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Abstract

Background: Modern DNA sequencing methods produce vast amounts of data that often requires mapping to a
reference genome. Most existing programs use the number of mismatches between the read and the genome as a
measure of quality. This approach is without a statistical foundation and can for some data types result in many
wrongly mapped reads. Here we present a probabilistic mapping method based on position-specific scoring matrices,
which can take into account not only the quality scores of the reads but also user-specified models of evolution and
data-specific biases.

Results: We show how evolution, data-specific biases, and sequencing errors are naturally dealt with probabilistically.
Our method achieves better results than Bowtie and BWA on simulated and real ancient and PAR-CLIP reads, as well
as on simulated reads from the AT rich organism P. falciparum, when modeling the biases of these data. For simulated
Illumina reads, the method has consistently higher sensitivity for both single-end and paired-end data. We also show
that our probabilistic approach can limit the problem of randommatches from short reads of contamination and that
it improves the mapping of real reads from one organism (D. melanogaster) to a related genome (D. simulans).

Conclusion: The presented work is an implementation of a novel approach to short read mapping where quality
scores, prior mismatch probabilities and mapping qualities are handled in a statistically sound manner. The resulting
implementation provides not only a tool for biologists working with low quality and/or biased sequencing data but
also a demonstration of the feasibility of using a probability based alignment method on real and simulated data sets.

Keywords: Short-read mapping, Sequence alignment, Next-generation sequencing, Ancient DNA, PAR-CLIP, Xeno
mapping

Background
Next-generation DNA sequencing is a powerful tool in
biological research [1] and is steadily gaining momen-
tum as costs keep decreasing. Applications vary from
genome re-sequencing [2-4] to transcriptome analysis
[5-7], metagenomics projects [8-10], and sequencing of
ancient genomes [11-16]. All these applications rely on
mapping reads to existing reference genomes. Many map-
ping programs have been developed using a variety of
algorithms with different strengths, weaknesses and limi-
tations [17].
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Hash-based algorithms such as MAQ [18] and SOAP
[19] dominated initially but were hampered by largemem-
ory demands. Subsequently, the Burrows-Wheeler trans-
form [20] was applied to compress the genome index in
programs such as Bowtie [21], Bowtie2 [22], SOAP2 [23],
and BWA [24]. This decreased the memory usage while
increasing speed and sensitivity, leading to mappers based
on the Burrows-Wheeler transform to now dominate the
field. Other approaches, however, show promising results
for some types of data. Segemehl [25] uses an enhanced-
suffix array to provide fast alignment of insertion/deletion
(indel) prone reads, and a similar approach was imple-
mented in the mapping tool used in the sequencing of
the first ancient human genome [13]. Programs such
as CUSHAW [26] and SOAP3 [27] have begun to use
graphics processing units (GPUs) to provide even faster
mapping.
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Most programs allow a specified number of mismatches
in an alignment (with a limit of 1-3 mismatches in the
beginning of the read), and report uniquely mapped reads
as those where all other locations have more mismatches.
However, evaluating a mapping location by the number of
nucleotide mismatches alone is not optimal and implicitly
assumes that the genome has a homogeneous base com-
position and that errors occur uniformly in the reads. The
mapping with the lowest number of mismatches may have
a high probability of being incorrect if i) there are many
sub-optimal mappings, ii) the genome has a very biased
base composition, iii) certain nucleotide mismatches are
expected due to sample conditions, or iv) the mismatch-
ing bases have low error-probabilities compared to other
bases.
Most sequencing platforms provide a quality score for

each base derived from the probability that the nucleotide
is wrongly assigned in the base-calling. With the Illu-
mina platform, the error probabilities typically range from
around 0.01% in the 5’ end of the read to several percent
in the 3’ end, but the actual DNA sequence can affect
the read quality [28]. These qualities can affect not only
the ability of a mapper to find the correct hit, but also
the quality of the reported hit. While the latest genera-
tion of mappers such as MASAI [29] and GEM [30] either
do not take quality scores into account or only consider
them in a rudimentary manner, they also report all pos-
sible alignments and do not provide a mapping quality
to distinguish between a high confidence alignment and
a low confidence one. We demonstrate that taking qual-
ity scores and other information about the biases in the
experimental data into account can improve the sensitivity
while providing an accurate mapping quality estimation.
Recently, the use of position-specific scoring matrices
(PSSMs) has been applied to the short readmapping prob-
lem and shown to provide accurate SNP and indel calling
[17,31].
Here we show how quality scores, contamination, biases

in base composition, mutations, and data-specific base-
changes (as in PAR-CLIP or ancient DNA) can all be dealt
with probabilistically and encoded in a PSSM. We also
present an algorithm which applies the Burrows-Wheeler
transform to the scoring of PSSMs, and BWA-PSSM, a
fast and sensitive mapping tool which implements the
methods.
We show that the use of probabilistic scoring allows

for both higher sensitivity and positive predictive value
when mapping simulated reads. More importantly, we
offer the ability to use a specified error model to map
reads based on the expected types and locations of mis-
matches. This improves the mapping of ancient DNA
data with errors due to damage, and the improvement is
even more pronounced when mapping PAR-CLIP data,
where there is a strong bias towards T-to-C substitutions

[32], as well as data from P. falciparum which has an
extreme nucleotide bias with more than 80% AT con-
tent [33]. We also show that the probabilistic scoring can
help in cases of contamination by dramatically reducing
the mapping of short reads from E. coli to the human
genome.

Results and discussion
When mapping reads, one is interested in the proba-
bility that the read originated from a specific location
in the genome. The read and the genome might not
be completely identical due to e.g. sequencing errors or
SNPs.

A position-specific scoring matrix from quality scores
Most sequencing machines provide a quality score for
each base which is related to the probability of a sequenc-
ing error occurring at this position in the read. These
qualities are normally in the Phred format [34] and relate
the error probability pe and the quality score Q by pe =
10−Q/10. From these qualities, we can calculate the proba-
bility P(a|x) for the base a ∈ {A,C,G, T} being present at
a given position in the DNA fragment given that the base
x ∈ {A,C,G, T}was called by the sequencingmachine (see
Methods).
If the DNA being sequenced differs from the reference

genome, e.g. due to evolution, there is a probability P(g|a)
that base g occurs in the genome if the base is a in the
sample. We use a simple model with a probability p0 for a
mutation (see Methods).
Combining this with the probability of errors, the prob-

ability of a base g in the genome given the called base x is

P(g|x) =
∑
a

P(g|a)P(a|x). (1)

In some types of data, known base modifications are
known to occur. For instance, in ancient DNA some bases
are damaged due to hydrolysis, resulting in cytosine to
thymine (C-to-T) conversions in the 5’ ends of reads,
which can look like apparent guanine to adenine (G-to-A)
substitutions in the 3’ end, and in PAR-CLIP experiments
there is a large fraction of thymine to cytosine (T-to-
C) conversions where the protein crosslinks to the RNA.
These phenomena are easily modeled and included in the
PSSM, essentially by introducing a probability P(b|a) that
the observed base is b, given that the base is a in the
sample (see Methods section).
Using this approach, one can turn a short read into a

PSSM and use it for mapping the read to the genome. The
PSSM is constructed such that at position i in the read,
the score for base g is s(g|xi) = log2(P(g|xi)/q(g)), where
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P(g|xi) is the probability of a genomic base g given the
i’th base xi in the read calculated as described above in
equation 1, and q(g) is a background probability, which is
usually just the frequency of the base in the genome. The
score for matching a read x to a certain position � in the
genome is Sx(�), and is obtained by summing the scores
from the PSSM corresponding to the genome sequence
starting at position l.
BWA-PSSM is very flexible when it comes to how you

feed the PSSM to the program. In the present implementa-
tion, the PSSM can be constructed from the quality scores
supplied with the sequence, using a background distribu-
tion calculated from the frequencies of bases in the refer-
ence genome and amutation rate (p0 above). Alternatively,
the user can supply a table with a direct translation of base
and quality score pairs to PSSM scores. Such a table can
be computed ahead of time to include for instance a more
sophisticated evolutionary model or a PAR-CLIP model.
Finally the user can input a fully constructed PSSM and
use it for mapping.

Mapping probability
The advantage of the PSSM is that the probability of a
match can be calculated directly [17]. There is a probabil-
ity that a read x originates from – or is homologous to –
a position � in a genome g, P(�,M|x, g), where M means
the “match model”. Alternatively, the background model
N is used if the read does not originate from the genome
due to e.g. contamination or adapter sequences. A priori,
we may be able to estimate the probability P(N|x) of a
read being contamination, and obviously P(M|x) = 1−
P(N|x).
Using the sum and product rule we can express the

match probability at position � as

P(�,M|x, g) = P(g|�,M, x)P(�|M, x)P(M|x)
P(g|M, x)P(M|x) + P(g|N, x)P(N|x) .

Assuming that anymapping position is equally likely a pri-
ori we have P(�|M, x) = 1/L, where L is the length of the
genome.
In the background model N we assume independently

identically distributed (i.i.d.) bases.
In the match model M, the probability of the aligned

bases in g is calculated from the PSSM and the remaining
bases are assumed to be distributed as in the background
model; this means that
P(g|�,M, x)/P(g|N, x) = 2Sx(�), where Sx(�) is the PSSM

score. It is possible, of course, to have more sophisticated
background models of those sequences that do not origi-
nate from the genome, such as a Markov model, but this
will not be considered here.

Using the identity P(g|M, x) = ∑
�′ P(g|�′,M, x)P(�′|

M, x), where �′ runs over all positions in the genome, we
can finally write the posterior probability of the read x
mapping to position � in the genome as

P(�,M|x, g) = 2Sx(�)∑
�′ 2Sx(�′) + L(1 − P(M|x))/P(M|x) .

(2)

The first term in the denominator is the sum over all pos-
sible genomic positions. This is impractical to calculate,
but since only positions with some similarity to the query
yield a significant contribution, it is well approximated by
a sum over high-scoring mappings. The second term in
the denominator is proportional to the genome size and
reflects the fact that the larger the genome, the more likely
it is to have a random hit.
In the BWA-PSSM implementation we assume the same

prior match probability for all reads, P(M) = P(M|x),
which can be specified as a parameter with a default value
of 0.8 which is used for all experiments in this paper. To
simplify the presentation we assumed no indels in the
alignment of the read and the genome, see Additional
file 1 for the derivation of equation (2) and Methods for
details on handling indels.

Algorithm and implementation
PSSM search is implemented in the BWA program [24] as
a separate version called BWA-PSSM, which can be used
instead of the regular BWA alignment step (aln). Here
we describe the main algorithmic changes as compared to
standard BWA.
Using a PSSM, a score can be calculated for each posi-

tion in the reference genome, where high scores indicate
hits. Using a Burrows-Wheeler transformed index, this
operation can be sped up by evaluating scores on the pre-
fix tree of the index. At any given point in the search,
the position within the scoring matrix corresponds to the
current depth of the prefix tree. Scores are calculated by
summing the position-specific score at each node along a
path.
To bound the number of positions in the genome

that must be evaluated, a threshold score is used which
replaces the maximum number of mismatches used in
standard BWA. To calculate an overall score threshold for
a read, we rely on converting a limit on the number of
mismatches n into the minimum possible score with n
mismatches. That is, we allow nmismatches of bases with
high quality and more than n mismatches of low-quality
bases.
To further prune the search space, lookahead scoring

can be used, in which the threshold is calculated for each
position in the PSSM as the difference between the thresh-
old and the best possible score of the remaining PSSM
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[35]. This is implemented in BWA-PSSM (Algorithm 1),
but using an improved bound. This is done by adapting
the method (named CALCULATED) employed by BWA
to consider what the minimum number of mismatches
must be for that subsequence to align to some region
of the genome. Our algorithm, called CALCULATET
(Algorithm 2), instead calculates the difference between
the best possible PSSM score with no mismatches and
the best possible score with the minimum number of nec-
essary mismatches. This difference is calculated at each
position and added to the lookahead-derived intermedi-
ate thresholds. This has the effect of requiring a higher
match score at each position and thus further bounding
the search tree. This allows for faster and more accu-
rate mapping of sequences with many low quality bases as
more likely paths (and thusmatches) will tend to be visited
first.

Algorithm1The recursiveBWA-PSSMsearchalgorithm.
The PSSM is denoted A and the PSSM thresholds at each
position i are stored in T[ i]. A score, s, is maintained
for every partial match and the indices into the Burrows-
Wheeler transformed sequence are stored in k and l. In
the algorithm O(b, l) denotes the number of occurrences
of the base b in the l’th prefix of the Burrows-Wheeler
transformed reference sequence, and C(b) is the number
of occurrences of bases that are lexicographically smaller
than b in the reference sequence. Insertions and deletions
are assigned penalties ρi and ρd, respectively. The algo-
rithm is initiated with the values PSSMSEARCH(A,T , |x|−
1, 0, |g| − 1), where T is calculated from the sequence x
using the algorithmCALCULATET and |g| denotes the size
of the reference sequence.
1: function PSSMSEARCH(A,T , i, s, k, l)
2: if i < |x| − 1 and s < T[ i + 1] then
3: return ∅
4: end if
5: if i < 0 then
6: return {[ k, l] }
7: end if
8: I ← ∅
9: I ← I ∪ PSSMSEARCH(A,T , i − 1, s − ρi, k, l)

10: for b ∈ {A,C,G, T} do
11: k ← C(b) + O(b, k − 1) + 1
12: l ← C(b) + O(b, l)
13: if k ≤ l then
14: I ← I ∪ PSSMSEARCH(A,T , i, s − ρd, k, l)
15: I ← I ∪ PSSMSEARCH(A,T , i − 1, s+

A[ b, i] , k, l)
16: end if
17: end for
18: return I
19: end function

Algorithm 2 Calculation of intermediate thresholds.
The algorithm calculates intermediate thresholds for
PSSM A, read sequence x, genomic reference sequence g
given the global threshold t. xj:i is the subsequence from
j to i of the read, and t stores the difference between the
best and second best PSSM score that can be obtained
for the subsequence. The MINDROP(A, i, j) function sim-
ply calculates the minimum of the differences between the
highest and lowest scores for columns i to j in the PSSM,
while the function SUMMAX(A, 0, i−1) calculates the sum
of the maximal values in column 0 to column i − 1 in the
PSSM.
1: function CALCULATET(A, x, g, t)
2: j ← 0
3: δ ← 0
4: for i = 0 to |x| − 1 do
5: if xj:i not in g then
6: δ ← δ + MINDROP(A, j, i)
7: j ← i + 1
8: end if
9: T[ i]← t − SUMMAX(A, 0, i − 1) + δ

10: end for
11: return T
12: end function

While BWA uses the MAQ mapping quality score
(MapQ), BWA-PSSM reports the posterior probabil-
ity given in equation (2), but estimating the sum in
the denominator from the matches above the thresh-
old. In keeping with the MAQ tradition, this prob-
ability is also log scaled, rounded to an integer and
reported as the MapQ score in the output, that is MQ =
�−10 log10(P(l,M|x)) + 1

2	.

Comparing methods on simulated reads
The performance of BWA-PSSM was compared to BWA
[24], BWA-MEM [36], Bowtie [21], Bowtie2 [22] and
GEM [30] on a number of simulated datasets modelling
different types of short reads. The results are summa-
rized in Tables 1, 2 and 3 and Figures 1 and 2, and
details are given below. Each program, except Bowtie,
reports a mapping quality (MapQ), and the mapping per-
formance clearly depends on which threshold is used
for this. We report the unfiltered results, for which we
use no MapQ threshold, and the filtered results, for
which all matches with a MapQ of less than 25 are dis-
carded. The sensitivity reported is the number of correctly
mapped reads divided by the total number of reads. The
PPV (Positive Predictive Value) is the number of cor-
rectly mapped reads divided by the number of reported
matches. The elapsed user time is reported when run-
ning each program on an Intel(R) Xeon(R) E7450 2.40GHz
CPU.
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Table 1 Analysis of single-end data simulated with ART

Unfiltered MapQ filtered

Mapper Sensitivity PPV Sensitivity PPV Time (s)

a) ART single-end length 36

BWA-PSSM 0.811 0.899 0.776 1.000 44.19

BWA 0.804 0.896 0.735 1.000 47.41

BWA-MEM 0.772 0.900 0.663 1.000 146.99

Bowtie 0.812 0.900 * * 9.75

Bowtie2 0.802 0.898 0.757 0.999 28.67

GEM 0.755 0.995 * * 34.57

b) ART single-end length 50

BWA-PSSM 0.839 0.934 0.797 0.999 96.07

BWA 0.805 0.929 0.753 0.999 84.65

BWA-MEM 0.816 0.921 0.719 1.000 56.64

Bowtie 0.840 0.931 * * 15.74

Bowtie2 0.802 0.918 0.717 0.999 48.58

GEM 0.705 0.995 * * 35.45

c) ART single-end length 76

BWA-PSSM 0.807 0.967 0.795 0.998 94.35

BWA 0.573 0.961 0.554 0.998 168.42

BWA-MEM 0.821 0.937 0.751 0.999 65.21

Bowtie 0.822 0.962 * * 25.01

Bowtie2 0.778 0.928 0.675 1.000 81.86

GEM 0.695 0.995 * * 32.20

d) ART single-end length 100

BWA-PSSM 0.837 0.979 0.828 0.999 128.25

BWA 0.308 0.973 0.302 0.998 262.54

BWA-MEM 0.863 0.951 0.807 0.999 91.12

Bowtie 0.855 0.976 * * 28.33

Bowtie2 0.811 0.944 0.668 1.000 100.49

GEM 0.716 0.996 * * 35.77

Comparison of sensitivity, positive predictive value (PPV) and run time using BWA-PSSM, BWA, BWA-MEM, Bowtie, Bowtie2 and GEM on simulated data sets covering a
random 1% of the human genome. The reads were simulated using the ART_illumina [37] program with the default error profile for the given read length. The symbol
’*’ indicates that the mapper does not provide MapQ scores.

Unbiased reads
To test the baseline performance of BWA-PSSM, we sim-
ulated reads using three different simulation programs.
The first, ART [37] simulates reads using an error profile
particular to the sequencing technology being simulated
(Illumina Genome Analyzer II, in our case). The second,
WG-SIM [38], simulates reads with a uniform error prob-
ability. The third, MASON [39], uses variable, position
dependent qualities drawn from normal distributions with
a specified mean and standard deviation for the start and
end position. ART generated the lowest quality reads, fol-
lowed by MASON, followed by the high quality WG-SIM
simulated reads.

As expected, BWA-PSSM performs best on the low-
quality data set (Table 1) and slightly worse on the
high quality reads (Additional file 1: Table S2 and S4).
It performs comparatively better on the shorter reads
than on the longer. This is likely explained by the
fact that we limit the size of the heap (and conse-
quently the branching) and thus miss more hits simply
because we discard a proportionally larger portion of
the search space for the longer reads. Filtering accord-
ing to mapping quality improves the PPV and reduces the
sensitivity.
The performance of BWA-PSSM really stands out when

considering high quality alignments (as reported by the
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Table 2 Analysis of paired-end data simulated with ART

Unfiltered MapQ filtered

Mapper Sensitivity PPV Sensitivity PPV Time (s)

a) ART paired-end length 36

BWA-PSSM 0.974 0.974 0.935 1.000 211.18

BWA 0.973 0.973 0.911 1.000 238.95

BWA-MEM 0.899 0.899 0.753 1.000 404.35

Bowtie 0.483 0.927 * * 1578.74

Bowtie2 0.971 0.971 0.929 0.999 137.88

GEM 0.976 0.071 * * 91.46

b) ART paired-end length 50

BWA-PSSM 0.965 0.967 0.928 0.999 242.98

BWA 0.911 0.943 0.785 0.999 261.53

BWA-MEM 0.902 0.908 0.655 1.000 118.35

Bowtie 0.433 0.951 * * 656.37

Bowtie2 0.939 0.952 0.736 1.000 109.78

GEM 0.927 0.399 * * 48.79

c) ART paired-end length 76

BWA-PSSM 0.958 0.978 0.943 0.999 155.57

BWA 0.697 0.963 0.498 0.999 210.34

BWA-MEM 0.939 0.943 0.815 1.000 102.00

Bowtie 0.366 0.969 * * 213.10

Bowtie2 0.920 0.948 0.726 1.000 81.17

GEM 0.906 0.692 * * 29.47

d) ART paired-end length 100

BWA-PSSM 0.962 0.983 0.949 0.999 147.38

BWA 0.352 0.971 0.201 0.999 194.03

BWA-MEM 0.955 0.956 0.854 1.000 102.86

Bowtie 0.365 0.981 * * 168.39

Bowtie2 0.930 0.957 0.517 1.000 74.23

GEM 0.900 0.779 * * 23.25

Comparison of sensitivity, positive predictive value (PPV) and run time using BWA-PSSM, BWA, BWA-MEM, Bowtie, Bowtie2 and GEM on simulated data sets covering a
random 1% of the human genome. The reads were simulated using the ART_illumina [37] program with the default error profile for the given read length. The insert
sizes in the paired-end data were simulated using a mean length of 250 and a standard deviation of 50. The symbol ’*’ indicates that the mapper does not provide
MapQ scores.

MapQ score) of ART-simulated reads (Figure 1). BWA-
PSSM achieves the greatest sensitivity of the tested
aligners which all have a PPV greater than 99%. For
reads of length 36 and 50, BWA-PSSM performs bet-
ter across all quality values, whereas for the longer
reads BWA-MEM reports more lower quality mappings
(Figure 3). When ignoring the quality of the resulting
mappings, Bowtie returns more results with the caveat
that they are more likely to be incorrect. The running
time among the aligners varies within an order of mag-
nitude with Bowtie consistently being the fastest while
the slowest depended on the length and quality of the
reads.

For the longer higher quality reads, the performance of
BWA-PSSM lags slightly behind the other aligners for all
PPV values (Additional file 1: Figure S2 and S3). These
results are not unexpected as using quality values which
are largely irrelevant should not improve the performance.
Furthermore, some of the trade-offs employed to improve
the performance for low-quality and biased reads impede
the performance for high quality data. While disadvan-
tageous, this is not the targeted type of data for which
this approach was designed and the other aligners already
serve this niche adequately.
GEM reports all the potential hits found and classifies

them according to the edit distance from the genome.
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Table 3 Analysis of simulated biased single-end data

Unfiltered MapQ filtered

Mapper Sensitivity PPV Sensitivity PPV Time (s)

a) ART single-end length 36 / PAR-CLIP

BWA-PSSMPC 0.699 0.881 0.662 0.996 68.84

BWA-PSSM 0.642 0.865 0.594 0.990 81.89

BWA 0.628 0.866 0.582 0.996 56.05

BWA-MEM 0.451 0.844 0.388 0.999 74.78

Bowtie 0.689 0.870 * * 32.21

Bowtie2 0.594 0.845 0.419 0.992 25.91

GEM 0.475 0.980 * * 39.48

b) ART single-end length 55 / Ancient DNA

BWA-PSSMA 0.807 0.941 0.774 0.997 122.16

BWA-PSSM 0.797 0.937 0.766 0.996 115.17

BWA 0.743 0.935 0.703 0.998 90.33

BWA-MEM 0.817 0.924 0.725 1.000 50.89

Bowtie 0.807 0.934 * * 28.55

Bowtie2 0.788 0.916 0.665 0.999 57.76

GEM 0.691 0.993 * * 30.62

c) ART single-end length 100 / P. falciparum

BWA-PSSM 0.899 0.975 0.886 1.000 86.60

BWA 0.332 0.974 0.325 0.999 59.20

BWA-MEM 0.824 0.840 0.786 0.868 34.56

Bowtie 0.925 0.976 * * 12.91

Bowtie2 0.832 0.972 0.712 1.000 34.33

GEM 0.726 1.000 * * 13.84

Comparison of sensitivity, positive predictive value (PPV) and run time using BWA-PSSM, BWA, BWA-MEM, Bowtie, Bowtie2 and GEM on data sets simulated using the
ART_illumina [37] programwith the default error profile for the given read length. The PAR-CLIP and Ancient DNA data sets cover a random 1% of the human genome,
while the P. falciparum data set covers 42.9% of the P. falciparum genome corresponding to 100,000 reads. The data simulated for the PAR-CLIP and Ancient DNA data
was further mutated to simulate the bias introduced by the experiment and natural degradation (see the respective Results and discussion sections). The symbol ’*’
indicates that the mapper does not provide MapQ scores.

Figure 1 Comparison of the sensitivity of BWA-PSSM, BWA, BWA-MEM and Bowtie2 after applying MapQ filtering on the single-end and
paired-end data sets simulated with ART. After filtering the results on mapping quality all the mappers shown above have a PPV above 0.99. The
sensitivities and PPVs are listed in Tables 1 and 2. Bowtie and GEM are excluded as they do not provide MapQ scores.
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Figure 2 Comparison of the sensitivity of BWA-PSSM, BWA,
BWA-MEM and Bowtie2 for the three simulated biased data sets
after applying MapQ filtering. After filtering the results on mapping
quality all the mappers shown above have a PPV above 0.97, except
for BWA-MEM which has a PPV of 0.868 on the P. falciparum data set.
For the PAR-CLIP data we show the sensitivity of BWA-PSSMPC using
the T-to-C transition model, and for the ancient DNA data the
sensitivity of BWA-PSSMA using the ancient DNA damage model is
shown. The sensitivities and PPVs are listed in Table 3. Bowtie and
GEM are excluded as they do not provide MapQ scores.

While this approach leads to a greater overall sensitiv-
ity, it also makes it difficult to assign a confidence value
to a particular alignment. The strength of this mapper
lies in aligning long insertion/deletion prone reads, two
qualities which are conspicuously absent from the pre-
sented benchmark data sets. As such, the performance of
GEM is presented in the data tables simply as a point of a
comparison for this different class of read mappers.
For paired-end data (Table 2 and Additional file 1:

Table S3), the situation is similar but more pronounced.
Low quality reads are readily aligned with high accu-
racy by BWA-PSSM whereas high quality reads present
a greater challenge. Due to the use of (nearly) default
parameters for each aligner, BWA performs extremely
poorly on the longer low quality reads. The situation is
somewhat reversed for the high quality reads where BWA-
PSSM finds slightly less hits in a longer amount of time
than Bowtie2 and BWA. The results presented, of course,
depend greatly upon the parameters chosen for eachmap-
per (the default). Exploring the potential parameter space
for each program is an overwhelming task which is often
guided by the data to be aligned. The results presented
here aremerelymeant to be a cross section of the potential

a  ART single-end length 36 b  ART single-end length 50

c  ART single-end length 76 d  ART single-end length 100

Figure 3 Sensitivity as a function of PPV for BWA-PSSM, BWA, BWA-MEM and Bowtie2 using single-end ART-simulated data. For short
reads of length 36 (a) and 50 (b) BWA-PSSM shows greater sensitivity than the other mappers at similar PPV. For reads of length 76 (c) the
performance of BWA-PSSM and BWA-MEM is similar, while for reads of length 100 (d) BWA-MEM has slightly higher sensitivity than BWA-PSSM at
similar PPV. The curves for each mapping program were obtained by filtering for varying mapping qualities. The results are based on the simulations
shown in Table 1. Bowtie and GEM are excluded as they do not provide MapQ scores.
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capabilities of each aligner, corresponding to a roughly
comparable (within an order of magnitude) running
time.

Ancient DNA
By specifying a probability for each base at each position,
it is possible to include additional information in the align-
ment. Ancient DNA is fragmented and degraded in vari-
ous ways, leading to specific biases and errors in the data.
The dominant error is the deamination of cytosines into
uracils (C-to-U), which will be interpreted as thymines in
the sequencing step [40]. This leads to an excess of C-to-
T or G-to-A mismatches, depending on the strand being
sequenced. This is most significant in the ends of the reads
and decreases rapidly towards the center [15].
PSSMs were simulated using the damage model spec-

ified by Orlando et al. [15], see Methods. The results
(Table 3b) show that BWA-PSSM with a PSSM modelling
the simulated damage gives slightly higher sensitivity and
PPV than without a damage model. The sensitivity is
slightly higher than BWAwhile the run time is roughly the
same. BWA-PSSM was able to find more hits than BWA,
Bowtie and Bowtie2 even without a specialized PSSM.
When mapping real ancient DNA and filtering on

MapQ, the results mostly reflect the simulated data
(Table 4a). The use of a PSSM led to the recovery of more
matches than without one. While the difference is not
large, the number of reads one might expect to be dam-
aged is rather low in comparison to the total number of
reads present. Hence, amodest increase in actual numbers
can reflect a greater increase in relative terms. Further-
more, if the results reflect the simulated data, then the
expected PPV of the filtered results should be higher than
for the other mapping tools. Again, BWA-PSSMwithout a
specialized PSSM provides an increase in filtered matches
compared to BWA and Bowtie2.

PAR-CLIP data
Sequencing data from PAR-CLIP experiments is very
prone to T-to-C transitions due to the incorporation of
4SU-containing nucleobases and their crosslinking to the
bound protein. The locations of such transitions indi-
cate where an RNA molecule is bound by a protein [41].
The increased probability of a T-to-C mismatch is readily
encoded in a PSSM and incorporated into the mapping by
BWA-PSSM.
To examine the efficacy of providing this extra informa-

tion, reads were simulated with a 11% T-to-C rate. The
results (Table 3a) show that the use of a T-to-C transition
model improves both the unfiltered and filtered sensi-
tivity. Without such a model, BWA-PSSM performs only
slightly better than BWA. Introducing the error model
increases the filtered sensitivity by nearly 14% over the
previous best aligner (BWA) for quality-filteredmappings.

Table 4 Analysis of real single-end data

Unfiltered Filtered

Mapper Aligned Aligned Time (s)
(fraction) (fraction)

a) Ancient DNA

BWA-PSSMA 0.01000 0.00763 60.75

BWA-PSSM 0.01000 0.00759 51.61

BWA 0.00906 0.00708 18.63

BWA-MEM 0.01629 0.01177 21.24

Bowtie 0.00892 * 63.78

Bowtie2 0.01087 0.00691 16.48

GEM 0.06106 * 18.69

b) Real PAR-CLIP

BWA-PSSMPC 0.600 0.148 146.08

BWA-PSSM 0.476 0.114 141.08

BWA 0.483 0.140 166.99

BWA-MEM 0.198 0.022 236.51

Bowtie 0.463 * 84.81

Bowtie2 0.453 0.076 43.11

GEM 0.227 0.227 280.57

Comparison of run times and fraction of reads mapped for the four mappers on
two real data sets, each containing 100,000 Illumina reads. a) Reads of ancient
DNAmapped to the horse genome. The run times do not include the time
required to build the PSSMs. b) Reads of PAR-CLIP data mapped to the human
genome. BWA-PSSM only makes use of the error model given by equation (1),
while BWA-PSSMA also uses the ancient DNA damage model and BWA-PSSMPC

also uses the T-to-C transition model characterizing PAR-CLIP data. The symbol
’*’ indicates that the mapper does not provide MapQ scores.

This advantage, however, is not limited to high quality
mappings and can be seen across all reported mapping
qualities (Figure 4). Even for the high quality data sets,
where the use of PSSM was more of a hindrance for align-
ing unbiased reads, introducing an error model leads to
greatly improved sensitivity in aligning simulated PAR-
CLIP data (Additional file 1: Table S2 and S4).
To support the simulated data, real data was obtained

from a PAR-CLIP study investigating the binding of RNA
to the HuR protein [42]. The statistics for the mapping of
the real data (Table 4b) roughly reflects those for the simu-
lated data. Notice the greatly reduced number of matches
after filtering for all the mappers, which is the result of
shorter reads leading to more ambiguous matches, and a
base distribution unlike that of the actual genome (due to
the AT-rich regions that were being sequenced). Never-
theless, BWA-PSSM finds more matches than any of the
other programs at a PPV value greater than 0.95 for all
types of simulated data.

AT rich data
To test the effect of the backgroundmodel in BWA-PSSM,
we simulated Illumina reads of length 100nt using ART
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Figure 4 Sensitivity as a function of PPV for BWA-PSSM, BWA,
BWA-MEM and Bowtie2 using single-end PAR-CLIP data
simulated using ART. The curves for each mapping program were
obtained by filtering for varying mapping qualities. The top line for
BWA-PSSM (PC) includes the PAR-CLIP model. The results are based
on the PAR-CLIP simulation shown in Table 3a. Bowtie and GEM are
excluded as they do not provide MapQ scores.

[43] from the P. falciparum genome [33], which has an
AT content of more than 80%. In BWA-PSSM, the PSSMs
were constructed using a background model, q(g), that
matches the base composition of the reference genome,
while the other mappers do not consider this base com-
position. We see that all mappers except BWA-MEM
have similar PPVs for both unfiltered and filtered reads
(Table 3c). Among the mappers that provide a quality
score, BWA-PSSM obtains the highest sensitivity. For fil-
tered reads BWA-MEM has the next highest sensitivity,
however the PPV for BWA-MEM is significantly lower
than for the other mappers. Bowtie2 has a marginally
lower unfiltered sensitivity than BWA-PSSM, however,
for the filtered reads the sensitivity of Bowtie2 is notably
lower. While BWA has a considerably lower sensitivity
than the other mappers, Bowtie has the highest sensitiv-
ity, which is obtained at the cost of slightly reduced PPV
compared to the filtered PPV of BWA-PSSM.

Randommatches from contaminating reads
We examined how well the mappers can filter out ran-
dom short matches. To obtain random matches, we sim-
ulated short reads of different lengths from the E. coli
genome [44] using ART [43] and mapped them to the
human genome. From Figure 5 we observe that BWA-
PSSM, BWA and Bowtie map similar fractions of reads
when not applying a quality filter, while this fraction in
general is smaller for Bowtie2. However, for quality fil-
tered reads BWA-PSSM maps at worst less than 2% of the
reads, which is less than any of the other mappers except
BWA-MEM, though from read length 20nt the curves for
Bowtie2 and BWA-PSSM are coincident. In comparison,

Figure 5Mapping simulated E. coli reads to the human genome.
The fraction of all E. coli reads that are mapped is shown as a function
of the read length. For each length, 100,000 Illumina reads were
simulated using ART [43]. The dotted lines represent the fraction of
unfiltered reads, while the full lines are the fraction of quality filtered
reads. For Bowtie and GEM curves are only shown for unfiltered reads.
The curves for BWA-MEM are hardly visible as BWA-MEM does not
map any reads.

BWA maps more than 25% of the reads at worst after
quality filtering. GEM maps approximately the same frac-
tion of reads as Bowtie2 does after quality filtering and
BWA-MEM cannot map any reads at the given lengths. In
conclusion, we see that BWA-PSSM has similar efficiency
as BWA and Bowtie in mapping short reads, however the
quality score (posterior probability) reported by BWA-
PSSM allows for filtering out random matches at least as
efficiently as Bowtie2.

Xenomapping
If no reference genome is available for a set of reads,
one can try to map the reads to a closely related species.
This task is called cross species mapping or xeno map-
ping [31]. Inspired by the work of Frith et al. [31], we
examine how well the programs can map real reads
from D. melanogaster using the closely related D. sim-
ulans genome as reference. We consider three sets of
D. melanogaster reads obtained from the NCBI SRA
database: a set of short reads (length 36nt, ID SRR001981),
a set of long reads with low quality (length 76, ID
SRR023647) and a set of long reads with high quality
(length 95, ID SRR516029). All data sets are based on the
Illumina platform and low quality bases in the end of the
reads are trimmed using the AdapterRemoval tool [45].
To gauge the performance of the mappers, reads are

mapped to both the D. simulans and D. melanogaster
genome using each mapper. For each tool, we consider
all reads that map to the genomes with a mapping qual-
ity above a given threshold, and we compare the mapping
positions in the two genomes based on the UCSC whole
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genome alignment of D. simulans and D. melanogaster. If
the mapping regions overlap in the whole genome align-
ment we say the read is consistently mapped. If the read
maps to a region in D. melanogaster that is aligned to D.
simulans, but the mapping regions do not overlap, we say
the read is inconsistently mapped. For the xeno mapping
experiments we calculate the sensitivity as the number of
consistently mapped reads divided by the total number of
reads, and the PPV is calculated as the number of consis-
tently mapped reads divided by the number of consistently
and inconsistently mapped reads.
The flexibility of BWA-PSSM allows us to include an

evolutionary model that reflects the substitution level
between the two Drosophila genomes when we map the
reads to D. simulans (see Methods). For comparison we
also map the reads to D. simulans with BWA-PSSM using
only the standard error model. In both cases, we map the
reads to D. melanogaster using only the standard error
model.
Due to the setup of this experiment, we only consider

mappers that provideMapQ scores. The results are shown
in Table 5 and Figure 6. In Table 5 we used aMapQ thresh-
old of 25 and in Figure 6 the threshold was varied between
0 and 200.
We see that BWA-PSSM with the evolutionary model

generally performs better than all the other programs for
the short reads and the long low quality reads (Figure 6a
and 6b). BWA-PSSM has higher sensitivity for any PPV
value except in the high PPV end of the curves. For the
short reads, BWA-MEM has slightly better sensitivity at
PPV between 0.991 and 0.992, and for the long low qual-
ity reads BWA and Bowtie2 can obtain slightly higher
PPV than BWA-PSSM in the low sensitive end of the
curves. For the long high quality reads (Figure 6c) we see
that BWA-MEM performs best overall, while Bowtie2 can
obtain marginally higher PPV than BWA-MEM. BWA-
PSSM can obtain the next highest sensitivity with the evo-
lutionary model, however all the other mappers, including
BWA-PSSM without the evolutionary model, can obtain
higher PPVs.
We see a similar picture when we consider the filtered

results in Table 5.While themappers have similar PPVs on
all the data sets for a fixed MapQ threshold, BWA-PSSM
has the highest sensitivity on the short and long low qual-
ity reads. On the long high quality reads BWA-MEM has
the highest sensitivity and BWA-PSSM the next highest.
We also see that the increased sensitivity of BWA-PSSM
come at the cost of increased running time. In the worst
case (Table 5b) BWA-PSSM is nearly 7.5 times slower than
the fastest method (Bowtie2), however in this case BWA-
PSSM maps over 40% more reads and have a marginal
higher PPV than Bowtie2.
Finally we also see that the performance of BWA-

PSSM generally improves when including an evolutionary

Table 5 Analysis of the xenomapping experiment

MapQ filtered

Mapper Sensitivity PPV Time (s)

a) Xeno short reads (SRR001981)

BWA-PSSMEVO 0.305 0.982 3721.53

BWA-PSSM 0.269 0.976 3228.94

BWA 0.268 0.982 1444.48

BWA-MEM 0.186 0.989 727.22

Bowtie2 0.195 0.981 635.21

b) Xeno long low quality reads (SRR023647)

BWA-PSSMEVO 0.609 0.994 9355.64

BWA-PSSM 0.591 0.989 7371.12

BWA 0.550 0.992 3420.15

BWA-MEM 0.500 0.984 1260.17

Bowtie2 0.429 0.991 1262.93

c) Xeno long high quality reads (SRR516029)

BWA-PSSMEVO 0.364 0.979 13271.88

BWA-PSSM 0.300 0.972 11457.96

BWA 0.302 0.984 5735.58

BWA-MEM 0.429 0.988 4147.98

Bowtie2 0.218 0.987 3468.82

Comparison of sensitivity, positive predictive value (PPV) and run time using
BWA-PSSM, BWA, BWA-MEM and Bowtie2 on real single-end reads from D.
melanogastermapped to D. simulans. In BWA-PSSMEVO we include an
evolutionary model reflecting the substitution rate between the two Drosophila
genomes when mapping the reads to D. simulans, while in the BWA-PSSM
results we only include the standard error model. The reported running time is
only for the xeno mapping.

model. On the short reads the sensitivity of BWA-PSSM
is improved at all PPVs and on the two long read data sets
BWA-PSSM can generally obtain higher sensitivity with
the evolutionary model. However, BWA-PSSM can obtain
slightly higher PPVs using only the standard error model
on the long reads.

Conclusions
We have presented BWA-PSSM, a novel method for
using position-specific scoring matrices to provide quality
aware short read mapping. The algorithm for PSSM scor-
ing is based on BWA’s mapping algorithm. This method
can be applied to other PSSM applications, lowering the
number of genomic locations that need to be evaluated
and increasing the efficiency of PSSM searches.
There are many advantages in the probabilistic

approach taken here, in which the probability of a match
being correct is estimated using prior probabilities that
may be specific for the experiment. We have shown
how it is possible to model the evolutionary differences
between the sample and reference genome, sequencing
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a  Xeno short reads (SRR001981) b  Xeno long low quality reads (SRR023647)

c  Xeno long high quality reads (SRR516029)

Figure 6 Sensitivity as a function of PPV for BWA-PSSM, BWA, BWA-MEM and Bowtie2 for the xenomapping experiment. Single-end
Illumina reads from D. melanogaster are mapped to the D. simulans genome using the five mappers. Plots are shown for short reads (a), long low
quality reads (b) and long high quality reads (c). The curves for each mapping program were obtained by filtering for varying mapping qualities.
The results are based on the data in Table 5. Bowtie and GEM are excluded as they do not provide MapQ scores.

errors based on e.g. quality scores, experiment-specific
base substitutions, and contamination in the sample.
It is worth emphasizing the importance of the prior

probability of a match. In all experiments there is a pos-
sibility that the read sequence is due to contamination
or that it does not appear in the reference genome for
other reasons (e.g. sequences private to the sampled indi-
vidual). In some experiments the majority of reads may
be contamination, as is often the case with ancient sam-
ples. Especially when it comes to short reads, there is a
great risk that contaminating sequences will be mapped
to the reference genome, as was illustrated with the map-
ping of E. coli sequences to the human genome. This may
be taken into account by changing the value for the prior
probability of a match.
Some of the important extensions implemented in

BWA-PSSM include the ability to use longer genomes
and to handle the forward and reverse search in a sin-
gle concatenated index, the control of the direction of
the search tree traversal based on the underlying PSSM,
and the use of an interval heap for focusing on the most
likely region of the search tree while discarding lower
scoring branches. Furthermore, BWA-PSSM can capture
platform and sample specific biases in the nucleotide com-
position, making the tool highly sensitive and adaptable to

specialized applications such as ancient DNA, PAR-CLIP,
or biased genomes.
Because matches can be prioritized by a continuous

match score, the number of candidate matches stored in
the heap can be significantly reduced compared to other
methods that use the number of mismatches to priori-
tize. For this reason the PSSM implementation runs with
a speed comparable to the other mappers.

Methods
A probabilistic model for next-generation DNA reads
In this section we present a detailed description of the
probabilistic model of DNA reads. In the simple model we
have two distinct processes that can affect the base called
by the sequencer compared to the base actually present in
the genome of interest: Actual mutation with respect to
the reference genome from base g to base a, and a mis-
called base x by the sequencing machine given base a in
the sample.
We will assume that the observed base x is indepen-

dent of the base g in the genome given the base a in
the sample. This conditional independence assumption
can be expressed by the Bayesian network in Figure 7A.
Using this assumption we can calculate the probability
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Figure 7 Bayesian networks describing the independence assumptions between nucleotides. The nodes represent random variables, while
the arrows describe the conditional independencies between the variables. The left figure (A) shows the base in the reference genome g, the base
in the sample a, and the observed base x, while the right figure (B) also includes the alternated (biased) base b.

of observing the base x in the read given the base
g in the genome P(x|g) = ∑

a P(x|a)P(a|g), where
P(a|g) is the mutation model and P(x|a) is the model
of sequencing errors. To calculate the entries in the
position-specific scoring matrix (PSSM) we need P(g|x),
and the conditional independence assumptions also give
that

P(g|x) =
∑
a

P(g|a)P(a|x) . (3)

P(g|a) can be calculated from an evolutionary model.
Here we use a simple one, where there is a fixed proba-
bility p0 for a mutation which is independent of the base,
that is

P(g|a) =
{
1 − p0 if a = g
p0/3 if a 
= g . (4)

For this to make sense, we implicitly assume a uniform
base distribution in the genome.
For sequencing error we also assume a simple model,

where the probability of an error pe = 10−Q/10 is given
by the quality score Q. From this we can calculate the

probability of the sample containing base a given that the
sequencer is calling base x

P(a|x) =
{
1 − pe if a = x
pe/3 if a 
= x . (5)

Note that it is in principle straight-forward to use more
sophisticated models both for evolution and for sequenc-
ing errors and include these in the PSSM. An example of
such a model is presented in the next section.

Evolutionarymodel for xenomapping
For xeno mapping we adopt the evolutionary model by
Frith et al. [31]. According to this model we write

P(g|a) =
⎧⎨
⎩
1 − ps if a = g
pspt if a → g is a transition
1
2ps(1 − pt) if a → g is a transversion

,

where ps is the probability of a substitution and pt is the
probability of a transition given that a substitution has
happened. For mapping D. melanogaster reads to the D.
simulans genome, we used the substitution and transition
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frequencies observed in the UCSC alignment of the two
genomes as given by Frith et al. [31], that is p̂s = 0.15 and
p̂t = 0.45.

A probabilistic model for biased DNA reads
In a given data set, we might expect specific biases to
affect the frequency with which particular modifications
of the DNA sequence occur. This is a well-known phe-
nomenon in many different types of data. If we include
a specific model of these biases, we now have three pro-
cesses that can affect the base called by the sequencer,
where the additional process is changing the original base
a into base b due to the type of DNA sample. The indepen-
dence assumptions for these three processes is expressed
by the Bayesian network in Figure 7B.
Using these assumptions the probability of genomic

base g given that base x is reported by the sequencing
machine is (as before)

P(g|x) =
∑
a,b

P(g|a)P(a|b)P(b|x) , (6)

where the term P(a|b) describes the bias. However, in the
examples we will describe here, it is more natural to esti-
mate P(b|a). By performing the a-sum in equation (6)
and using the conditional independence assumptions, we
obtain the expression

P(g|x) =
∑
b

P(g|b)P(b|x) . (7)

Using Bayes’ rule and the sum rule we can write the first
term in the equation above as

P(g|b) = P(b|g)P(g)∑
g′ P(b|g′)P(g′)

where P(b|g)

=
∑
a

P(b|a)P(a|g) .
(8)

Assuming the simple models for evolution P(a|g) and
sequencing error P(b|x) from the previous section, all we
need in order to calculate P(g|x) is an expression for the
bias model P(b|a) and trivially a prior for the genomic
base distribution P(g). In the following sections we will
consider two such bias models.

Ancient DNAmodel
In ancient DNA we often observe damage (miscoding
lesions), especially C-to-U changes due to deamination,
which translate into C-to-T in the sequenced reads (or
G-to-A depending on the strand being sequenced). The
damage model P(b|a) describing these alterations is as
follows. We allow C-to-T and G-to-A changes and the
probabilities of these changes depend on the position in
the read, with 3’ and 5’ positions having the highest rate

of damage. Let i denote the position in the read, then
we specify the probabilities pi(b|a) = 0 except for the
following cases:

pi(A|A) = 1 pi(T |T) = 1
pi(T |C) = γi pi(C|C) = 1 − γi

pi(A|G) = δi pi(G|G) = 1 − δi.

The actual damage rates, γi and δi, are obtained from
Orlando et al. [15].
For ancient DNA, the evolutionary model P(a|g) is

obtained by assuming a probability m1 for transitions
(substitutions between C and T, or between A and G)
and a smaller probability m2 for transversions (all other
substitutions).

PAR CLIPmodel
While ancient DNA has a pattern of alterations where it
is mainly bases in the 5’ and 3’ ends of a read that are
modified, other types of data exhibit different modifica-
tions. PAR-CLIP data, for example, has consistent T-to-C
changes. These changes can be handled in the same man-
ner as for ancient DNA damage described above by mod-
ifying the conditional probabilities P(b|a) to construct a
model P(x|g) incorporating the particular modification
pattern.

Practical calculation of the PSSM
Once the evolutionary model, the bias model, and the
error model have been formulated, P(g|x), and thus the
corresponding PSSM scores, can be calculated for all pos-
sible combinations of base and quality score (and read
position for the damage model). Therefore the conversion
of a read with quality scores to a PSSM can be done very
fast with a table look-up.

Including indels in the alignment
In equation (2) we only considered alignments without
indels. If we assume that the indel pattern a is indepen-
dent of the starting position � we can write the posterior
probability for a match as

P(�, a,M|x, g)= P(g|�, a,M, x)P(a|M, x)P(�|M, x)P(M|x)
P(g|M, x)P(M|x) + P(g|N, x)P(N|x) .

Again we will assume that all unaligned positions in
the genome are i.i.d. with the same distribution in
both the match and mismatch model, which means that
P(g|�, a,M, x)/P(g|N, x) = 2Sx(�). Consequently we can
write the posterior probability as

P(�, a,M|x, g)= 2Sx(�)+log2 P(a|M,x)∑
�′,a′2Sx(�′)+log2P(a′ |M,x)+L(1−P(M|x))/P(M|x),
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where the sum in the denominator runs over all positions
�′ in the genome and all possible alignments a′ starting at
position �′.
For the indel pattern we will use a linear gap penalty

model, which means that the gap lengths follow a geo-
metric distribution [46]. If we assume that insertions and
deletions happen independently at each position in x, we
can write the probability of a given alignment in terms of
the total number of insertions ai and deletions ad in the
sequence

P(a|M, x) = P(ai, ad|M, x)
= P(ai|M, x)P(ad|M, x) ∝ 2−aiρi 2−adρd ,

where pi = 2−ρi is the probability of an insertion and pd =
2−ρd is the probability of a deletion. Here ρi and ρd are the
insertion and deletion penalty log scores, respectively. In
practice this is implemented as illustrated in Algorithm 1
and the default value for ρi and ρd is 17.

Other BWAmodifications
In addition to allowing the use of position-specific scoring
matrices for alignment, we introduced two other modifi-
cations to speed up the alignment method and to allow for
the indexing of larger genomes.

64-Bit indexing
The existing version of BWA has been modified to use 64-
bit indexing by changing the underlying data structures.
This modification allows for the sequencing of genomes
greater than 4 billion base pairs in length. Due to the
limitations of the SAM/BAM format [47], however, these
genomes must be composed of sub-sequences (i.e. chro-
mosomes) smaller than 4 gigabases each. Using 64-bit
indexing leads to an index approximately 32% larger than
its 32-bit counterpart.

Single index
Traditionally, BWA uses two indexes: One of the for-
ward and one of the reverse of the reference genome.
Searches are performed by using the original read and a
complemented read and searching the forward index and
reverse index with the corresponding read. Combining the
forward and reverse indexes into a single structure and
searching using only the original read improves the run-
ning time by consolidating prefixes common to both the
forward and reverse indexes (see Figure 8). Inspired by our
work, a single 64-bit index has also been included in the
0.6 release of BWA.

Heap sorting for partial hits
In BWA, the best partial candidate hits are kept sorted
by a score computed as a function of the mismatches,
insertions and deletions in a heap-like structure. BWA-

Figure 8 Comparison of the original BWA alignment method
(top) and the modified version using a single index (bottom).
The sequence of the short read, ‘TAC’, on the ‘-’ strand can easily be
found by subtracting the length of the original sequence from its
position in the concatenated sequence.

PSSM, in contrast, uses the offset from the best possible
score at a particular position as the sorting criterion
(Additional file 1: Figure S1). If the score of an align-
ment candidate (partial-hit) drops due to mismatches or
insertions/deletions, it moves down the list. While BWA
abandons the search when the size of the heap is exceeded,
BWA-PSSM continues searching while discarding the par-
tial hits with the lowest PSSM score offset. This is made
possible by the use of an interval-heap data structure,
allowing for the rapid removal, �(log n), of either the
largest or smallest element [48].
The traditional breadth-first search of the prefix tree

employed by BWA is further modified such that each
branch is weighted according to the decrease from the
optimal PSSM score for that character. That is, the branch
corresponding to a perfectly matched base would have a
weight corresponding to 0 since it will contain the best
possible score (see Additional file 1: Figure S1). A mis-
match branch, however, would have a lower score due to
the use of a sub-optimal PSSM score. The use of score off-
sets corresponds to a breadth-first traversal of the suffix
tree whereas using the total PSSM score itself corresponds
to a depth-first traversal.

Availability
BWA-PSSM and its source code are freely available
through the website http://bwa-pssm.binf.ku.dk.

Additional file

Additional file 1: Supplementary material.

http://bwa-pssm.binf.ku.dk
http://www.biomedcentral.com/content/supplementary/1471-2105-15-100-S1.pdf


Kerpedjiev et al. BMC Bioinformatics 2014, 15:100 Page 16 of 17
http://www.biomedcentral.com/1471-2105/15/100

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
PK and AK developed the method and algorithms. JF and SL contributed to
discussions on the method and algorithms. PK developed the software. PK, JF,
SL, and AK designed the experiments and analysis. PK and JF performed the
experiments and analysis. PK, JF, SL and AK wrote the manuscript. All authors
read and approved the final manuscript.

Acknowledgements
The authors would like thank Simon Rasmussen and Mireya Plass for providing
the error model used for the PAR-CLIP data as well as valuable feedback and
bug reports. This work was supported by the Novo Nordisk Foundation, the
Danish National Research Foundation, and the Danish Council for Strategic
Research. PK would like to thank Novo Nordisk and Novozymes for funding via
the Novo Scholarship Program. JF is supported by an individual postdoc grant
from the Danish Council for Independent Research | Natural Sciences. SL is
supported by a Marie Curie International Outgoing Fellowship within the 7th
European Community Framework Programme.

Author details
1Section for Computational and RNA Biology, Department of Biology,
University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark.
2Institute for Theoretical Chemistry, University of Vienna, Währinger Straße 17,
A-1090 Vienna, Austria. 3Department of Engineering, University of Cambridge,
Trumpington Street, Cambridge CB2 1PZ, UK. 4Biomolecular Interaction
Centre, School of Biological Sciences, University of Canterbury, Private Bag
4800, Christchurch 8020, New Zealand. 5Centre for GeoGenetics, Natural
History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7,
1350 Copenhagen K, Denmark.

Received: 3 March 2014 Accepted: 28 March 2014
Published: 9 April 2014

References
1. Metzker ML: Sequencing technologies - the next generation. Nat Rev

Genet 2010, 11(1):31–46. doi:10.1038/nrg2626.
2. Wang J, Wang W, Li R, Li Y, Tian G, Goodman L, Fan W, Zhang J, Li J, Zhang

J, Guo Y, Feng B, Li H, Lu Y, Fang X, Liang H, Du Z, Li D, Zhao Y, Hu Y, Yang
Z, Zheng H, Hellmann I, Inouye M, Pool J, Yi X, Zhao J, Duan J, Zhou Y, Qin
J, et al: The diploid genome sequence of an Asian individual. Nature
2008, 456:60–65.

3. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W,
Chen YJ, Makhijani V, Roth GT, Gomes X, Tartaro K, Niazi F, Turcotte CL,
Irzyk GP, Lupski JR, Chinault C, Song XZ, Liu Y, Yuan Y, Nazareth L, Qin X,
Muzny DM, Margulies M, Weinstock GM, Gibbs RA, Rothberg JM: The
complete genome of an individual by massively parallel DNA
sequencing. Nature 2008, 452(7189):872–876.

4. Kitzman JO, Mackenzie AP, Adey A, Hiatt JB, Patwardhan RP, Sudmant PH,
Ng SB, Alkan C, Qiu R, Eichler EE, Shendure J: Haplotype-resolved
genome sequencing of a Gujarati Indian individual. Nat Biotechnol
2011, 29(1):59–63.

5. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ: Deep surveying of
alternative splicing complexity in the human transcriptome by
high-throughput sequencing. Nat Genet 2008, 40(12):1413–1415.

6. Cloonan N, Grimmond SM: Transcriptome content and dynamics at
single-nucleotide resolution. Genome Biol 2008, 9(9):234.

7. Levin JZ, Berger MF, Adiconis X, Rogov P, Melnikov A, Fennell T, Nusbaum
C, Garraway LA, Gnirke A: Targeted next-generation sequencing of a
cancer transcriptome enhances detection of sequence variants and
novel fusion transcripts. Genome Biol 2009, 10(10):115.

8. Adams IP, Glover RH, Monger WA, Mumford R, Jackeviciene E,
Navalinskiene M, Samuitiene M, Boonham N: Next-generation
sequencing andmetagenomic analysis: a universal diagnostic tool
in plant virology.Mol Plant Pathol 2009, 10(4):537–545.

9. Petrosino JF, Highlander S, Luna RA, Gibbs RA, Versalovic J:Metagenomic
pyrosequencing andmicrobial identification. Clin Chem 2009,
55(5):856–866.

10. Simon C, Wiezer A, Strittmatter AW, Daniel R: Phylogenetic diversity
andmetabolic potential revealed in a glacier ice metagenome. Appl
EnvironMicrobiol, 75(23):7519–7526.

11. Green RE, Krause J, Ptak SE, Briggs AW, Ronan MT, Simons JF, Du L,
Egholm M, Rothberg JM, Paunovic M, Paabo S: Analysis of one million
base pairs of Neanderthal DNA. Nature 2006, 444:330–336.

12. Miller W, Drautz DI, Ratan A, Pusey B, Qi J, Lesk AM, Tomsho LP, Packard
MD, Zhao F, Sher A, Tikhonov A, Raney B, Patterson N, Lindblad-Toh K,
Lander ES, Knight JR, Irzyk GP, Fredrikson KM, Harkins TT, Sheridan S,
Pringle T, Schuster SC: Sequencing the nuclear genome of the extinct
woolly mammoth. Nature 2008, 456:387–390.

13. Rasmussen M, Li Y, Lindgreen S, Pedersen JS, Albrechtsen A, Moltke I,
Metspalu M, Metspalu E, Kivisild T, Gupta R, Bertalan M, Nielsen K, Gilbert
MT, Wang Y, Raghavan M, Campos PF, Kamp HM, Wilson AS, Gledhill A,
Tridico S, Bunce M, Lorenzen ED, Binladen J, Guo X, Zhao J, Zhang X,
Zhang H, Li Z, Chen M, Orlando L, et al.: Ancient human genome
sequence of an extinct Palaeo-Eskimo. Nature 2010, 463:757–762.

14. Rasmussen M, Guo X, Wang Y, Lohmueller KE, Rasmussen S, Albrechtsen
A, Skotte L, Lindgreen S, Metspalu M, Jombart T, Kivisild T, Zhai W, Eriksson
A, Manica A, Orlando L, De La Vega FM, Tridico S, Metspalu E, Nielsen K,
Avila-Arcos MC, Moreno-Mayar JV, Muller C, Dortch J, Gilbert MT, Lund O,
Wesolowska A, Karmin M, Weinert LA, Wang B, Li J, et al.: An Aboriginal
Australian genome reveals separate human dispersals into Asia.
Science 2011, 334:94–98.

15. Orlando L, Ginolhac A, Raghavan M, Vilstrup J, Rasmussen M, Magnussen
K, Steinmann KE, Kapranov P, Thompson JF, Zazula G, Froese D, Moltke I,
Shapiro B, Hofreiter M, Al-Rasheid KAS, Gilbert MTP, Willerslev E: True
single-molecule DNA sequencing of a pleistocene horse bone.
Genome Res 2011, 21(10):1705–1719. doi:10.1101/gr.122747.111.

16. Schubert M, Ginolhac A, Lindgreen S, Thompson J, AL-Rasheid K,
Willerslev E, Krogh A, Orlando L: Improving ancient dna readmapping
against modern reference genomes. BMC Genomics 2012, 13(1):178.
doi:10.1186/1471-2164-13-178.

17. Hamada M, Wijaya E, Frith MC, Asai K: Probabilistic alignments with
quality scores: an application to short-read mapping toward
accurate SNP/indel detection. Bioinformatics 2011.
doi:10.1093/bioinformatics/btr537.

18. Li H, Ruan J, Durbin R:Mapping short DNA sequencing reads and
calling variants using mapping quality scores. Genome Res 2008,
18(11):1851–1858. doi:10.1101/gr.078212.108.

19. Li R, Li Y, Kristiansen K, Wang J: SOAP: short oligonucleotide alignment
program. Bioinformatics 2008, 24(5):713–714. doi:10.1093/bioinforma
tics/btn025.

20. Burrows M, Wheeler D: A block sorting lossless data compression
algorithm. Technical Report 124, Digital Equipment Corporation. 1994.

21. Langmead B, Trapnell C, Pop M, Salzberg S: Ultrafast and
memory-efficient alignment of short DNA sequences to the human
genome. Genome Biol 2009, 10(3):25. doi:10.1186/gb-2009-10-3-r25.

22. Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2.
Nat Methods 2012, 9(4):357–359. doi:10.1038/nmeth.1923.

23. Li R, Yu C, Li Y, Lam T-WW, Yiu S-MM, Kristiansen K, Wang J: SOAP2: an
improved ultrafast tool for short read alignment. Bioinformatics
(Oxford England) 2009, 25(15):1966–1967. doi:10.1093/bioinformatics/
btp336.

24. Li H, Durbin R: Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics (Oxford, England) 2009,
25(14):1754–1760. doi:10.1093/bioinformatics/btp324.

25. Hoffmann S, Otto C, Kurtz S, Sharma CM, Khaitovich P, Vogel J, Stadler PF,
Hackermüller J: Fast mapping of short sequences with mismatches,
insertions and deletions using index structures. PLoS Comput Biol,
5(9):1000502. doi:10.1371/journal.pcbi.1000502.

26. Liu Y, Schmidt B, Maskell DL: CUSHAW: a CUDA compatible short read
aligner to large genomes based on the burrows–wheeler transform.
Bioinformatics 2012, 28(14):1830–1837. doi:10.1093/bioinformatics/
bts276.

27. Liu C-M, Wong T, Wu E, Luo R, Yiu S-M, Li Y, Wang B, Yu C, Chu X, Zhao K,
Li R, Lam T-W: SOAP3: Ultra-fast GPU-based parallel alignment tool
for short reads. Bioinformatics 2012. doi:10.1093/bioinformatics/bts061.

28. Nakamura K, Oshima T, Morimoto T, Ikeda S, Yoshikawa H, Shiwa Y,
Ishikawa S, Linak MC, Hirai A, Takahashi H, Altaf-Ul-Amin M, Ogasawara N,



Kerpedjiev et al. BMC Bioinformatics 2014, 15:100 Page 17 of 17
http://www.biomedcentral.com/1471-2105/15/100

Kanaya S: Sequence-specific error profile of Illumina sequencers.
Nucleic Acids Res 2011, 39(13):90. doi:10.1093/nar/gkr344.

29. Siragusa E, Weese D, Reinert K: Fast and accurate read mapping with
approximate seeds andmultiple backtracking. Nucleic Acids Res 2013,
41(7):78–78.

30. Marco-Sola S, Sammeth M, Guigo R, Ribeca P: The GEMmapper: fast,
accurate and versatile alignment by filtration. Nat Meth 2012,
9(12):1185–1188. doi:10.1038/nmeth.2221.

31. Frith MC, Wan R, Horton P: Incorporating sequence quality data into
alignment improves DNA readmapping. Nucleic Acids Res 2010,
38(7):100.

32. Kishore S, Jaskiewicz L, Burger L, Hausser J, Khorshid M, Zavolan M: A
quantitative analysis of CLIP methods for identifying binding sites
of RNA-binding proteins. Nat Methods 2011, 8(7):559–564.

33. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM,
Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K,
Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson
J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB,
Martin DM, et al.: Genome sequence of the humanmalaria parasite
Plasmodium falciparum. Nature 2002, 419(6906):498–511.

34. Ewing B, Green P: Base-calling of automated sequencer traces using
phred. II Error probabilities. Genome Res 1998, 8:186–194.

35. Beckstette M, Homann R, Giegerich R, Kurtz S: Fast index based
algorithms and software for matching position specific scoring
matrices. BMC Bioinformatics 2006, 7(1):389. doi:10.1186/1471-2105-7-
389.

36. Li H: Aligning sequence reads, clone sequences and assembly
contigs with BWA-MEM. ArXiv e-prints. 2013, 1303.3997.

37. Huang W, Li L, Myers JR, Marth GT: ART: a next-generation sequencing
read simulator. Bioinformatics (Oxford, England) 2012, 28(4):593–594.
doi:10.1093/bioinformatics/btr708.

38. Li H:wgsim - Read simulator for next generation sequencing. 2011.
[http://github.com/lh3/wgsim]

39. Holtgrewe M:Mason–a read simulator for second generation
sequencing data. Technical Report FU Berlin. 2010.

40. Willerslev E, Cooper A: Review paper. ancient dna. Proc R Soc B: Biol Sci
2005, 272(1558):3–16.

41. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P,
Rothballer A, Ascano Jr M, Jungkamp AC, Munschauer M, Ulrich A, Wardle
GS, Dewell S, Zavolan M, Tuschl T: Transcriptome-wide identification
of rna-binding protein andmicrorna target sites by par-clip. Cell
2010, 141(1):129–141.

42. Kishore S, Jaskiewicz L, Burger L, Hausser J, Khorshid M, Zavolan M: A
quantitative analysis of clip methods for identifying binding sites of
rna-binding proteins. Nat Methods 2011, 8(7):559–564.

43. Huang W, Li L, Myers J, Marth G: ART: a next-generation sequencing
read simulator. Bioinformatics 2012, 28:593–4. doi:10.1093/bioinforma
tics/btr708.

44. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-
Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick
HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome
sequence of escherichia coli k-12. Science 1997, 277(5331):1453–1462.

45. Lindgreen S: Adapterremoval: Easy cleaning of next generation
sequencing reads. BMC Res Notes 2012, 5(1):337.

46. Durbin R, Eddy SR, Krogh A, Mitchison G: Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge: Cambridge
University Press; 1998.

47. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R: The sequence alignment/map format and
SAMtools. Bioinformatics 2009, 25:2078–2079.

48. van Leeuwen J, Wood D: Interval heaps. Comput J 1993, 36(3):209–216.
doi:10.1093/comjnl/36.3.209.

doi:10.1186/1471-2105-15-100
Cite this article as: Kerpedjiev et al.: Adaptable probabilistic mapping of
short reads using position specific scoring matrices. BMC Bioinformatics
2014 15:100.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://github.com/lh3/wgsim

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Results and discussion
	A position-specific scoring matrix from quality scores
	Mapping probability
	Algorithm and implementation
	Comparing methods on simulated reads
	Unbiased reads

	Ancient DNA
	PAR-CLIP data
	AT rich data
	Random matches from contaminating reads
	Xeno mapping

	Conclusions
	Methods
	A probabilistic model for next-generation DNA reads
	Evolutionary model for xeno mapping

	A probabilistic model for biased DNA reads
	Ancient DNA model
	PAR CLIP model
	Practical calculation of the PSSM

	Including indels in the alignment
	Other BWA modifications
	64-Bit indexing
	Single index
	Heap sorting for partial hits


	Availability
	Additional file
	Additional file 1

	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

