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Abstract

they set the bar or lower limit for future improvements.

proper goals remains one major objective for CAFA.

Background: Any method that de novo predicts protein function should do better than random. More
challenging, it also ought to outperform simple homology-based inference.

Methods: Here, we describe a few methods that predict protein function exclusively through homology. Together,

Results and conclusions: During the development of these methods, we faced two surprises. Firstly, our most
successful implementation for the baseline ranked very high at CAFAT1. In fact, our best combination of homology-
based methods fared only slightly worse than the top-of-the-line prediction method from the Jones group.
Secondly, although the concept of homology-based inference is simple, this work revealed that the precise details
of the implementation are crucial: not only did the methods span from top to bottom performers at CAFA, but
also the reasons for these differences were unexpected. In this work, we also propose a new rigorous measure to
compare predicted and experimental annotations. It puts more emphasis on the details of protein function than
the other measures employed by CAFA and may best reflect the expectations of users. Clearly, the definition of

Background

Our contribution to CAFA1

UniProt [1] holds over 22 million sequences (May 2012),
but reliable and detailed experimental annotations exist
for fewer than 1% of these. GO, the Gene Ontology [2]
has become the gold standard for function annotation
and many methods have emerged that predict GO anno-
tations [3]. Due to various problems, it has been almost
impossible to assess how well these methods perform.
CAFA (Critical Assessment of Function Annotations)
has arisen to address the challenges by a comprehensive
independent comparison [4].
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CAFA also drove our work presented here. Three teams
of students implemented three different methods predict-
ing function through homology, i.e. through inference
from experimental annotations of related proteins. All
three groups began with the same description what to do,
and that description was more comprehensive and detailed
than many descriptions of methods in papers. Two of the
three methods were surprisingly competitive in CAFA and
outperformed other similar methods. This triggered the
decision to enhance and combine these classifiers in one
meta predictor. This post-CAFA method did NOT partici-
pate in CAFA. Would it have, it might have reached the
top-10 ranks among all participants. Either way, it suggests
several ways for the improvement of function prediction
by homology, as demonstrated in this post-CAFA
evaluation.
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Additionally, we developed a new metric to compare
predicted and actual GO annotations. It provides insight
into how methods perform with respect to the predic-
tion of the exact functions. This turns out to be largely
neglected by existing measures.

Related work

Several advanced methods have appeared that also pre-
dict protein function through homology-based inference.
ConFunc [5] first assigns the proteins found via PSI-
BLAST to groups so that all members of a group share a
particular GO term. Looking at the alignments in each
group, the method then identifies conserved functional
residues, scores them and only outputs the groups above
a certain combined score. GOSLING [6] first derives var-
ious features of the terms found in the BLAST result (e.g.
GO evidence code, E-Value and bit score. Using many
decision trees, the prediction is then flagged as either
correct or incorrect. PFP [7] follows an approach very
similar to GOtcha [8], but also considers highly insignifi-
cant BLAST hits and co-occurrence between GO terms.
An extension of GOtcha, ESG [9], additionally differenti-
ates between the hits found in different PSI-BLAST itera-
tions. GOstruct [10] takes the idea of co-occurrence to
the next level and builds a sophisticated SVM machinery
around “structured output spaces”. This refers to the
extension of the input space (E-Values, asf.) with all
experimentally observed GO-subgraphs. FANN-GO[11]
uses E-Values as inputs to neural networks. Methods
based on data sources other than similarity to already
annotated proteins are described in a recent review [3].

Methods
GO (Gene Ontology) for CAFA
GO has three parts: Molecular Function Ontology
(MFO), Biological Process Ontology (BPO) and Cellular
Component Ontology (CCO). CAFA considered only the
MFO and BPO. Both correspond to two directed acyclic
graphs and capture different aspects of protein function.
Functional keywords (“GO terms”) are nodes and their
relationships are labeled edges. The ontology is hierarchi-
cal: following the edges from a node, each new term cor-
responds to a more general concept of the original
function. All paths converge at the root node, which can
simply be interpreted as, e.g., has a molecular function.
The complete functional annotation of each protein has
two subgraphs (MFO and BPO). If a subgraph does not
contain all the terms that can be inferred by going from its
nodes to the root, we perform a propagation. Given a set
of GO terms, this operation refers to its extension with all
ancestral terms. Ancestrors can be found by following all
outgoing paths from the terms to the root: each visited
node is an ancestor. If the GO terms have scores (e.g. to
reflect their reliability), the latter are also propagated: each
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parent term is simply assigned the maximum score of its
children. Sometimes, a propagated subgraph needs to be
reduced again to the leaf terms. A leaf term is not the par-
ent of any other term in the propagation and corresponds
to the most exact description of a function for the given
protein.

In order to integrate the operations above into our
methods, we used the graph_path table provided by the
GO consortium. It contains all possible paths in the
entire GO graph, pre-calculated by specific path infer-
ence rules.

Assessment of predicted GO annotations

Analogously to CAFA, we use fixed sets of target proteins
to compare prediction methods. Each target corresponds
to one or two propagated GO subgraphs of experimen-
tally validated terms (depending on whether both BPO
and MFO annotations are available or only one of the
two). A method is supposed to predict these subgraphs
(e.g. the left tree in Figure 1) and assign a reliability
between 0.0 and 1.0 to each predicted term (e.g. green
nodes in Figure 1). Then we assess their accuracy in the
following ways, separately for the MFO and BPO. For the
first two measures, we exclusively used the original
CAFA implementations, GO version, targets and target

Protein A
Experimental Annotation Predicted Annotation

@ Root QO Leaf
e Experimental Term O Predicted Term

0.x Confidence

Figure 1 A functional annotation and its prediction. This Figure
shows one annotation of a sample protein A and its prediction. Each
node in a graph corresponds to one GO term and the edges to
relationships such as “is a” or “part of". The edges always point to the
root node (either “MFO" or “BPQ"), which by itself is not informative
and discarded in every evaluation. For clearity, the left subgraph only
shows the experimental annotation of A. This means, all GO terms
have either been experimentally verified or inferred from the same.
The red circles indicate the leaf terms, i.e. the nodes which are not a
parent of any other term. In the right subgraph, we see the
experimental annotation again, but overlaid with predicted terms
(green) and their reliabilities. This time, the leaf terms correspond to
the predicted GO annotation, instead of the actual annotation.
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annotations. Only to implement our new leaf threshold
measure, we slightly adapted the programs.

Top-20

Given the prediction of a single protein, the top-20 mea-
sure first reduces the prediction to the terms with the
highest reliability (Figure 1: green nodes with score 0.8). It
then defines recall as the number of correctly predicted
GO terms divided by the number of all true GO terms.
Precision corresponds to the number of correctly pre-
dicted GO terms divided by the number of all predicted
GO terms. In Figure 1, for example, recall is 1/11 = 0.09
and precision is 1/2 = 0.5. If a target is not predicted at all,
it is assigned a recall of 0.0. Precision is not calculated in
such a case and has no influence. Repeating this for all tar-
gets, we obtain the average recall and precision. This is the
first point in the recall-precision curve. In order to fill the
curve, we gradually add the terms with 2nd, 3rd, ..., 20th
highest reliability to the predictions and recalculate all of
the above.

Threshold

The threshold measure [4] follows a similar concept as
top-20. Instead of considering a certain number of terms
for each target at a time the measure demands a thresh-
old between 0.0 and 1.0. In case of a threshold of 0.82,
for example, each prediction is reduced to terms with a
reliability greater than or equal to 0.82. Recall and preci-
sion can then be calculated analogously to the top-20
measure. A curve is obtained by lowering the threshold
in steps of 0.01 from 1.0 to 0.0.

Leaf threshold

The leaf threshold measure, finally, operates exclusively on
the leaves of a propagation (red nodes in Figure 1). First,
predicted and experimental subgraphs are reduced to their
leaf terms (Figure 1: experimental leaves on the left, pre-
dicted leaves on the right). Then, we define a threshold T
as before, e.g. T = 0.82, and reduce each prediction to the
leaves with a reliability > T. The recall of a single predic-
tion is given by the number of correctly predicted leaves
divided by the number of all experimental leaves. Precision
is defined analogously. Consequently, we can derive a
recall-precision curve in the same way as for the threshold
measure. In Figure 1, we obtain the first non-empty pre-
diction as soon as the threshold reaches 0.80 (the highest
score of all predicted leaves is 0.8). In this case, recall and
precision correspond to 0/3 = 0.0 and 0/1 = 0.0.

The leaf threshold measure is orthogonal to the top-20
and threshold measure: in the case of low recall, for exam-
ple, the former two measures remove specific GO terms
from the prediction and retain only the more general
terms. Naturally, more general terms have a higher chance
to overlap with the experimental propagation than specific
terms, resulting in higher precision. However, the leaves of
this reduced prediction are not more likely to overlap with
the leaves of the experimental annotation. If the full
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prediction was the best estimate of the experimental
leaves, the reduced version could even result in recall =
precision = 0.0 by the leaf threshold measure, because the
reduction might remove all correctly predicted leaves. Our
new measure assesses how well the exact functions of a
protein are predicted. Too general or specific predictions
are penalized.

Maximum F1 score

The top-20 and threshold measure were the two main
metrics in the CAFA meeting. The leaf measure is intro-
duced here for the first time. In order to rank methods,
the CAFA organizers additionally used the maximum F1
score over all recall-precision pairs obtained with the
threshold measure (Fmax). The F1 score is defined as:

2 X precision x recall

1)

precision + recall

We also employed Fmax in order to choose among
alternative parameters during method development after
CAFA.

Homology-based methods

All the methods that we presented at CAFA were devel-
oped as part of the exercises of a regular lecture at the
TUM in Munich (year 1-3 in bioinformatics master). Due
to limitations in time and resources, our methods had to
focus on a k-nearest-neighbor approach and to only use
the hits returned from a PSI-BLAST [12] query against
Swiss-Prot [1]. They were supposed to optimize the F1
score (threshold measure) of the leaf term with the highest
reliability. We split the 16 participating students into three
groups, each of which had to develop an own implementa-
tion. After 8 weeks of time and one week before the CAFA
submission deadline, we received the following three
methods. Their key features are summarized in Table 1.
StudentA (Figure 2)

Begin with 2-iteration PSI-BLAST against all Swiss-Prot
proteins with GO annotations (E-Value < 0.1). Extract
GO terms of the six top PSI-BLAST hits (or all if fewer
than 6 hits found). Each identified GO term is scored 1.0
if the term is found in all 6 hits and 0.5 otherwise. Once
the term-score pairs have been extracted, only the leaf
terms of their propagation are retained. Then apply the
following filter to reduce functional redundancy: (i) cre-
ate branches by propagating each predicted leaf term
separately; (ii) calculate all pairwise branch overlaps, with
the overlap being defined as the number of common GO
terms in both branches divided by the average branch
size.

Next, cluster all branches so that each pair from two
different clusters overlaps less than 10%. For each cluster,
the branch with the longest path to the root is chosen,
reduced to its original leaf term with the original score
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Table 1 Comparison of student methods.
StudentA StudentB StudentC
Input Features GO term counts E-Values GO term counts; percentage positives
Scoring Schemes 1 2 2
Propagation Types maximum child maximum child maximum child; cumulative
Score Normalization Across Proteins No Yes No

In this table, we have summarized the key differences between student methods. Input features include: the number of times a GO term appeared in the
annotations of homologous proteins; the E-Values of the homologous proteins; and the percentage of ‘positive’ columns in their alignment matrices. Some
groups used more than one way to score a GO term or differed during the propagation of a prediction by assigning a node the maximum value of its children
or their sum. StudentB normalized the final score of a GO term to improve comparability among proteins.

and output to the user. As the redundancy reduction may
filter out highly supported terms, we apply a final correc-
tion: if any pair of branches from previous steps overlaps
over 90%, the term common to both and with the longest
path to the root, i.e., the lowest common ancestor, is
added to the result.
StudentB (Figure 3)
Begin with 2-iteration PSI-BLAST against all Swiss-Prot
proteins with GO annotations (E-Value < 0.002 for 1%
and E-Value < 0.01 for 2™ round). Each PSI-BLAST hit
is associated with the propagation of its GO terms and
each term in the propagation is associated with the PSI-
BLAST E-Value of the hit. We then define two scores.
The template quality score gauges the reliability of the
entire PSI-BLAST query with respect to the goal of assign-
ing function. First, we calculate the raw template score as
the average over the logarithms of all returned PSI-BLAST
E-Values plus twice the standard deviation (also derived
from the log(E-Value)). The standard deviation is added to
correct for cases with relatively low top scores and rela-
tively high averages. This raw template score is normalized
into a value from 0 to 1 by mapping it into a percentile bin
obtained from running PSI-BLAST in the same fashion on
a sample of all Swiss-Prot proteins (e.g. a score obtained
by 90% of the samples for all Swiss-Prot is scored 0.1 = 1-
0.9). We call this percentile the template quality score.
The combined leaf score measures the reliability of each
predicted leaf. First, we compile the propagated set of all
GO terms for all PSI-BLAST hits. Each term can occur in
multiple hits and thus be associated with multiple

Redundancy Reduction

Top 6 BLAST Hits , GO Term Scoring;

protein 1 GO Tree Assembly of Branches; Output
LGO7,G04,G09

prol-é-in 6

LG0O7,G011

5 510 5 5 5 10

Figure 2 Flow chart of StudentA. StudentA first reduces the BLAST
output to the best 6 hits. GO terms that are part of the annotation
in all 6 hits are assigned a score of 1.0, all others 0.5. Then the
predicted GO graph is assembled by propagating the scores and
pruned again during a functional redundancy reduction (see text).
This reduced graph is output to the user.

E-Values. The support of a term is defined as the sum over
the logarithm of its E-Values divided by the sum of the
logarithm over the E-Values of all hits. The combined leaf
score of a leaf in the set of GO terms above is then given
by the average support of itself and all of its ancestors.
Finally, we multiply template quality and combined leaf
score for each leaf, combine all the leaf-score pairs in one
set and output its propagation to the user.
StudentC (Figure 4)
Begin with 2-iteration PSI-BLAST against all Swiss-Prot
proteins with GO annotations (E-Value < 0.1). Count how

Top BLAST Hits ! GO Tree Assembly;
protein 1 e-val 1e-20 E-Value Assignment
b GO7,G04,G09
;rotein N e-val 1e-03 GO4
L G04,G037,G013 [log(1e-20), log(1e-03) |
T T
Raw Tempiate Score Term Support Calculations
evals = 10
log(1e-20),...,log(1e-03) 0.74._0.66
Raw Template Score =
Q(evals)+stadev(evals) 043 022 030
v v
Template Quality Score Combined Leaf Score
£ ] @
S O ) AN
Raw Template Score 072 063 065
v v
Output: Template Quality Score * Combined Leaf Score
0.9170.72 0.91*0.65
_ 0.91*0.63 -
=0.66 =0.57 =0.59

Figure 3 Flow chart of StudentB. StudentB first logarithmizes the
E-Values of all BLAST hits and averages them. The result is mapped
into a range from 0 to 1 by looking up its percentile in a precompiled
distribution. This percentile is the Template Quality Score and reflects
how well we can predict the entire target. To score single terms, we
multiply it with the score of each predicted leaf, i.e. the Combined Leaf
Score. This is the average of the logarithmized E-Values of the nodes
on the path from the leaf to the root. The propagation of the leaf
terms and their scores is output to the user.
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Figure 4 Flow chart of StudentC. StudentC first counts how often
each GO term appeared in the BLAST hits and performs a cumulative
propagation: for each inner node, all counts of its child terms are
summed up and added to its own count (depth-first traversal).
Dividing each count by that of the root term, we obtain a score
between 0 and 1 for each term. In parallel, we calculate a second score
for each term by assigning it the maximum percentage of positives of
all associated hits (see text). Finally, we multiply the two scores,
determine the highest scoring leaf term and output only its
propagation to the user.

often a particular GO term appeared in the PSI-BLAST
hits (without propagation). All nodes with counts are pro-
pagated through the GO tree. Instead of taking the maxi-
mum count of all children at each parent node, however,
their values are summed up and added to that of the par-
ent node (normalization to [0,1] by division by maximal
value). We call this type of scoring the max support. The
PSI-BLAST scores, on the other hand, are considered as
follows.

For each PSI-BLAST hit, we first read off the positive
identity. This value is included in the default BLAST out-
put and corresponds to the number of positives divided by
the alignment length. (Each mutation column in the
default BLAST output with a positive score by BLO-
SUMBG2 is a positive.) Then, we multiply the max support
of each term with the highest associated positive identity
(we may have many positive identities, because a GO term
can be associated with multiple PSI-BLAST hits). The
method outputs only the one branch corresponding to the
highest scoring leaf term.

Post-CAFA re-parameterization

After CAFA, we parameterized the above three basic
homology-inference methods. For StudentA, we intro-
duced the options to exclude predictions with a score of
0.5 and to choose the number of PSI-BLAST hits to
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consider (before: 6; now: 1, 5 or 9). For StudentC, we
added alternative PSI-BLAST E-Value thresholds (before:
le-01; now: 1e00, 1e-03 or le-06) and percentage pair-
wise sequence identity as an alternative to the positive
identity. We also enabled the optional output of all
branches, instead of restricting it to the most probable
one. The original implementation of StudentB had a bug:
an alternative graph_path table inverted the order of the
columns by mistake. The results of this bug were sub-
mitted to CAFA. We fixed the bug and allowed for alter-
natives in the thresholds for E-Values and maximum
numbers of PSI-BLAST hits (E-Value before: 1e-02; now:
1e00, 1e-03 or le-06; max. number of hits before: 250
[PSI-BLAST default]; now: 5, 50 or 500).

For all methods, we also add the choice of the number
of PSI-BLAST iterations (before: 2 for all methods; now: 1,
2 or 3). Finally, we enabled the filtering out of Swiss-Prot
annotations with unclear experimental support (optional
restriction to the following experimental GO evidence
codes: IDA, IMP, IPI, 1G], IEP, TAS, IC, EXP).

The re-parameterization created 36, 54, and 72 different
parameter combinations for StudentA-C, respectively. We
optimized the parameters by picking the combination
leading to the highest Fmax (threshold measure; Eq. 1) on
a hold-out data set. This data set comprised all Swiss-Prot
proteins annotated with experimentally verified GO terms
in 2010 (“Set 2010”). All proteins annotated before 2010
served as templates (“Set < 2010”). This ascertained that
there was no overlap to the CAFA targets. In the follow-
ing, we refer to the optimized student methods as
StudentA™-C..

Post-CAFA method combination

Due to the end of the lecture during which the methods
were developed, we could not combine them. We did this
also post-CAFA. We randomly split Set 2010 into two
equal parts (Set 2010a and 2010b). Parameters were opti-
mized on the first split (2010a; as before, only with 2010a
instead of 2010). These optimized variants of StudentA-C
(say StudentA”-C”) were applied to the second split
(2010b). Then, we switched the roles of the two sets and
repeated the procedure to obtain predictions for each pro-
tein in Set 2010. With these predictions, we trained a com-
monly used meta classifier [13], namely a weighted least-
squares linear regression model. This corresponded to the
formula x*A’ + y*B’ + z*C’ + i = p, where A’, B’ and C’ are
the results of the student methods for each predicted GO
term and [x-z] and i are the coefficients to optimize in the
regression so that p reflects the reliability of the GO term.
In order to meta-predict a new target protein, we first
annotate it with methods StudentA’-C’. Each predicted
GO term is then converted into a vector of three elements
(one dimension for each method) and put into the formula
above. The resulting value of p is the reliability of the GO



Hamp et al. BMC Bioinformatics 2013, 14(Suppl 3):S7
http://www.biomedcentral.com/1471-2105/14/S3/S7

term for the given target. We refer to this predictor as
MetaStudent’.

Baseline classifiers

The CAFA organizers implemented the following three
baseline classifiers to gauge the improvement of current
function predictiors over old or naive methods [11]. (1)
Priors. Every target has the same annotations and each
term’s score is the probability of that term occurring in
Swiss-Prot. (2) BLAST. Target annotations are simply the
maximum sequence identity returned by BLAST under
default parameters when aligning a target with all proteins
annotated with a given term. (3) GOtcha. Using the same
BLAST results as BLAST, Gotcha [8] 1-Scores are calcu-
lated as the sum of the negative logarithm of the E-Value
of the alignment between the target protein and all pro-
teins associated with a given term. Additionally, we intro-
duce Priors’, which simply returns the entire GO
annotation of a random Swiss-Prot protein. Scores are
assigned as in Priors.

Data sets

We used five different data sets for method development
and evaluation. All are exclusively derived from GO and
the GO annotated proteins from Swiss-Prot and only dif-
fer in their release dates. The first three methods used the
GO/Swiss-Prot releases from Oct. 2010 (“Set < 2010_10")
for both development and group-internal evaluations.
We updated to the versions from Dec. 2010 (“Set <
2010_12") and submitted all 48,298 CAFA targets with
each method. For post-CAFA developments, we used the
release of Jan. 2010 as the source for template annotations
(“Set < 2010%). The independent data set needed for post-
CAFA parameter optimization then contained all proteins
annotated between January and December 2010 (“Set
2010”). Analogously to CAFA, we ignored proteins that
had any GO annotation before January 2010 and only
retained experimental annotations in the remaining pro-
teins. Experimental GO evidence codes were: IDA, IMP,
IPI, IGI, IEP, TAS, IC, and EXP (same as in CAFA).
“Set_2010” contained 1752 targets with BPO and 1351
with MFO annotations.

The CAFA organizers provided the original CAFA tar-
gets (436 with BPO and 366 with MFO annotations).
They correspond to the proteins annotated between
January and May 2011 (“Set 2011”). This set was derived
following a similar algorithm as those in “Set 2010”. The
difference was that the CAFA organizers also excluded
annotations from the GOA project in proteins annotated
before January 2011 (a resource we left untouched). We
used the annotations in “Set < 2010_12" to predict pro-
teins in “Set 2011”.

Note that this implied that all our post-CAFA optimiza-
tion could have been accomplished completely BEFORE
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the submission to CAFA (we just had not been fast
enough). Nevertheless, we clearly label all the new meth-
ods as “post-CAFA” in this work.

Results

Wide performance spread of homology-based inference
Our three homology-based predictors of protein function
(StudentA-C) performed very differently (Figure 5, dark
blue; note: all data compiled exclusively on the CAFA tar-
gets and with data available before the CAFA submission).
This was true for both categories, namely for biological
process (BPO, Figure 5, top panels) and for molecular
function (MFO, Figure 5, lower panels) and for all perfor-
mance measures (Figure 5: each column signifies one par-
ticular measure). For instance, StudentA performed
slightly better than StudentC by the top-20 measure
(Methods) and slightly worse by the threshold criterion
(Methods). While StudentA and StudentC mostly sur-
passed the baseline tests (PRIORS and BLAST), they even
topped the GOtcha baseline (dark green) for many thresh-
olds. In the BPO category (threshold measure), StudentC
actually outperformed all but two of the other 36 CAFA
predictors until a recall of about 0.2 (not shown). Note
that the curves for StudentA-C in Figure 5 are identical to
those calculated by the CAFA organizers.

Post-CAFA optimization renders homology-based
inference competitive

When we changed our methods post-CAFA, we carefully
avoided using any information that was not available at
the CAFA submission deadline. Nevertheless, we are
treating our optimized predictors (StudentA’-C’, and
MetaStudent’) differently to clearly mark the point that
these methods did not compete at CAFA. All changes
were straightforward (e.g. optimization of simple thresh-
olds) in the sense that they did not require any of the
knowledge that we gained at CAFA. They would have
been done by anyone with enough time before submis-
sion. This reality is important because they improved
performance markedly. Our best single method that
exclusively used homology information (StudentC’) even
outperformed the advanced method GOftcha in almost all
respects. MetaStudent’, the combination of all three
methods, was consistently on par or better than all
others, including GOtcha.

Leaf threshold measure suggested very different view

There is evidence that the top-20 and the threshold
measure penalize methods that provide a decision as to
which function is predicted and favor methods that out-
put huge lists of scored GO terms (Discussion). If so,
their use as the scoring to be optimized may go against
the interest of users (Discussion). In contrast, our new
leaf threshold measure (Methods) favors predictions
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Figure 5 Results of evaluations before and after CAFA. Here, we show the results of all methods for each ontology and measure. Baseline
classifiers share the same color (cyan), just like methods corresponding to the same design, but different parameter values (blue). Curves derived
from the CAFA organizers are solid and bold, otherwise thin and dotted. As the area between recall 0.0 - 0.2 and precision 045 - 0.55 is
extremely crowded in the BPO threshold measure plot, we provide an enlarged view with the inlet. In the BPO leaf threshold measure plot,

--A-- Method B' Method C'

with reasonable amounts of terms over those with overly
many. It first reduces all predicted GO terms to the leaf
terms and then compares those to the leaves of the true
annotation. Achieving, e.g., a recall of 1.0 simply by out-
putting the entire GO is therefore impossible. This
reveals just how bloated predictions can be (Figure 5:
rightmost panels): For instance, the baseline background
“method” Priors (i.e., predicting all GO terms for each
target and scoring them by frequency) is now numeri-
cally reduced to where it belongs, namely to a very bad
performance. Priors’ (i.e., randomly picking a protein
annotation from Swiss-Prot and scoring terms by

frequency), on the other hand, shows up competitive for
levels of recall < 0.1 in the MFO category. Since also
Priors stopped at recall 0.1, there appears to exist a very
common low level leaf in GO. In the BPO, a larger and
more complex hierarchy, Priors’ fails, too. It remains
unclear whether the bad performance of other baseline
classifiers (BLAST, GOtcha) under the leaf threshold is
due to unnecessarily large predictions in order to
achieve high recall or to deeper methodological pro-
blems. In any case, our results show that even under
this most rigorous measure, we can see fine grained
separations between methods.
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Homology-based method ranks very high

CAFA decided to rank methods according to the Fmax
score on the threshold measure (Eqn. 1). For compatibility,
we followed this approach (Table 2: all methods provided
in this contribution, plus the top mark presented at
CAFA, namely FunctionSpace). For comparison, we also
provide the scores for the top ranking method (Function-
Space). The complete list presented at CAFA contained 36
methods; for 15 of these, the ranks have been released. Of
all methods in Table 2, only StudentA, Gotcha, and “best”
were in the list. StudentB-C were excluded because only
one method per group was considered (we had correctly
chosen Student A for this). StudentA’-C’ and MetaStudent’
were not ranked as they were developed post-CAFA with
pre-CAFA data. The best homology-only method (Stu-
dentA) was in the top 8 only for BPO, while it dropped to
rank 13 for MFO. In contrast, two of the baseline meth-
ods, namely Priors and Gotcha both ranked higher for
MEFO than for BPO. In fact, StudentA ranked worse than
both baseline methods according to MFO and better than
both for BPO.

All our homology-only post-CAFA methods reached F1
scores consistently higher than that of StudentA. Our best
method (MetaStudent’) performed rather well by this cri-
terion and would have ranked in the list of the top three
at CAFA, had the method been completed in time. Its F1
scores would have been very similar to those of the top
contender (FunctionSpace).

Table 2 Ranking of methods with respect to the
maximum F1 score of the threshold measure curves.

F1 BPO Rank BPO F1 MFO  Rank MFO
Presented @ CAFA
GOtcha 0.29 13 047 4
BLAST 0.21 - 0.34 -
Priors 027 15 041 12
StudentA 032 8 040 13
StudentB 0.15 - 0.20 -
StudentC 0.28 14 036 -
Best@CAFA 0.37 1 049 1
Post-CAFA
Priors’ 0.20 - 0.29 -
Student A’ 033 8 043 10
Student B’ 0.36 3 045 7
Student C' 034 6 048 3
MetaStudent’ 0.36 3 048 3

This table shows the maximum F1 score (Fmax) of each threshold measure curve
in Figure 5 and its rank in the list of competing methods which was shown at
CAFA. This list actually consists of 36 predictors, but only the scores and ranks of
the top 15 performers have been released. Classifiers which are actually part of
this list are kept in bold. Ranks of other methods are hypothetical, either because
calculated after CAFA or because discarded by the CAFA organizers. They
considered only one method per participating group and we chose method A.
Results for StudentB were compiled with the bug (Methods).
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Ranks varied significantly with measure

We expanded the ranking to include all measures shown
in Figure 5 (Table 3). As before, we reduced each recall-
precision curve to one maximum F1 score and used this
value to define the rank of the respective method for this
measure. There were 11 methods, so that ranks always
ranged from 1 to 11. Depending on the method, the top
and lowest ranks differed by 2 to 7. The average differ-
ence for alternative measures was 3.8. Put differently, no
single method always had the same rank and, on average,
the differences spanned over one third of the entire
spectrum.

Discussion

A new baseline for simple homology based inference
CAFA provided a common ground to test our student
methods with experimental annotations unknown at the
time of prediction. These initial methods defined some
new lower bounds for the performance of simple homol-
ogy-based inference (e.g. StudentA and StudentC for
BPO). Our post-CAFA optimizations were carried out
exclusively with data available before the CAFA submis-
sion deadline. Hence, we postulate that our new results
could have been presented at CAFA, had we been ready in
time. They show that simple homology based inference
can compete with state-of-the-art prediction methods.
Considering the wealth of data that we did not use, this
suggests large room for improvement.

Similar methods can differ substantially
Nearest neighbor based homology inference can be rea-
lized in surprisingly many ways. The details of an

Table 3 Ranking methods by maximal F1 score for
various measures.

BPO MFO

Top-20 Threshold Leaf Top-20 Threshold Leaf
Priors 8 8 I 7 6 11
Priors’ 10 10 10 10 10 6
BLAST 9 9 9 6 9 10
GOtcha 6 6 8 2 3 9
StudentA 5 5 5 8 7 5
StudentA’ 3 4 4 5 5 2
StudentB " Il 7 11 1 7
StudentB’ 2 2 1 3 4 1
StudentC 7 7 6 9 8 8
StudentC’ 4 3 3 4 2 4
MetaStudent’ 1 1 2 1 1 3

We calculated the maximum F1 score (Eqn. 1) for each method and curve
presented in Figure 5 and ranked the methods accordingly. The number in
each cell is the rank of the method in the respective category. As we
evaluated 11 different methods, ranks range from 1 (best) to 11 (worst).
Results for StudentB were compiled with the bug (Methods).
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implementation may lead to almost random predictions
(StudentB, BLAST) or to state-of-the-art tools (optimized
student methods, GOtcha). This pertains to both design
choices and other free parameters. For example, score nor-
malization across targets appeared deleterious for low-
recall precision (StudentB’). In contrast, restricting predic-
tions to the most probable leaf can boost this aspect of
performance (StudentC). Analyzing the impact of various
free parameters during the optimization process (data not
shown), we also found the choice between using all or
only experimental GO annotations to be critical: StudentA’
and StudentC’ only approached the performance of
Gotcha in the MFO category because they focused on
experimental annotations.

CAFA measures seem to favor unspecific predictions

The difference in the performance of Priors and Priors’ for
the top-20 and threshold measures must be the result of
Priors’ reducing predictions to observed protein annota-
tions. Both predictors use the same scoring (term frequen-
cies). To understand this effect, consider a minimal
scoring threshold of 0.1. This defines one point in a recall
precision curve. Any term with a frequency of, e.g., 0.15
will be a correct prediction for about 15% of the targets
with Priors, because this predictor always predicts the
entire GO ontology. In contrast, Priors’ will pick this term
in only about 15% of all cases, reducing the chance to pre-
dict it correctly to 0.15*0.15 = 0.02 = 2%. Put simply,
Priors finds many more true positives than Priors’ at any
reasonable threshold. Superfluous predictions, on the
other hand, should be more frequent for Priors than for
Priors’, because Priors always predicts all terms above 0.1
and Priors’ only a fraction. Depending on which of those
two error forces is stronger, either Priors or Priors’is pre-
ferable for top-20 and threshold. At least for the GO and
typical Swiss-Prot annotations, the incorporation of many
false positives in the prediction seems highly favorable
(Priors). We would be surprised if this effect was limited
to Priors and Priors’ and not observable for most other
scoring schemes.

The leaf threshold measure challenges existing metrics

The leaf threshold measure sheds a brighter light onto
many results presented at CAFA. Now, baseline classi-
fiers are hugely outperformed by, for instance, homol-
ogy-based methods and also a different type of random
predictor is favorable (Priors’). This can be explained by
a simple example: assume the propagated annotation of
a single-function aldolase enzyme contains four terms.
Predicting it, we obtain, e g., a subgraph of 20 terms in
which the four highest scoring terms are correct and the
others are wrong According to the top-20 and threshold
measure, this is very good: We reach a recall of 1.0 with
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a precision of 1.0 (first four terms). Only when consider-
ing all predictions, precision drops to 0.2 (4/[4+16]).

We argue that this type of measure does not reflect
performance from a user’s point of view. Using all pre-
dicted terms, he or she will end up with the precision of
the highest recall. Even considering the predicted relia-
bility of each term, the user still has to decide which
terms are correct and which are not: the reliability
threshold separating true from false terms is unknown.
The odds of choosing a threshold exactly between the
score of the 4th term (correct) and the 5th term (false)
are low. But exactly this choice is assumed by the top-
20 and threshold measures and can highly bias exact
function prediction, as evident in the results of the leaf
threshold measure. The latter yields a recall and preci-
sion of 1.0 only if the prediction solely consists of the
first four highest scoring terms. Note that also restrict-
ing the prediction to scores above a certain threshold
per default does not solve the problem: first of all, we
would have to find this global threshold that leads to
the best leaf accuracy (a minimal change of the thresh-
old can lead to entirely new leaves and a new number
of leaves). This, however, should clearly be the task of
the method developer, not of the assessor. Secondly,
even with the best threshold, a small internal change of
the method might still lead to better performance. For
instance, consider a variable threshold that depends on
the target (instead of one global threshold) or a restric-
tion of the output to terms that have already been
observed as leaves in Swiss-Prot. Again, this is the task
of the method developer, not of the assessors.

We are convinced that the leaf threshold measure will
be an important extension for CAFA2. Getting to points
such as 80% recall at 10% precision with the current
measures is really not a valid goal for function predic-
tion. Rather the opposite, best performance should
imply high accuracy/precision. This direction is sup-
ported by our new measure.

Method ranking might be misleading

Our ranking of methods (Tables 2 and 3) followed
guidelines proposed earlier [14-16]. For example, we
always used the same data set and scoring schemes for
all methods. However, no clear “winner” emerged, as it
depended on the measure which method ranked top.
MetaStudent’, for instance, performed best on average,
but ranked only 3" behind StudentB’ and StudentA by
the leaf threshold measure in the MFO category (Table
3). In addition, there are many alternative relevant per-
formance measures and many new methods are yet to
be published. For future CAFA experiments, it will
therefore become even more important to avoid “crown-
ing winners” (unless methods stand out by all means)
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and to focus on method groups suited best for certain
disciplines.

Conclusions

In this work, we have explored the design and parameter
space of homology-based function prediction based on
nearest-neighbor principles. We find that small methodo-
logical and parametric changes can cause dramatic differ-
ences in performance. Consequently, we propose several
new algorithms that outperformed similar methods either
at the CAFA meeting or in the assessment presented
here. Consistently showing superior accuracies, our best
predictor even imposes itself as a substitution of the pop-
ular Gotcha method suggesting that a loose coupling of
diverse nearest-neighbor methods can yield state-of-the-
art performance. Finally, we challenge existing evaluation
protocols. Apparently, the performance measures on
which CAFA focused inadequately encourage methods to
abstain from making specific function predictions and to
instead provide huge lists of scored GO terms. This
appears a push into the wrong direction. Therefore, we
introduced a new rigorous measure that corrects for this
shortcoming as a candidate for the assessment at CAFA2.

Availability

Project name: Metatstudent

Project home page: https://rostlab.org/owiki/index.
php/Metastudent

Operating systems: Unix

Programming languages: Python, Java, Perl

Other requirements: BLASTP

License: GNU GPL for academic user; commercial
licence otherwise.
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