Tomescu et al. BMC Bioinformatics 2013, 14(Suppl 5):S15
http://www.biomedcentral.com/1471-2105/14/S5/S15

BMC
Bioinformatics

PROCEEDINGS Open Access

A novel min-cost flow method for estimating
transcript expression with RNA-Seq

Alexandru | Tomescu'”, Anna Kuosmanen', Romeo Rizzi’, Veli Makinen'

From RECOMB-seq: Third Annual Recomb Satellite Workshop on Massively Parallel Sequencing
Beijing, China. 11-12 April 2013

Abstract

Background: Through transcription and alternative splicing, a gene can be transcribed into different RNA
sequences (isoforms), depending on the individual, on the tissue the cell is in, or in response to some stimuli.
Recent RNA-Seq technology allows for new high-throughput ways for isoform identification and quantification
based on short reads, and various methods have been put forward for this non-trivial problem.

Results: In this paper we propose a novel radically different method based on minimum-cost network flows. This
has a two-fold advantage: on the one hand, it translates the problem as an established one in the field of network
flows, which can be solved in polynomial time, with different existing solvers; on the other hand, it is general
enough to encompass many of the previous proposals under the least sum of squares model. Our method works
as follows: in order to find the transcripts which best explain, under a given fitness model, a splicing graph
resulting from an RNA-Seq experiment, we find a min-cost flow in an offset flow network, under an equivalent cost
model. Under very weak assumptions on the fitness model, the optimal flow can be computed in polynomial time.
Parsimoniously splitting the flow back into few path transcripts can be done with any of the heuristics and
approximations available from the theory of network flows. In the present implementation, we choose the simple

strategy of repeatedly removing the heaviest path.

Conclusions: We proposed a new very general method based on network flows for a multiassembly problem
arising from isoform identification and quantification with RNA-Seq. Experimental results on prediction accuracy
show that our method is very competitive with popular tools such as Cufflinks and IsolLasso. Our tool, called Traph
(Transcrips in gRAPHSs), is available at: http://www.cs.helsinki.fi/gsa/traph/.

Background

Recent RNA-Seq technology [1,2] opened a new high-
throughput, low cost way for isoform identification and
quantification, leading to new understanding of gene
regulation in development and disease (e.g., [3]). In an
RNA-Seq experiment a set of short reads is produced
from mRNA transcripts. The difficulty in assembling
these short reads into the transcripts from which they
were sampled is non-trivial due to the fact that the tran-
scripts (isoforms) may share exons. As a result, all meth-
ods for solving this problem rely on an explicit or

* Correspondence: tomescu@cs.helsinkifi

"Helsinki Institute for Information Technology HIIT, Department of Computer
Science, University of Helsinki, Finland

Full list of author information is available at the end of the article

() BiolVled Central

implicit graph model. The nodes represent individual
reads (overlap graph [4]), or contiguous stretches of
DNA uninterrupted by spliced reads (splicing graph
[5-7], connectivity graph [8-10]), while the edges are
derived from overlaps or from spliced read alignments.
Each node and edge has an associated observed cover-
age, and the problem of isoform identification and
quantification is seen as separating the coverage of the
graph into individual path components, under different
models. Furthermore, this problem was also coined
under the broad name ‘Multiassembly Problem’ [11], a
hint that it can arise not only with RNA-Seq data, but
also in other biological settings, such as assembling
metagenomics reads [12].

© 2013 Tomescu et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://www.cs.helsinki.fi/gsa/traph/
mailto:tomescu@cs.helsinki.fi
http://creativecommons.org/licenses/by/2.0

Tomescu et al. BMC Bioinformatics 2013, 14(Suppl 5):S15
http://www.biomedcentral.com/1471-2105/14/S5/S15

Except for Cufflinks [4], all tools mentioned above rely
on some optimization engine, whose solving is generally
difficult. IsoInfer/IsoLasso [8,9], SLIDE [7], Scripture [10],
and CLIIQ [6] exhaustively enumerate all possible candi-
date paths. For efficiency reasons, each has some restric-
tions on what a valid candidate path might be, and for
each candidate isoform, they define a fitness function.
Isolnfer/IsoLasso and SLIDE use a least sum of squares fit-
ness function; IsoLasso and SLIDE both add different
shrinkage terms to the fitness function in order to favor
isoforms with fewer transcripts, which is computed with a
modified LASSO algorithm, or a quadratic program;
CLIIQ uses a least sum of absolute differences fitness
function, solved by a linear integer program. Cufflinks
avoids the problem of exhaustively enumerating all possi-
ble paths by returning a minimum path cover, and then
assigning expression levels to each path in this cover
based on a statistical model. Incidentally, note that com-
puting a minimum path cover (in an acyclic digraph) is
done by computing a maximum matching, which can be
easily reduced to a flow problem. However, such reduction
solves a different (implicitly defined) optimization problem
that can be considered as a consensus model in the litera-
ture [6-10], mostly because the fitting of expression levels
is separated in the process.

Our contribution

In this paper we propose a radically different and very
general method relying on the established field of mini-
mum-cost network flow problems [13]. This will not
only provide a simple method and a fast polynomial
time algorithm for solving it (as opposed to exhaustively
enumerating all possible candidate paths, and then sol-
ving a quadratic/integer linear program for evaluating
the fitness of each candidate isoform), but it can also
lean on the ample literature on splitting a (min-cost)
flow into paths, e.g., [14-17].

As in the case of the other tools, our method assumes
that a splicing graph has been built for each gene. Each
node of the graph corresponds to a stretch of DNA unin-
terrupted by any spliced read alignment; such sequences
are called segments in [9], but for simplicity we just call
them exons. Each edge of the graph corresponds to two
exons consecutive in some transcript, that is, to some
spliced read whose prefix aligns to the suffix of one exon,
and whose suffix aligns to the prefix of another exon.
Observe that such a graph can be seen as a directed acyc-
lic graph (DAG, for short), the direction of the edges
being according to the absolute position of the exons in
the genome. For each exon v we can deduct its coverage
cov(v) as the total number of reads aligned to the exon
divided by the exon length, and the coverage cov(y, v) of
an edge (u, v) as the total number of reads split aligned
to that junction between exons u# and v. An mRNA

Page 2 of 10

transcript candidate thus becomes a path from some
source node to some sink node. The requirement that
the transcripts start in a source node and end in a sink
node is no restriction, as we can add dummy source/sink
nodes as in-/out-neighbors to the nodes where we have
indication that some transcript might start/end. Indeed,
our splicing graph creation tool uses splicing alignments
and coverage information to discover such start/end
nodes and accordingly indicates them to our tool.

In order to define a fitness function in the broadest
possible terms, let us assume that for each node v and
edge (u, v) of the graph we have convex cost functions
for fur : R = R modeling how close that node and edge
must be explained by the candidate isoform. Then, we
can state the problem of isoform identification and
quantification as following problem.

Problem 1 (UTEC) Given a splicing DAG G = (V, E)
with coverage values cov(v) and cov(u, v), and cost func-
tions f,(-) and f,,,(-), for all ve V and (u, v) € E, the
Unannotated Transcript Expression Cover problem is to
find a tuple P of paths from the sources of G to the sinks
of G, with an estimated expression level e(P) for each
path P e P, which minimize

gl o]
et

For example, if for all nodes v and edges (i, v), f,(x) = x,
fuv(x) = x, then we have a least sum of absolute differ-
ences model as in CLIIQ. If £, (x) = X2, fun(x) = %2, then we
have a least sum of squares model as in IsoInfer/IsoLasso
and SLIDE; this is the model which we also use in the
implementation reported in this paper. Another cost
function, suggested by [18], is f,(x) = x/\/cov(v),
fur(x) = x/y/cov(u, v) for all nodes v and edges (u, v).
Observe that many of the other biological assumptions of
the other tools can be incorporated in the model of Pro-
blem UTEC.

We will show that Problem UTEC can be solved in
polynomial time, by a reduction to a min-cost flow pro-
blem with convex cost functions. We will argue that find-
ing the optimal tuple of paths explaining the graph is
equivalent to finding the optimal flow in an offset flow
network. Moreover, any splitting of this optimal flow into
paths attains the minimum of Problem UTEC. In the
same way as some of the other tools try to limit the num-
ber of paths explaining a splicing graph by a LASSO
approach, we can rely on established methods for split-
ting any flow into few paths (e.g., [14-17]). In this paper,
we employ only the simple linear-time heuristic of
repeatedly removing the heaviest path, see e.g., [15].

We give experimental results to study how well the
predictions match the ground-truth on simulated data,
and how well it fares on real-data, compared to Cufflinks
[4] and IsoLasso [9]; our method is very competitive,

cov(u, v) — Z e(P)

PeP:(uy)eP

cov(v) — Z e(P)

PePweP

sum_err(G, P) := Zﬁ (
veV

Tomescu et al. BMC Bioinformatics 2013, 14(Suppl 5):S15
http://www.biomedcentral.com/1471-2105/14/S5/S15

providing in many cases better precision and recall. We
expect our lead to be even greater once we incorporate
paired-end read information.

Methods
We begin by recalling the basic notions of flow and of a
min-cost flow problem, and refer to the excellent mono-
graph [13] for further details. A flow network (or simply
network) is a tuple N = (G, b, q), where G = (V, E) is a
directed graph, b is a function assigning a capacity
by € N to every arc (u, v) € E, and ¢ is a function
assigning an exogenous flow q, € N to every node v e V,
such that >,y ¢y = 0. We say that a function x assign-
ing to every arc (4, v) € E a number x,, € N is a flow
over the network N, if the following two conditions are
satisfied:

1.0 < «,, < by, for every (i, v) € E,

2. 2 Ko — quv—% for every ve V,

ueV
In a min- cost ﬂow problem, one is additionally given

flow cost functions ¢, (-), for every arc (4, v) € E, and is
required to find a flow which minimizes:

Z Cuy (xuu) .

(uv)e E

It is well-known that, under the assumption that all
the flow cost functions c¢,,(-) are convex, a min-cost
flow can be found in polynomial time [19] (see also [20]
for the real-valued flow case).

The reduction to a min-cost flow problem
We will model Problem UTEC as a min-cost flow pro-
blem, thus showing that it can be solved in polynomial
time. First, we argue that it can be transformed into the
following equivalent problem, where the input exon
chaining graph has measured coverages only on arcs.
Problem 2 (UTEJC) Given a splicing DAG G = (V, E)
with coverage values cov(u, v), and cost functions f,,(-),
for all (u, v) € E, the Unannotated Transcript Expres-
sion Junction Cover problem is to find a tuple P of
paths from the sources of G to the sinks of G with an
estimated expression level e(P) for each path P e P,
which minimize

Z fuv | |cov(u, v) — e(P)

(wv)eE

2

PeP: (uv)eP

Given an input G = (V, E) for Problem UTEC, we
construct an input for Problem UTEJC by replacing
every node v € V with two new nodes, v;, and v,,,, and
an arc (Vi Vour), With cov(vy, Vou:) = cov(v), and
fvuvon (2) = fo(x). Furthermore, for every arc (u, v) € E,
we replace arc (u, v) with the arc (4,,s Vi), with the
same coverage as (u, v). It is immediate that optimal

Page 3 of 10

solutions for G to Problem UTEC are in bijection with
the optimal solutions for the transformed graph to Pro-
blem UTEJC.

To solve Problem UTEJC, we build an auxiliary offset
network with convex costs of the form c,,(x) = f,,(x).
An optimal flow for this network will model the offsets
(positive or negative) between the measured coverages
of the exon chaining graph and their actual expression
levels in an optimal solution. Then, we argue that a
min-cost flow on this network naturally induces a solu-
tion for the UTE]JC problem.

Onwards, we denote by N¢(v) the set of out-neighbors
of v in the directed graph G, that is, the set {w: (v, w) €
E(G)}. Similarly, we denote by N (v) the set of in-neigh-
bors of v in the directed graph G, that is, the set {u : (&, v)
€ E(G)}. When G is clear from the context, we will skip
it as subscript.

Given a splicing DAG G with coverage values cov(u,
v), and cost functions f,,, for all (i, v) € E, we construct
the offset network N* = (G* b, gq) with cost function ¢,
as follows (see Figure 1 for an example):

1. we add to G* all nodes and edges of G, together

with
(a) a new source sy and a new sink ty, with
sy = {1, =0,

(b) arcs (so, s), for every source s of G, and arcs
(t, to) for every sink t of G, each with infinite
capacity and null cost function,

(c) arc (ty, so) with infinite capacity and null cost
function,

(d) nodes s* and ¢*, with initial exogenous flow
ds = qpr = 0;

2. for every arc (4, v) € E(G),
(a) v =% Cuv(x) fuv()
(b) we add the reverse arc (v,
cov(u, V), €y(%) : = fr(%);

3. for every v e V(G),

(a) its exogenous flow g, is zero,

(b) if Zuew(v) cov(v, u) — ZueNf(v) cov(u, v) > 0,
we add arc (v, t¥) to G* where:
ZueN'(u) COI}(U, u) - ZueN
ii we update aw =aw + D (o (V) = ZKN’(V) cov(v, u);
(©) if D yen+(u) €OV U) = D yen-) V(1 V) <0,
we add arc (s*, v) to G* where:
ZueNim cov(v, u) — Z%N‘(y) cov(u, v), Cu(x) =0,
ii. we update ds = de + Cuen-(w) 001, 4) = Lyene(ny cov(u, v),

u) to G* with b,,, :=

i, bus = ycou(t, v), Cux(x) =0,

i, bow =

The next lemma shows that there exists a min-cost
flow x* on N*.

Lemma 1 Given a digraph G with arc coverages cov
(), the offset network N* = (G*, b, q) constructed as
above is a flow network, i.e, > yev(Gs) v =0

Tomescu et al. BMC Bioinformatics 2013, 14(Suppl 5):S15
http://www.biomedcentral.com/1471-2105/14/S5/S15

Page 4 of 10

Figure 1 Example of an offset network. An input G to Problem UTEJC (a), and the offset network G* (b); arcs are labeled with their capacity,
unlabeled arcs having infinite capacity

Proof: Since g, = 0, for all v e V (G*) \ {s* t%, it
remains to show that ¢+ + g+ = 0. Indeed,

Gs +qr- = Z Z cov(u, v) — Z cov(v, u)
veV(G) \ueNg(v) ueNg(v)
= Z Z cov(u, v) — Z Z cov(v, u)
veV(G) ueNg (v) veV(G) ueNg(v)
= Z cov(u, v) — Z cov(v, u) =0
(u,v) € E(G) (v,u) €E(G)
O

From such a flow x*, we construct the function x on
the edges G as follows. First, observe that for every arc
(#, v) € E(G), at most one of x, or x,is nonnull.
Indeed, if this were not the case, then a flow y* which
coincides with x* except for y};, = xf, — min(x},, x5,)
and yi, =}, — min(x}, x3,), is also a flow on N* and
has a strictly smaller cost than x*, contradicting the fact
that x* is of minimum cost. Then, for each arc (4, v) €
E(G) we set:

Xy = cov(u, V) +x5, — x5,

From a flow to a set of paths

Theorem 1 below will argue that the above defined
function x is a flow on G (points (1), (2)), whose arcs
we consider to have unbounded capacities and whose
nodes, apart from the sources and sinks, have exogenous
flow 0. It is a well-known result from classical network
flow theory that such a flow can be decomposed into
paths, that is, there exist paths P; , ..., P, from the
sources of G to the sinks of G, having weights wy, . . .,
w,, respectively, such that, for every (4, v) € E(G) we
have

Xyy = E w;j.
i:(u,v) belongsto P;

Moreover, a decomposition of x into at most |E(G)| paths
always exists and can be found in time |V (G)| - E(G).

Theorem 1 also shows that the paths of any decomposition
of x are an optimal solution for G to Problem UTE]JC
(point (3)).

Theorem 1 Given an optimal flow x* on G*, the func-
tion x on G just constructed satisfies the properties,
where S denotes the set of sources of G, and T denotes
the set of sinks of G:

(I)fOV allve V(G) \ (S u T): ZueNg(v) Xuy = ZueNg(v) Xvuy

(2) Dses 2oveNg(s) Xsv = 2oteT 2ueN (1) Xut

(3) any decomposition of x into paths attains the mini-
mum of the objective function of Problem UTEJC, on
input G.

Proof: (1): Let ve V (G) \ (S U T); by the definition of
X, we can write

Z Xy — Z Xou = Z (cov(u, v) + x5, —xp,) — Z (cov(v, u) +x, — x3,)

ueNg (v) ueNg(v) Nz (v) ueNg(v)
= Z cov(u, v) — Z cov(v, u)+
ueNg (v) Ne(u

« N « «
+O0 Fat DLW D s D

ueNG(v) ueNg(v) ueNg (v) ueNE(v)

Z cov(u, v) — Z cov(v, u)+ Z X, — Z X

ueN (v) ueNg(v) ueN;; (V)UNE(v) ueN (v)UN(v)

Observe that for all edges entering ¢* (exiting s*), their
flow equals their capacity, as we have adjusted the exo-
genous flow of ¢* (of s*) at point 3.(b)ii. (and 3.(c)ii.) in
the construction of G*. We distinguish three cases.

First, if ZuENE(v)UNg(v) va - ZuENE(v)UNg(V) x;‘;u >0,
then ZueNg(v)uN&(u) Xy — ZueNg(v)uN&(v) Xp, = Xy Since
the flow x* uses the arc (v, #*) with its maximum capa-
city, we have that % =bw =3 . covl =3 . covlu, v),
which shows that ZueNa(,,) Xuy — ZueNe(,,) Xpu = 0, prov-
ing the claim.

Second, if ZuENg(u)UN(*;(v) Xy — ZuENg(u)UN(*;(u) X < 0,
then ZueNg(u)UN;;(v) Xy — ZueN(’;(v)UN(*;(v) Xy — = —X5,. Since
the flow x* uses the arc (s*, v) with its maximum capacity,
we have that % =beuw = Xyenz) vV, 1) = X yen:) V(1 V),
which again proves the claim.

Finally, if 2 uen-()uNzw) Xiw — 2oueN- (v)uN: () Xou = Or
then, by construction there is no edge between v and ¢*

Tomescu et al. BMC Bioinformatics 2013, 14(Suppl 5):S15
http://www.biomedcentral.com/1471-2105/14/S5/S15

or s* implying, again by construction, that
2 _ueNz () Cov(t, V) = 3 uen: vy CoV(v, 1), from which the
claim follows.

(2): From the definition of x, we have

2. D =)

seSveNg(s) ses

S (couls, v) +5,) | (1)

veNg(s)

=Z Z cov(s, v) + Z x5 — Z X (2)

s€S \veN¢(s) veN{(s) veN¢(s)

By construction, since g; = 0 for all s € §, we

* * * *
i + E X = E X X
have Xy veN(s) S vens(s) s s Therefore,

. f o b et o
ZVEN[;[S) X — ZueN&(s] Xys = xsos Xopr = xsos bff xsos ZveNg(s] CUU(S' V).
Plugging this into (2), we obtain

Z Z Xsy = Zx;kOS = x;‘koso' (3)

seSveNg(s) seS

Similarly,
Z Z Xyt = Z Z (cov(u, t) +x5, —x7,) | @)
teT ueN; (1) teT \ueNg (1)

=Z Z cov(u, t)+ Z X — Z x| 5

teT \ueN; (1) ueNg (1) ueN; (1)

By construction, since g, = 0 for all t € T, we have
x;k*l + ZueNE(t) th =x>tkt() - ZueN&(t) x?(w
ZueN;(z) X~ ZueNg(t) Xpy = Xy, — Xy = X — by = xj, — ZuENE[t) cov(u, t),
Plugging this into (5), we prove the claim, since by (3)
we get

Z Z Yy = Zx;kto = x;kt)So = Z Z Ysv- (6)

teT ueNg;(t) teT seS veN(s)

Therefore,

(3): Since any tuple of paths P = (Py, P, ..., ;) from
sources of G to sinks of G, induces a flow on G, where
the exogenous flow of all nodes which are not sources
nor sinks is zero, and any such flow can be split into
paths from sources to sinks, the minimum value of

Z el |, (7)

PieP.-(uv) € P;

Z fuv | |cov(u, v) —

(uv) €E(G)

over all k, all k-tuples of paths P = (P, Py, ..., Pr)
from a source of G to a sink of G, and over all expres-
sion levels e; for each P; is equal to min, is a flow on G

Z(ulv)eE(G)fuuUCOU(u, V) — ¥wl). Since any flow on G

Page 5 of 10

induces a flow on G* and vice versa, the above is equal
to

zis a%lrclnlxvnon G* Z f""(|zw - ZWD'
(u,v) €E(G)
Since
x* = argmin Z Juo(2uw) + fu(zou), (8)

z is aflow on G* (u,v) € E(G)

and from minimality, for all arcs (4, v) € E(G), at
most one of z,, or z,, is non null, we have that x* also
attains the minimum in (7), proving the theorem. D

In our implementation we use the min-cost flow
engine available in the LEMON Graph Library [21]. If
no engine for arbitrary convex cost functions is avail-
able, or, more generally, if the cost functions themselves
happen not to be convex, one can approximate any cost
function with piecewise constant or convex cost func-
tions: e.g., one can replace an arc (u, v) of capacity b,,,
with |b,,| arcs of capacity 1, such that first arc has cost
f(1), and the ith arc, i >1, has cost f(i) - f{i - 1) (this
reduction is only pseudo-polynomial but reveals quite
effective in practice), see [13] for further details.

Decomposing the min-cost flow into few paths

As already shown by the other tools, we are generally
interested in parsimoniously explaining an RNA-seq
experiment, that is, in finding, among the optimal solu-
tions to Problem UTEC, one with a low number of
paths. At a closer analysis it can be seen that any flow
on a graph G = (V; E) can be decomposed into at most
|E| - |V] + 2 paths [14]. However, decomposing a flow
into a minimum number of paths is an NP-hard pro-
blem in the strong sense, even when restricted to DAGs
[14,15]. To overcome this limitation, various heuristics
and approximations have been put forth, see, e.g.,
[14-17] and the references therein. The advantage of our
method is that once we have obtained the optimal flow,
we can apply any of these methods to split the flow into
few paths. For simplicity, in this paper we employ the
policy of repeatedly removing the heaviest path, see, e.g.,
[15]: until the network has null flow, we select a path
from the sources to the sinks whose minimum flow on
its edges is maximum, report it as transcript, and
remove it from the flow network.

Results and discussion

We call our tool Traph (Transcripts in Graphs). We
compared Traph to the most used isoform prediction
tool Cufflinks [4] and with IsoLasso [9]. We also tried
to include SLIDE [7] and CLIIQ [6], but we could not
make the former work reliably, and for the latter the

Tomescu et al. BMC Bioinformatics 2013, 14(Suppl 5):S15
http://www.biomedcentral.com/1471-2105/14/S5/S15

publicly available version was not yet available. Full
experiment data is available at [22].

We should point out from the start that Traph is not yet
employing paired-end read information. Nonetheless, the
experiments we report (both simulated and real) are with
paired-end reads, Cufflinks and IsoLasso having access to
the paired-end information. Moreover, since Traph is not
yet employing existing gene annotation information, we
ran Cufflinks and IsoLasso without annotation. As already
mentioned, we use a least sum of squares model. We
experimented in the current implementation with other
cost functions, as mentioned in the introduction,
fx(x) = x, f2(x) = x/\/cov(z), or f:(x)=x/cov(z), respec-
tively, for all nodes and edges z, but they currently give
worse results.

Matching criteria

In order to match the predicted transcripts with the true
transcripts, we take into account the DNA sequences
but also the expression levels. For each gene, we con-
struct a bipartite graph with the true transcripts
T =(T1, Tz, ...) as nodes in one set of the bipartition,
and the predicted transcripts P = (P1, Py, ...) as nodes
in the other set of the bipartition. Empty sequences with
0 expression level were added so that both sets of the
bipartition had an equal number of nodes.

To define the costs of the edges of this bipartite
graph, let us introduce (cf. Normalized Compression
Distance [23]) the binary encoding of a true transcript 7
and its expression level e(T) with respect to a predicted
transcript P with expression level e(P)

code(T|P, j) = y(j)y(d + 1)editsencoded (T, P)y(f(e(T) — e(P))), (9)

where y(x) = 02" 1 pin(x), bin(x) being the binary
encoding of x >0, j is the index of P in the list of predicted
transcripts, d is the unit cost (Levenshtein) edit distance of
T and P, editsencoded(7, P) lists the edits and gaps
between edits using 2-bit fixed code for edit type, 2-bit
fixed code for substituted/inserted symbol, and y(x+1) for
gap (run of identities) of length x, and f(x) is a bijection
between {0, 1,-1,2,-2,.. .} and {1, 2, 3, 4, 5, . . .} defined
as f(x) = 2x for x > 0 and f(x) = 2(-x) + 1 otherwise.

Then, the edge cost between nodes T; € 7 and P; € P
is defined as |code(T; | P; j)| - |y(j)|. The closer to zero
this number is, the better the match between true tran-
script T;, with true expression level e(T;) and predicted
transcript P; with predicted expression level e(P;). The
minimum weight perfect matching was then computed;
this gives a one-to-one mapping between true and pre-
dicted transcripts, therefore true transcripts can be
ordered in the same order as they match predicted tran-
scripts and code for the index, y(j), is no longer
required. Let edit code length for an edge between T;

Page 6 of 10

and P; be |y(d + 1) editsencoded(T;, P))|, where d is the
edit distance. Let bitscore be edit code length divided by
[vy(|T;| + 1) editsencoded(T; ¢)|; bitscore is asymmetric,
and possibly greater than 1 if ¢ would be a better match
to T; than to P;, but minimum weight perfect matching
chose otherwise for global minimality. Let us also call
relative expression level difference the ratio |e(P)-e(T))|/e
(T;). Each matched node pair with relative expression
level difference and (edit) bitscore under some given
thresholds define a true positive event (TP). The other
kind of nodes define false positive (FP) and false nega-
tive (FN) events depending on which side of the bipar-
tite graph they reside. Prediction efficiency based on
precision, recall and F-measure is also employed in [6,9].

Simulated human data

As in the case of the other tools, we deem that validating
against simulated data is a prerequisite, since, in general,
on real data, we do not have available ground-truth. We
designed the following validation experiment, closely fol-
lowing the approaches in [6,9]. We chose a set of genes
at random, and looked up the corresponding annotated
transcripts from the Ensembl database. Out of these
genes, we selected only those having between 2 and 5
transcripts. In all, we had 29 genes. For each transcript,
we simulated reads with the RNASeqReadSimulator [24].
This simulator chooses an expression level at random
from lognormal distribution with mean -4 and variance
1. For each gene, it simulated paired-end reads, with frag-
ment length mean 300 and standard deviation 20, as fol-
lows: a transcript was chosen randomly using its
expression level as distribution weight, while the position
of the read within the transcript was chosen uniformly.
As argued in the case of IsoLasso [9], various error mod-
els can be incorporated in these steps, but we chose to
compare the performance of the methods in neutral con-
ditions. We mapped the reads with TopHat [25]: these
read mapping results were given as input to the tested
prediction software, and to a Python program which we
wrote to construct the splicing graphs needed for Traph.
Cufflinks and IsoLasso were ran with the default para-
meters, because the parameters they offer relate to RNA-
seq lab protocol, which was not simulated; we could not
see changes to other parameters which could be relevant
to the prediction. We use FPKM values as expression
levels.

We devised two experiment setups. In the first one,
which we call single genes, 300, 000 paired-end reads
were generated independently from the transcripts of
each of the 29 genes, with the already assigned expression
levels. They were independently given to TopHat for
alignment, and these independent alignment results were
fed to each tool. In the second, more realistic experiment,
which we call batch mode, the transcripts and their

Tomescu et al. BMC Bioinformatics 2013, 14(Suppl 5):S15
http://www.biomedcentral.com/1471-2105/14/S5/S15

assigned expression levels were combined into one file,
and from this file 29 * 300, 000 paired-end reads were
simulated. All these reads were fed to TopHat for align-
ment, and these combined alignment results were fed to
the tools. The fragment length mean and standard devia-
tion were passed to the tools, except for Cufflinks in batch
mode, when it was able to infer them automatically.

Table 1 and Figure 2 show selected validation results.
The measures reported are precision = TP/(TP+FP),
recall = TP/(TP+FN), and F-measure = 2 * precision *
recall/(precision + recall). We selected to depict two
relative expression level differences, 0.1 and 0.9, illus-
trating opposite expression levels matching criteria. In
the first, we require that the predicted expression levels
be at most 10% different from the true ones, and in the
second they can be at most 90% different from the true
ones. Even though not yet employing paired-end infor-
mation, Traph has better F-measure in three out of four
scenarios. The lead of Traph is more visible in the batch
mode scenario when the predicted expression levels can
be at most 90% different from the true ones (Figure 2).
This behavior might be due to the upward/downward
coverage at the start/end of transcripts, which affects
the average coverage Traph is assuming for source/sink
nodes (exons). We expect to solve this by giving less
weight to such exons in the fitness function. Notice also
that out of the false positive transcripts reported by the
tools, Cufflinks is reporting 32 transcripts which do not
map to the areas of the 29 genes from where reads were
simulated, IsoLasso is reporting 150 transcripts outside
gene areas, while Traph is reporting only 15.

Real human data

We used the same real dataset from the IsoLasso paper
[9], Caltech RNA-Seq track from the ENCODE project
[GenBank:SRR065504], consisting of 75bp paired-end
reads. Out of these reads, we picked the 2,406,339
which mapped to human chromosome 2. We selected
the 674 genes where all three tools made some predic-
tion; these genes have 6075 annotated transcripts.

First, we match the transcripts predicted by each tool
with the annotated transcripts, employing the same
minimum weight perfect matching method introduced
before, this time without taking into account expression

Table 1 Performance of the three tools

Page 7 of 10

levels. A true positive is a match selected by the perfect
matching with bitscore under 0.2. Traph predicted in
total 2685 transcripts for these genes, out of which 244
match the annotation. Cufflinks predicted in total 1796,
out of which 349 match the annotation, while IsoLasso
predicted 1362, out of which 343 match the annotation.
We also include a histogram (Figure 3) of the lengths of
the annotated transcripts of these genes, and of the ones
reported by Traph, Cufflinks and IsoLasso. Here we
round all transcript lengths to the nearest multiple of
1000. We see that the distribution in the case of Traph
is closer to the distribution in the case of the annotated
transcripts; than the distributions for Cufflinks and
IsoLasso.

Third, we match the transcripts predicted by one soft-
ware to the transcripts predicted by the other two,
employing the same matching method. As in [9], we
depict in Figure 4 a more detailed Venn diagram of the
intersections between the sets of transcripts reported by
the three tools.

Running times

On the real dataset, Cufflinks finished in 20 min, IsoLasso
in 2 min, and Traph in 30 min. We should however stress
that for solving the min-cost flow problem and for identi-
fying the transcripts, Traph uses in fact 6 min, the rest of
the time being spent by our graph creation tool, which is
written in Python. We could not make such a detailed
analysis in the case of the other two tools. The running
time of our Python script is as well included in the last
column of Table 1, where we listed the average running
time per gene with simulated reads of each tool.

Conclusions

All tools for isoform identification and quantification
use an explicit or implicit graph model. Resorting to
such a representation, the main contribution of this
paper consists in a novel, radically different method
based on minimum-cost flows, an established problem,
for which there exist polynomial-time algorithms and
solvers. We implemented this method into our tool
Traph. Even though Traph is not using paired-end
information at this moment, Traph is competitive with
state-of-the-art tools.

Precision Recall F-measure Avg. run time/gene
(0.1,0.2) (0.9, 0.2) (0.1, 0.2) (0.9, 0.2) (0.1, 0.2) (0.9, 0.2)
IsoLasso 00183 02126 0.0258 03109 00214 02132 25
Cufflinks 0.0545 03623 0.0482 0.2931 0.0507 0.3060 40 s
Traph 0.0862 03729 0.0689 0.3988 0.0747 0.3665 72's

Performance of the three tools under scrutiny in the single genes scenario; precision, recall and F-measure are computed for (relative expression level difference,

bitscore) € {(0.1,0.2),(0.9,0.2)}

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=SRR065504

Tomescu et al. BMC Bioinformatics 2013, 14(Suppl 5):S15 Page 8 of 10
http://www.biomedcentral.com/1471-2105/14/S5/S15

, N
0.11 0.6
0.1 | —&— Traph —&A— Traph
—E&— Cufflinks —O— Cufflinks
—F— IsoLasso —F— IsoLasso
@ ¢ 04
g :
g g
£0.05 £ M
! !
= -
S—a——H—+Fl 0.2
0 0
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
bitscore bitscore
(a) single genes, relative expression difference thresh- (b) single genes, relative expression difference thresh-
old 0.1 old 0.9
0.11 0.6
0.1 —A— Traph —&— Traph
—E&— Cufflinks —O— Cufflinks

—[E— IsoLasso
G o o o a o o A—é
=4 =4 =4

<)
=
2
/ =
m

—F— IsoLasso

0.2 M

F-measure
o
o
(53}

0 0
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
bitscore bitscore
(c) batch mode, relative expression difference thresh- (d) batch mode, relative expression difference thresh-
old 0.1 old 0.9

Figure 2 Performance on simulated data. Performance of IsoLasso, Cufflinks, and Traph on simulated data: single genes scenario (a), (b); batch
mode scenario (c), (d)

-

400

——— Annotated Transcripts
— Traph
Cufflinks
IsoLasso

W
o)
o

[\]
o
o

100

no. of transcripts

\’\/\mﬁ/\/\/\ AR VA=
0 10 20 30 40 50 60 70 80 90 100

transcript length, in Mb

Figure 3 Results on real human data. Histogram of the distribution of transcript lengths of the annotation, and of the ones reported by Traph,
Cufflinks and IsoLasso

0

_

Tomescu et al. BMC Bioinformatics 2013, 14(Suppl 5):S15
http://www.biomedcentral.com/1471-2105/14/S5/S15

Traph

Isolasso Cufflinks

Figure 4 Results on real human data. Venn diagram of the
intersections of the sets of reported transcripts

This leads us to expect that once we incorporate paired-
end read information, the performance of Traph will
increase significantly. Note also that in the current imple-
mentation, each exon equally contributes to the fitness
function, independently of its length; we plan to include
exon lengths in the fitness function in a future implemen-
tation. We also plan to integrate existing gene annotation
into a more refined construction of the splicing graph and
into the fitness model. Our method is general enough to
easily accommodate other biological assumptions. In order
to evaluate the tools against real ground-truth data, we
have started a process of acquiring long sequencing reads
(PacBio) of the true isoforms of a gene.

Authors’ contributions

AIT, VM and RR designed the method. VM, AK and AIT designed the
experiments. AK evaluated the methods. AIT, VM and AK contributed to the
writing. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements

We wish to thank Antti Honkela for many insightful discussions on transcript
prediction. We would also like to thank Teemu Kivioja and the anonymous
reviewers for hinting us related literature on refined cost functions for
coverage counts, as well as for constructive comments that improved our
experiment setup.

Declarations
Publication of this article was supported by the Academy of Finland under
grant 250345 (CoECGR).

Page 9 of 10

This article has been published as part of BMC Bioinformatics Volume 14
Supplement 5, 2013: Proceedings of the Third Annual RECOMB Satellite
Workshop on Massively Parallel Sequencing (RECOMB-seq 2013). The full
contents of the supplement are available online at http://www.
biomedcentral.com/bmcbioinformatics/supplements/14/S5.

Author details

"Helsinki Institute for Information Technology HIIT, Department of Computer
Science, University of Helsinki, Finland. ZDepartmem of Computer Science,
University of Verona, Italy.

Published: 10 April 2013

References

1. Mortazavi A, Williams BAA, McCue K, Schaeffer L, Wold B: Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nature Methods
2008, 5:621-628.

2. Pepke S, Wold B, Mortazavi A: Computation for ChIP-seq and RNA-seq
studies. Nature methods 2009, 6:(11):522-532.

3. Shah'S, et al: The clonal and mutational evolution spectrum of primary
triple-negative breast cancers. Nature 2012, 486:(7403):395-399.

4. Trapnell C, et al: Transcript assembly and quantification by RNA-Seq
reveals unannotated transcripts and isoform switching during cell
differentiation. Nature Biotechnology 2010, 28:511-515.

5. Heber S, Alekseyev M, Sze SH, Tang H, Pevzner PA: Splicing graphs and
EST assembly problem. Bioinformatics 2002, 18(suppl 1):5181-5188.

6. Lin YY, Dao P, Hach F, Bakhshi M, Mo F, Lapuk A, Collins C, Sahinalp SC:
CLIIQ: Accurate Comparative Detection and Quantification of Expressed
Isoforms in a Population. Proc Algorithms in Bioinformatics - 12th
International Workshop, WABI 2012, Volume 7534 of Lecture Notes in
Computer Science Springer; 2012, 178-189.

7. LiJJ, Jiang CR, Brown JB, Huang H, Bickel PJ: Sparse linear modeling of
next-generation mRNA sequencing (RNA-Seq) data for isoform discovery
and abundance estimation. Proc Natl Acad Sci USA 2011,
108(50):19867-19872.

8. Feng J, Li W, Jiang T: Inference of Isoforms from Short Sequence Reads.
In RECOMB, Volume 6044 of Lecture Notes in Computer Science. Springer;
Berger B 2010:138-157.

9. LiW, Feng J, Jiang T: IsoLasso: a LASSO regression approach to RNA-Seq
based transcriptome assembly. J Comput Biol 2011, 18(11):1693-707.

10. Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, Fan L,
Koziol MJ, Gnirke A, Nusbaum C, Rinn JL, Lander ES, Regev A: Ab initio
reconstruction of cell type-specific transcriptomes in mouse reveals the
conserved multi-exonic structure of lincRNAs. Nat Biotechnol 2010,
28(5):503-510.

11. Xing Y, Resch A, Lee C: The multiassembly problem: reconstructing
multiple transcript isoforms from EST fragment mixtures. Genome Res
2004, 14:(3):426-441.

12. Namiki T, Hachiya T, Tanaka H, Sakakibara Y: MetaVelvet: an extension of
Velvet assembler to de novo metagenome assembly from short
sequence reads. Nucleic Acids Res 2012, 40:e155.

13. Ahuja RK, Magnanti TL, Orlin JB: Network Flows: Theory, Algorithms, and
Applications Prentice-Hall, Inc; 1993.

14. Vatinlen B, Chauvet F, Chrétienne P, Mahey P: Simple bounds and greedy
algorithms for decomposing a flow into a minimal set of paths.
European Journal of Operational Research 2008, 185(3):1390-1401.

15. Hartman T, Hassidim A, Kaplan H, Raz D, Segalov M: How to split a flow? In
INFOCOM Greenberg AG, Sohraby K, IEEE 2012, 828-836.

16. Koch R, Skutella M, Spenke I: Maximum k-Splittable s, t-Flows. Theory of
Computing Systems 2008, 43:56-66 [http://dx.doi.org/10.1007/500224-007-
9068-8].

17. Salazar F, Skutella M: Single-source k-splittable min-cost flows. Oper Res
Lett 2009, 37(2):71-74.

18. Van Der Heijden PG, Cruyff M, Van Houwelingen HC: Estimating the Size
of a Criminal Population from Police Records Using the Truncated
Poisson Regression Model. Statistica Neerlandica 2003, 57(3):289-304.

19. Minoux M: Solving integer minimum cost flows with separable convex
cost objective polynomially. In Netflow at Pisa, Volume 26 of Mathematical
Programming Studies. Springer Berlin Heidelberg;Gallo G, Sandi C
1986:237-239 [http://dx.doi.org/10.1007/BFb0121104].

http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S5
http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S5
http://www.ncbi.nlm.nih.gov/pubmed/18516045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18516045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19844228?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19844228?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22495314?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22495314?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20436464?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20436464?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20436464?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12386001?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12386001?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22135461?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22135461?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22135461?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21951053?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21951053?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20436462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20436462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20436462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14962984?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14962984?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22821567?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22821567?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22821567?dopt=Abstract
http://dx.doi.org/10.1007/s00224-007-9068-8
http://dx.doi.org/10.1007/s00224-007-9068-8
http://dx.doi.org/10.1007/BFb0121104

Tomescu et al. BMC Bioinformatics 2013, 14(Suppl 5):S15
http://www.biomedcentral.com/1471-2105/14/S5/S15

20.

21.
22.
23.
24.

25.

Weintraub A: A Primal Algorithm to Solve Network Flow Problems with
Convex Costs. Management Science 1974, 21:87-97 [http://EconPapers.
repec.org/RePEcinm:ormnsciv:21:y:1974:i:1:p:87-97].

Lemon Graph Library: [http://lemon.cs.eltehu/trac/lemon/].

Traph source code and experiment data: [http://cs.helsinkifi/gsa/traph/].
Cilibrasi R, Vitanyi PMB: Clustering by compression. [EEE Transactions on
Information Theory 2005, 51(4):1523-1545.

RNASeqgReadSimulator: [http://www.cs.ucr.edu/~liw/rmaseqreadsimulator.
html].

Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions
with RNA-Seq. Bioinformatics 2009, 25(9):1105-1111.

doi:10.1186/1471-2105-14-S5-S15

Cite this article as: Tomescu et al: A novel min-cost flow method for
estimating transcript expression with RNA-Seq. BMC Bioinformatics 2013
14(Suppl 5):S15.

Page 10 of 10

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

(BioMed Central

http://EconPapers.repec.org/RePEc:inm:ormnsc:v:21:y:1974:i:1:p:87-97
http://EconPapers.repec.org/RePEc:inm:ormnsc:v:21:y:1974:i:1:p:87-97
http://lemon.cs.elte.hu/trac/lemon/
http://cs.helsinki.fi/gsa/traph/
http://www.cs.ucr.edu/~liw/rnaseqreadsimulator.html
http://www.cs.ucr.edu/~liw/rnaseqreadsimulator.html
http://www.ncbi.nlm.nih.gov/pubmed/19289445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19289445?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Our contribution

	Methods
	The reduction to a min-cost flow problem
	From a flow to a set of paths
	Decomposing the min-cost flow into few paths

	Results and discussion
	Matching criteria
	Simulated human data
	Real human data
	Running times

	Conclusions
	Authors’ contributions
	Competing interests
	Acknowledgements
	Declarations
	Author details
	References

