),
pseudoknot-free structures (Figure 2B) and the over-
all results (Figure 2C). Since HFold-PKonly cannot add
pseudoknot-free base pairs to the given input structure,
we do not compare its performance here with HFold
and Iterative HFold. However we provide detailed perfor-
mance of all versions of HFold including HFold-PKonly in
Additional file 3.
As shown in Figure 2A, which pertains to pseudoknot-

ted structures of the HK-PK data set, when provided
with ≈ 1% of the Gbig structure as input, Iterative HFold’s
bootstrap 95% percentile confidence interval of average
F-measures has higher accuracy than those of HFold. Iter-
ative HFold continues to be significantly superior toHFold
until approximately 90% of Gbig is available, after which
HFold is more accurate. Iterative HFold is most success-
ful when little information about Gbig is known because
it can add both pseudoknot-free and pseudoknotted base
pairs. In particular, using methods 3 and 4 (see Section
‘Iterative HFold’) Iterative HFold first finds a low energy
pseudoknot-free structure that includes the given input
structure (by extending the stems of the given structure),
and then adds pseudoknotted base pairs to further lower
the energy of the overall structure. However,when the vast
majority of base pairs ofGbig are provided as input, HFold
dominates as it keeps the base pairs of the input struc-
ture, thereby often adding base pairs ofGsmall.When 100%
of Gbig is provided as input, HFold’s bootstrap 95% per-
centile confidence interval is (85.74%, 91.87%), compared
with (79.36%, 87.41%) for Iterative HFold.
As shown in Figure 2A, Iterative HFold’s average accu-

racy on pseudoknotted structures steadily increases from
about 54% to 79% as the user provides 1% to 40% of
the input structure. This improvement in accuracy slows
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Figure 2 Comparison of robustness of HFold and Iterative HFold.
Robustness results for pseudoknotted structures of the HK-PK data set
(2A), pseudoknot-free structures of the HK-PK-free data set (2B) and
all structures (2C). The X axes show the available information about
Gbig structure in percentage format, and the Y axes show bootstrap
95% percentile confidence intervals for average F-measure. Dashed
lines show the borders of the bootstrap 95% percentile for average
F-measure and solid lines show the average F-measure itself.

down but still persists when further structural informa-
tion is provided. If we compare the slope of the curve
for Iterative HFold’s average accuracy to that of HFold
in Figure 2A, we can see that HFold’s slope is steeper
than that of Iterative HFold, making Iterative HFold more
robust than HFold.
For pseudoknot-free structures of the HK-PK-free data

set, as shown in Figure 2B, HFold performs better than
Iterative HFold. Even with 1% information about Gbig ,
HFold results in (79.76%, 84.32%) 95% bootstrap confi-
dence interval in comparison with (79.14%, 83.84%) for
Iterative HFold with the same inputs. Roughly, HFold’s
success for pseudoknot-free structures is because it often
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adds base pairs that do not cross those provided as part of
the input, and thus are likely to be in Gbig .
When 100% of Gbig is provided as input, the over-

all bootstrap 95% confidence interval for HFold is
(96.11%, 97.24%) compared with (93.85%, 96.07%) for
Iterative HFold.

Accuracy comparison of different versions of HFold
Often, partial information about Gbig is not available; this
is the case for many RNAs of unknown function reported
by the ENCODE consortium [24]. Therefore, we next
compare the quality of results obtained by HFold, HFold-
PKonly and Iterative HFold when given a pseudoknot-free
input,G that is predicted by existing computational meth-
ods. One way to produce an input structure is to use an
MFE pseudoknot-free structure prediction method, such
as MFold. We chose SimFold as it is an implementation of
MFold and, because of its energy parameters, gives more
accurate predictions than MFold. Of course, when com-
parative information is available, the user can input such
information as structural constraint as a pseudoknot-free
structure to Iterative HFold and expect a better prediction
result. Here we compare two methods for predicting G,
namely SimFold and the hotspots produced by HotKnots
V2.0. Table 2 reports the bootstrap 95% percentile con-
fidence intervals of average F-measures. The accuracy of
HFold-PKonly is significantly worse than that of HFold
and Iterative HFold, both with the output of SimFold, and
with the HotKnots hotspots as input, so we do not discuss
HFold-PKonly further.
For pseudoknotted structures, using HotKnots hotspots

as input is far superior to using SimFold as input, for both
HFold and Iterative HFold. This appears to be because
MFE structures predicted by SimFold tend to have more
base pairs than the true pseudoknot free structure,Gbig , so
that HFold and Iterative HFold are unlikely to add pseudo-
knotted base pairs to the input structure. For pseudoknot-
free structures, using SimFold as input is somewhat better
than using HotKnots hotspots, but the permutation test
indicates that the difference is not significant.
The confidence intervals for HFold and Iterative HFold

withHotKnots hotspots are (73.35%, 83.53%) and (72.83%,
83.37%), respectively, and on pseudoknot-free structures
they are (75.53%, 80.79%) and (74.93%, 80.26%) respec-
tively. Again, based on the result of the permutation test,

the difference in the results of HFold and Iterative HFold
on pseudoknotted and pseudoknot-free structures are not
significant. Similarly, the permutation test shows that the
difference in prediction accuracy of HFold and Iterative
HFold on SimFold input is not significant.

Accuracy comparison with existingmethods
For comparisons with other methods already in the lit-
erature, we choose to use our Iterative HFold method
with HotKnots hotspots as input structure, based on its
overall good accuracies in Section ‘Accuracy comparison
of different versions of HFold’. We compare this method
with two of the best-performing methods [44] for predic-
tion of pseudoknotted structures, namely HotKnots V2.0
[36], a MFE-based heuristic method, and IPknot [42], a
method that is based on maximum expected accuracy.
(Prepared by Puton et al. [44], CompaRNA, is the website
for continuous comparison of RNA secondary structure
methods on both PDB data set and RNA strand. We
chose IPknot because it was the best-performing non-
comparative pseudoknot predictionmethod that can han-
dle long RNA sequences, based on the ranking on their
website as of March 25, 2014. We also noticed that Puton
et al. used HotKnots V1 for their comparison, and not
the more recently available and better performing Hot-
Knots V2.0. Therefore we chose to include HotKnots in
our comparisons as well. Since the focus of this paper
is on prediction of pseudoknotted structures, we do not
compare our results with that of Co-Fold [26] or other
methods for prediction of pseudoknot free structures.)
Table 3 presents the bootstrap 95% percentile con-

fidence interval of average F-measure for Iterative
HFold with hotspots as input, HotKnots V2.0, Sim-
Fold and IPknot with default setting (see Section
‘Accuracy comparison tests’) on the HK-PK and HK-PK-
free data sets. For pseudoknotted structures, our per-
mutation tests show that the difference in accuracy of
Iterative HFold and HotKnots is not significant. How-
ever, the superior accuracy of Iterative HFold compared
with SimFold and IPknot is significant. For pseudoknot-
free structures, the difference in accuracy between IPknot,
Iterative HFold, HotKnots and SimFold is not significant.
Table 4 presents the bootstrap 95% percentile confi-

dence interval for average F-measure for Iterative HFold
(with hotspots as input), HotKnots and IPknot (with

Table 2 Comparison of bootstrap 95%percentile confidence interval of average F-measure of different versions of HFold
when given SimFold structure as input vs. when given HotKnots hotspots structures as input

Input
Hotspots SimFold (MFE)

PKonly HFold Iter. HFold PKonly HFold Iter. HFold

HK-PK (55.54, 71.06) (73.35, 83.53) (72.83, 83.37) (50.57, 63.53) (50.69, 63.54) (51.42, 64.39)

HK-PK-free (31.37, 38.52) (75.53, 80.79) (74.93, 80.26) (78.42, 83.21) (78.33, 83.27) (78.31, 83.17)
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Table 3 Comparison of bootstrap 95%percentile
confidence interval of average F-measure with existing
methods

Input
Iter. HFold

HotKnots SimFold
IPknot

(hotspots) (default)

HK-PK (72.83, 83.37) (73.60, 83.35) (45.34, 57.73) (54.56, 66.25)

HK-PK-free (74.93, 80.26) (76.74, 81.95) (78.78, 83.55) (77.31, 81.79)

default setting) on the IP-pk168 and DK-pk16 data sets.
Our permutation tests show that the difference in accu-
racy of Iterative HFold, HotKnots and IPknot on the
DK-pk16 data set is not significant. However, the superior
accuracy of Iterative HFold compared with HotKnots and
IPknot on the IP-pk168 data set is significant.

Running time comparison
Since prediction of pseudoknotted structures are of inter-
est to us, we only report running time comparison on
pseudoknotted structures of our HK-PK data set. Figure 3
presents result of time comparison between Iterative
HFold and HotKnots in a log plot (when log is in base
10). The X axis shows log(time) for HotKnots data points
and the Y axis shows log(time) for Iterative HFold on
the HK-PK data set. RNA sequences in this data set
are between 26 and 400 bases long. HFold runs signifi-
cantly faster than HotKnots and finishes under 1.5 sec-
onds for even the longest RNA sequence in our data set
(400 bases). HotKnots is faster than Iterative HFold on
sequences of up to 47 bases, where Iterative HFold starts
being faster than HotKnots. Iterative HFold runs in less
than 8.3 seconds for all RNA sequences in this data set
whereas HotKnots runs for over 6000 seconds (about 1.7
hours) on the longest RNA sequence in our data set. The
running time of both HFold and Iterative HFold grows
with sequence length, whereas HotKnots’ running time
is not directly correlated with RNA length. For exam-
ple, HotKnots runs for 1665.94 seconds for one RNA
sequence of length 195 (ASE-00360), while it runs for
203.12 seconds for another RNA sequence of length 195
(ASE-00131).
IPknot is significantly faster than both HFold and Iter-

ative HFold. For all sequences in this data set, IPknot
produces output in less than 0.8 seconds. For detailed

Table 4 Comparison of bootstrap 95%percentile
confidence interval of average F-measure with existing
methods on the DK-pk16 and the IP-pk168 data sets

Input
Iter. HFold

HotKnots
IPknot

(hotspots) (default)

DK-pk16 (68.05, 81.85) (69.11, 83.81) (65.42, 75.81)

IP-pk168 (72.65, 79.86) (65.51, 72.96) (58.20, 66.09)

Figure 3 Time comparison. Comparison of running times of
Iterative HFold and HotKnots in a log plot. The X axis shows
log10(time) for HotKnots data points and the Y axis shows log10(time)
for Iterative HFold. Time is measured in seconds.

information about performance of each method see
Additional file 4.

Memory consumption comparison
Here we present memory consumption of HFold, Itera-
tive HFold and HotKnots on our HK-PK pseudoknotted
structures. Since HotKnots predicts and keeps about 20
structures in memory, its memory consumption can vary
significantly from one sequence to another, and is not pre-
dictable. Up until 47 bases, HotKnots some times uses
less memory than HFold or Iterative HFold, but for RNA
sequences with 47 bases or longer, HotKnots uses much
more memory than HFold and Iterative HFold. Itera-
tive HFold’s memory usage is very similar to HFold’s and
increases at a very low rate by the length of the RNA
sequence. It starts from 48.69 MB for RNA sequences of
length 26 and increases to 61.33 MB for the longest RNA
sequence in this data set (400 bases long). HotKnots, how-
ever, uses as little as 16.53 MB for an RNA of length 30
bases (LP-PK1) and as much as 93419 MB for the longest
RNA sequence in this data set.
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IPknot uses much less memory than all other methods.
For the longest RNA sequence in this data set, IPknot
uses less than 5.5 MB of memory in comparison to 61.33
MB of HFold and Iterative HFold and 93419 MB of Hot-
Knots. For detailed information about memory usage of
each method see Additional file 4.

Discussion
In Section ‘Comparison with Hotknots and IPknot’
we provide more insight on the differences and mer-
its of Iterative HFold, HotKnots and IPknots. Then
in Section ‘Comparison with ShapeKnots’ we com-
pare accuracy of Iterative HFold with ShapeKnots, a
method that incorporates SHAPE reactivity data to pre-
dict RNA pseudoknotted secondary structure. In Section
‘Iterative HFold with SimFold’s suboptimal structures’ we
compare performance accuracy of Iterative HFold with
two inputs: HotKnots hotspots and suboptimal structures.
Section ‘Energy model’ provides more insight into the
energy model used in this work.

Comparison with Hotknots and IPknot
Comparing accuracy of Iterative HFold and HotKnots
V2.0 on HK-PK, HK-PK-free, DK-pk16 and IP-pk168,
we found that the difference in their accuracies is
insignificant on HK-PK, HK-PK-free and DK-pk16 data
sets when Iterative HFold is provided with HotKnots
hotspots as input. Based on our results on the HK-PK
data set, with only about 15% information about the
true pseudoknot-free structures, Iterative HFold’s 95%
percentile confidence interval is (65.08%; 73.36%) (data
shown in Additional file 3). If the user has about 35% infor-
mation about the true pseudoknot-free structure, Iterative
HFold’s accuracy is comparable with that of HotKnots (i.e.,
(74.18%; 82.30%) vs. (73.60%; 83.35%)). However Iterative
HFold’s accuracy (with hotspots as input) is significantly
better than that of HotKnots on the IP-pk168 data set.
One of the advantages of Iterative HFold over HotKnots is
that in Iterative HFold base pairs are added to lower the
energy of the given structure while in HotKnots stems are
added in a way that does not take into account the energy
of stems in the previous steps.
When reporting on time and memory consumption of

Iterative HFold and HotKnots on the HK-PK data set, we
did not include the time and memory required to get the
input structures to Iterative HFold. Since we only run Hot-
Knots V2.0 partially to produce hotspots it does not take
as long as running HotKnots and does not consume as
much memory. For example, for the 400 nucleotides long
RNA sequence in our data set (A.tum.RNaseP), it only
takes 0.5 seconds time and 4 MB of memory to produce
the hotspots. (The time required to get the hotspots for all
RNA sequences in this data set is provided in Additional
file 4.) We also note that since calculating hotspots and

running Iterative HFold are done sequentially, the mem-
ory consumption is calculated as the maximum of the
two, so the memory consumption of Iterative HFold for
this sequence is still the same even including the memory
needed for calculating hotspots. As we can see based on
this example, even including time and memory require-
ments of calculating hotspots, Iterative HFold is still faster
than HotKnots and uses less memory.
We also compared Iterative HFold with IPknot [42].

While IPknot is faster than Iterative HFold and uses less
memory, we found that for the HK-PK and IP-pk168 data
sets, Iterative HFold provides significantly more accurate
predictions of pseudoknotted structures, compared with
IPknot. Based on our results on the HK-PK data set,
Iterative HFold’s performance with more than 5% infor-
mation about the true pseudoknot-free structure, is better
than that of IPknot with default settings (data shown in
Additional file 3). We note that Sato et al. [42] find the
performance of IPknot with predictions using “NUPACK”
superior to all versions of IPknot, but since this model can
be used for RNA sequences of length< 80 nucleotides, we
did not compare our results with this version of IPknot.
Among all different versions of IPknot we tested, we found
all but γ1 = 1 and γ2 = 1 setting producing similar
confidence intervals for all but the HK-PK-free data sets,
for which γ1 = 4 and γ2 = 8 produces the best result
(data shown in Additional file 2). While running parame-
ter refinement with one iteration improved the confidence
intervals in the HK-PK data set, it did not result in any
improvement in accuracy in the rest of our data sets as in
many cases IPknot failed to produce results. We note that
our results on the IP-pk168 data set with different weight
parameters perfectly match the results of Sato et al. [42].
A disadvantage of IPknot over Iterative HFold is that

being an MEA-based method, IPknot does not pro-
duce free energy of the predicted structure. Also to get
the best prediction, the user needs to provide some
guidance as to what type of structure to predict for
the given sequence, e.g., whether pseudoknot-free or
pseudoknotted.

Comparison with ShapeKnots
Similar to HotKnots, the ShapeKnots method of Hajdin
et al. [47] is a heuristic algorithm for prediction of pseu-
doknotted structures. This method incorporates SHAPE
reactivity data as a pseudo energy term into the pre-
diction method. SHAPE reactivity data is only available
for a limited number of RNA sequences, so we cannot
compare Iterative HFold with ShapeKnots on our data
set. Therefore, we use data set of Hajdin et al. to com-
pare these two methods. In their data set Hajdin et al.
have 18 RNA sequences in their training set and 6 RNA
sequences in their test set. We run Iterative HFold with
hotspots for each RNA sequence and choose the lowest
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energy structure as the final output of our program. For
Shapeknots, we use the sensitivity and positive predictive
values reported in the work of Hajdin et al. [47] to com-
pare with Iterative HFold. Table 5 shows the results of
this comparison. In all but one sequence of the test set,
Iterative HFold obtains higher accuracy than ShapeKnots.
The exception is the HIV-1 5’ pseudoknot domain; Hajdin
et al. note that the accepted structure of HIV-1 5’ pseudo-
knot domain is based on a SHAPE directed prediction and
thus an accuracy comparison between ShapeKnots and
Iterative HFold may be biased towards ShapeKnots. In the
training set, however, Iterative HFold does not perform as
well as ShapeKnots. This might be because parameters of
ShapeKnots were tuned on the training set to achieve the
highest possible accuracy. Since both the training and test
data sets are small, we cannot make more general state-
ments about the significance of the differences in accuracy
between the two methods.

Iterative HFold with SimFold’s suboptimal structures
To further investigate which input structures are good
to use when Gbig is not known, we use the first 50 sub-
optimal structures produced by SimFold (including the
MFE structure). Then for each RNA sequence we run
our methods on all 50 suboptimal structures and choose
the one with the lowest free energy as the final result for
that RNA sequence. With this approach, the bootstrap
95% percentile confidence interval of average F-measure
of HFold and Iterative HFold is (61.80%, 80.63%) and
(67.70%, 79.57%) respectively for pseudoknotted struc-
tures and (77.17%, 82.35%) and (76.27%, 81.46%) respec-
tively for pseudoknot-free structures. The permutation
test indicates that the difference between these results
and the corresponding results when input structures are
hotspots is not significant. We also test the significance of
results of HFold with first 50 suboptimal structures ver-
sus Iterative HFold with the same input structures and

Table 5 Comparison of Iterative HFold F-measure with ShapeKnots on SHAPE data

Training set Len PK
Iter. HFold ShapeKnots

sen ppv F sen ppv F

Pre-Q1 riboswitch, B. subtilis 34 1 62.5 100 76.9 100 100 100

Telomerase pseudoknot, human 47 1 100 100 100 100 100 100

tRNA(asp), yeast 75 0 81.0 100 89.5 95.2 95.2 95.2

TPP riboswitch, E. coli 79 0 46.5 47.6 47.1 95.4 87.5 91.3

SARS corona virus pseudoknot 82 1 69.2 86.3 69.2 84.6 88.0 86.3

cyclic-di-GMP riboswitch, V. cholerae 97 0 85.5 81.0 83.2 89.3 86.2 87.7

SAM I riboswitch, T. tengcongenis 118 1 79.5 91.2 84.9 92.3 97.3 94.7

M-Box riboswitch, B. subtilis 154 0 87.5 91.3 89.4 87.5 91.3 89.3

P546 domain, bI3 group I intron 155 0 55.4 57.4 56.4 94.6 96.4 95.5

Lysine riboswitch, T. maritima 174 1 85.7 94.7 90.0 87.3 88.7 88.0

Group I intron, Azoarcus sp. 214 1 52.4 54.1 53.2 92.1 95.1 93.5

Signal recognition particle RNA, human 301 0 70.0 73.7 71.8 55.0 53.9 54.4

Hepatitis C virus IRES domain 336 1 71.2 74.0 72.5 92.3 96.0 94.1

RNase P, B. subtilis 405 1 55.7 59.3 57.4 75.6 79.8 77.7

Group II intron, O. iheyensis 412 1 87.9 95.9 91.7 93.2 97.6 95.3

Group I intron, T. thermophila 425 1 83.2 85.2 84.2 93.9 91.2 92.5

5’ domain of 23S rRNA, E. coli 511 0 84.0 72.5 77.8 92.4 76.4 83.6

5’ domain of 16S rRNA, E. coli 530 0 73.6 69.0 71.2 89.9 80.6 84.9

Test set Len PK
Iter. HFold ShapeKnots

sen ppv F sen ppv F

Fluoride riboswitch, P. syringae 66 1 100 100 100 93.7 93.7 93.7

Adenine riboswitch, V. vulnificus 71 0 100 100 100 100 100 100

tRNA(phe), E. coli 76 0 100 100 100 100 84.0 91.3

5S rRNA, E. coli 120 0 91.4 91.4 91.4 85.7 76.9 81.1

5’ domain of 16S rRNA, H. volcanii 473 0 90.3 82.3 86.1 89.6 82.7 86.0

HIV-1 5’ pseudoknot domain 500 1 45.4 50.4 47.7 100 100 100
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Iterative HFold with hotspots for both pseudoknotted and
pseudoknot-free structures. Although the bootstrap 95%
percentile confidence intervals for average F-measures
seem different, the permutation test indicates that the
difference is not significant. Similarly, results of Iterative
HFold with the first 50 suboptimal structures are not sig-
nificantly better or worse than the result of HFold with
hotspots as input structures for both pseudoknotted and
pseudoknot-free structures.

Energy model
In this paper we use the HotKnots V2.0 DP09 [36] energy
parameters in our implementation of Iterative HFold. To
investigate the degree to which the energy model may
be causing mis-predictions by HotKnots V2.0 or Iterative
HFold, we considered the degree to which the maxi-
mum accuracy structures produced by these methods,
i.e., the structure with highest F-measure, is better than
the minimum free energy structures. Table 6 presents the
difference in bootstrap 95% percentile confidence inter-
vals of average F-measure. If we choose the maximum
accuracy structure among the 20 output structures pre-
dicted by HotKnots for each RNA sequence, the bootstrap
95% percentile confidence intervals of average F-measure
of HotKnots will increase to (84.50%, 91.48%) for pseu-
doknotted structures of the HK-PK data set (vs. (73.6%,
83.35%) when choosing the lowest energy structure) and
(88.32%, 91.08%) for pseudoknot-free structures of the
HK-PK-free data set (vs. (76.74%, 81.95%) when choosing
the lowest energy structure).
Similarly, if we compare the maximum accuracy struc-

ture output by Iterative HFold with the minimum free
energy structure, whether given HotKnots hotspots or the
first 50 suboptimal structures to Iterative HFold as input,
the bootstrap 95% percentile confidence intervals of aver-
age F-measure also show improvement - see Table 6. The
difference in improvements is significant in all but one
case, namely Iterative HFold on hotspots structures as
input for pseudoknotted structures of the HK-PK data set.
We conclude that improvements on the energy parameter

values for pseudoknotted structures may further improve
accuracy of both HotKnots and Iterative HFold.

Conclusions
In this work we present Iterative HFold, a fast and robust
iterative algorithm that matches the accuracy of the best
existing pseudoknot prediction methods. Iterative HFold
is significantly more accurate than IPknot while matching
the accuracy of HotKnots on the HK-PK data set. Iterative
HFold is superior to both IPknot and HotKnots on the IP-
pk168 data set. Moreover both Iterative HFold and IPknot
use less memory and run much faster than HotKnots on
long sequences.
Iterative HFold also has lower rate of accuracy deteri-

oration than HFold with loss of information about the
true pseudoknot-free structure, so it is more robust than
HFold. This is particularly helpful when the given input
structure may be unreliable and/or limited information
about the true pseudoknot-free structure is available. Iter-
ative HFold is also more accurate than ShapeKnots [47] on
the test set of Hajdin et al. [47].
In this work, we compared two different ways to gener-

ate pseudoknot-free input structures for input to Iterative
HFold, namely the first 50 suboptimal structures pro-
duced by SimFold, and HotKnots hotspots. On theHK-PK
and HK-PK-free data sets, accuracy of Iterative HFold is
not significantly different on each of these. An alterna-
tive approach that may be worth exploring in future work
would be to use the most highly probable base pairs, as
calculated using the partition function [43]. Even better
may be to calculate base pair probabilities for base pairs
of pseudoknotted RNA structures; however this requires
�(n5) time. Since HFold finds minimum free energy
structure in O(n3) time, conditional on the given input
structure, we are currently investigating ways to develop
an O(n3)-time partition function version of HFold that
can produce pseudoknotted base pair probabilities that
are conditional on the given input structure.
Comparing accuracy of the minimum free energy struc-

tures with the maximum accuracy structures in this work,

Table 6 Comparison of bootstrap 95%percentile confidence interval of average F-measure between theminimum
energy structures and themaximum accuracy structures of the HK-PK and the HK-PK-free data sets

Input structures Min energy Max accuracy Permutation test

Iter. HFold - hotspots PKed (72.83, 83.37) (78.56, 87.05) Not significant

Iter. HFold - hotspots PK-free (74.93, 80.26) (87.70, 90.57) Significant

Iter. HFold - 50 suboptimals PKed (67.70, 79.57) (80.41, 88.14) Significant

Iter. HFold - 50 suboptimals PK-free (76.27, 81.46) (90.05, 93.00) Significant

HotKnots PKed (73.60, 83.35) (84.50, 91.48) Significant

HotKnots PK-free (76.74, 81.95) (88.32, 91.08) Significant
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we found that, on average, theminimum free energy struc-
ture has significantly poorer F-measure than the maxi-
mum accuracy structure. This suggests that an improved
energymodel for pseudoknotted structure predictionmay
improve accuracy of prediction algorithms for pseudo-
knotted structures.
Another direction for future work can be to use Itera-

tiveHFold for structure prediction of two interacting RNA
molecules. Iterative HFold may be well suited for this pur-
pose because, given input structures for each individual
input molecule, it allows for modification of these input
structures as it explores potential base pairing interactions
between the two molecules.

Data and software availability
Iterative HFold and all data used in this work are freely
available at http://www.cs.ubc.ca/~hjabbari/software.php.

Additional files

Additional file 1: Pseudocode.We provide pseudocode of our Iterative
HFold algorithm in this section.

Additional file 2: IPknot Performance. Table 1 provides the bootstrap
95% confidence intervals for average F-measure of IPknot on different data
sets and different weight parameters. The energy model in all these
experiments is set to McCaskill and level is set to 2 (both default values).

Additional file 3: Robustness Comparison and Correlation to False
Positives. Tables 1 and 2 provide complete presenting robustness
comparison of HFold-PKonly, HFold, and Iterative HFold, when provided
with different percentage of Gbig information of HK-PK and HK-PK-free data
sets. Note that the reported interval in each case is the bootstrap 95%
confidence interval for F-measure of the 100 structures with 1 ≤ α ≤ 99
percent information about the Gbig structure. The 100% information is the
bootstrap 95% confidence interval for F-measure when input structure is
Gbig . Table 3 provides Pearson correlation coefficient of HFold and Iterative
HFold with HotKnots hotspots, SimFold MFE and SimFold first 50
suboptimal structures. Here FP represents false positive rate and F
represents the F-measure as the accuracy measure.

Additional file 4: Time andMemory Comparison. Tables 1 and 2
provide complete data presenting running time comparison of HFold,
Iterative HFold, HotKnots V2.0 and IPknot on the HK-PK data set. Timing is
presented in seconds. Tables 3 and 4 provide complete data presenting
memory (total heap usage) comparison of HFold, Iterative HFold, HotKnots
V2.0 and IPknot on the HK-PK data set. Memory usage is presented in Mega
Bytes.
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