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Abstract

Background: Protein complexes conserved across species indicate processes that are core to cellular machinery (e.g.
cell-cycle or DNA damage-repair complexes conserved across human and yeast). While numerous computational
methods have been devised to identify complexes from the protein interaction (PPI) networks of individual species,
these are severely limited by noise and errors (false positives) in currently available datasets. Our analysis using
human and yeast PPI networks revealed that these methods missed several important complexes including those
conserved between the two species (e.g. the MLH1-MSH2-PMS2-PCNA mismatch-repair complex). Here, we note
that much of the functionalities of yeast complexes have been conserved in human complexes not only through
sequence conservation of proteins but also of critical functional domains. Therefore, integrating information of
domain conservation might throw further light on conservation patterns between yeast and human complexes.

Results: We identify conserved complexes by constructing an interolog network (IN) leveraging on the functional
conservation of proteins between species through domain conservation (from Ensembl) in addition to sequence
similarity. We employ ‘state-of-the-art’ methods to cluster the interolog network, and map these clusters back to
the original PPI networks to identify complexes conserved between the species. Evaluation of our IN-based
approach (called COCIN) on human and yeast interaction data identifies several additional complexes (76% recall)
compared to direct complex detection from the original PINs (54% recall). Our analysis revealed that the IN-
construction removes several non-conserved interactions many of which are false positives, thereby improving
complex prediction. In fact removing non-conserved interactions from the original PINs also resulted in higher
number of conserved complexes, thereby validating our IN-based approach. These complexes included the
mismatch repair complex, MLH1-MSH2-PMS2-PCNA, and other important ones namely, RNA polymerase-II, EIF3 and
MCM complexes, all of which constitute core cellular processes known to be conserved across the two species.

Conclusions: Our method based on integrating domain conservation and sequence similarity to construct
interolog networks helps to identify considerably more conserved complexes between the PPI networks from two
species compared to direct complex prediction from the PPI networks. We observe from our experiments that
protein complexes are not conserved from yeast to human in a straightforward way, that is, it is not the case that
a yeast complex is a (proper) sub-set of a human complex with a few additional proteins present in the human
complex. Instead complexes have evolved multifold with considerable re-organization of proteins and re-
distribution of their functions across complexes. This finding can have significant implications on attempts to
extrapolate other kinds of relationships such as synthetic lethality from yeast to human, for example in the
identification of novel cancer targets. Availability: http://www.comp.nus.edu.sg/~leonghw/COCIN/.
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Background
Complexes of physically interacting proteins form funda-
mental units responsible for driving key biological pro-
cesses within cells. Even in the simple model organism
Saccharomyces cerevisae (budding yeast), these complexes
are composed to several protein subunits that work in a
coherent fashion to carry out cellular functions. Therefore
a faithful reconstruction of the entire set of complexes
(the ‘complexosome’) from the set of physical interactions
(the ‘interactome’) is essential to understand their organi-
sation and functions as well as their roles in diseases [1-4].
In spite of the significant progress in computational

identification of protein complexes from protein interac-
tion (PPI) networks over the last few years (see the surveys
[1,2]), computational methods are severely limited by
noise (false positives) and lack of sufficient interactions
(e.g. membrane-protein interactions) in currently available
PPI datasets, particularly from human, to be able to com-
pletely reconstruct the complexosome [1,2]. For example,
several complexes involved in core cellular processes such
as cell cycle and DNA damage response (DDR) are not
present in a recent (2012) compendium of human protein
complexes (http://human.med.utoronto.ca/) assembled
solely by computational identification of complexes from
high-throughput PPIs[5]; a web-search (as of Feb 2013) in
this compendium for BRCA1 does not yield any com-
plexes even though BRCA1 is known to participate in
three fundamental complexes in DDR viz. BRCA1-A,
BRCA1-B and BRCA1-C complexes [6-8]. A possible rea-
son for missing these complexes is the lack of sufficient
PPI data required for identifying them even using the best
available algorithms. But, the authors of this compendium
note that many human complexes appear to be ancient
and slowly evolving - roughly a quarter of the predicted
complexes overlapped with complexes from yeast and fly,
with half of their subunits having clear orthologs [5].
Therefore, it is useful to devise effective computational
methods that look for evidence from evolutionary conser-
vation to complement PPI data to reconstruct the full set
of complexes.
In the attempt to integrate evolutionary information with

PPI networks, Kelley et al. [9] and Sharan et al. [10]
devised methods to construct an orthology graph of con-
served interactions from two species, which in their experi-
ments were yeast (S. cerevisae) and bacteria (H. pylori),
using a sequence homology-based (using BLAST E-score
similarity) mapping of proteins between the species. Dense
sub-graphs induced in this orthology graph represented
putative complexes conserved between the two species.
The complexes so-identified were involved in core cellular
processes conserved between the two species - e.g. those in
protein translation, DDR and nuclear transport. Van Dam
and Snel (2008) [11] studied rewiring of protein complexes
between yeast and human using high-throughput PPI

datasets mapped onto known yeast and human complexes.
From their experiments, they concluded that a majority of
co-complexed protein pairs retained their interactions
from yeast to human indicating that the evolutionary
dynamics of complexes was not due to extensive PPI net-
work rewiring within complexes but instead due to gain or
loss of protein subunits from yeast to human. Hirsh and
Sharan [12] developed a protein evolution-based model
and employed it to identify conserved protein complexes
between yeast and fly, while Zhenping et al. [13] used inte-
ger quadratic programming to align and identify conserved
regions in molecular networks. Marsh et al. [14] integrated
data on PPI and structure to understand mechanisms of
protein conservation; they found that during evolution
gene fusion events tend to optimize complex assembly by
simplifying complex topologies, indicating genome-wide
pathways of complex assembly.

Integrating domain conservation
Inspired from these works, here we devise a novel com-
putational method to identify conserved complexes and
apply it to yeast and human datasets. A crucial point we
note on the conservation from yeast to human is that
many cellular mechanisms, though conserved, have in
fact evolved many-fold in complexity - for example, cell
cycle and DDR. Consequently, while several proteins in
these mechanisms are conserved by sequence similarity
(e.g. RAD9 and hRAD9), there are others that are unique
(non-conserved) to human (e.g. BRCA1); see Figure 1.
These non-conserved proteins perform similar functions
(e.g. cell cycle and DDR) as their conserved counterparts,
but do not show high sequence similarity to any of the
yeast proteins. A deeper examination reveals that these
proteins in fact contain conserved functional domains -
for example, the BRCT domain which is present in yeast
RAD9 and human hRAD9 is also present in the non-
conserved human BRCA1 and 53BP1; all of these play
crucial roles in DDR [15]. Similar structure can be seen
in the case of RecQ helicases - several helicase domains
are conserved from the yeast SGS1 to human BLM and
WRN, but there are three helicases RECQ1,4,5 which are
unique to human that also contain these helicase
domains [16]. Therefore, integrating information on
functional conservation, mainly through domain conser-
vation, can help to identify considerably more (function-
ally) conserved complexes than mere sequence similarity,
thereby throwing further light on the conservation
patterns of complexes in particular and cellular processes
in general.
In order to achieve this, simple BLAST-based scores

as used in earlier works [9-13] to measure homology
between yeast and human proteins do not suffice. Here,
we integrate multiple databases including Ensembl [17]
and OrthoMCL [18] to build homology relationships
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among proteins; these databases use a variety of infor-
mation to construct orthologous groups among proteins
including checking for conserved domains. The integra-
tion of these databases generates many-to-many corre-
spondence between yeast and human proteins instead of
the predominantly one-to-one correspondence obtained
by from BLAST-based similarity.

We devise a novel computational method to construct
an interolog network using domain information along
with PPI conservation between human and yeast. Next,
we identify dense clusters within the interolog network
using current ‘state-of-the-art’ PPI-clustering methods
(as against traditional clustering methods used in
[9,10]). These clusters when mapped back to the PPI

Figure 1 Conservation of complexes between yeast and human. Many proteins in yeast have either ‘split’ into multiple proteins or fused
into common proteins in human during evolution. This mechanism is a result of selecting optimal protein assemblies [14] thereby resulting in
multi-fold expansion of complexity in human. In order to capture these conservation mechanisms it is necessary to integrate domain along with
PPI information.
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networks reveal conserved dense regions, many of which
correspond to conserved complexes.
Our experiments here reveal that,

(i) integrating domain information generates many
valuable interactions from the many-to-many ortho-
log relationships in the interolog network, thereby
enhancing its quality;
(ii) interolog network also reduces false-positive
interactions by accounting for conserved PPIs;
(iii) our interolog network construction aids cluster-
ing algorithms to identify far more conserved com-
plexes than direct clustering of the individual PPI
networks; and
(iv) many of these conserved complexes are involved
in core cellular processes such as cell cycle and DDR
throwing further light to the conservation of these
cellular processes.

We call our method COCIN (COnserved Complexes
from Interolog Networks).

Methods
Constructing the interolog network
Given two PPI networks from two species S1 and S2,
and the homology information between proteins of the
two networks, we construct an interolog network GI as
follows. The two PPI networks are represented as G1

(V1, E1) and G2(V2, E2), and the homology relationship
between the proteins is governed by a many-to-many
correspondence θ: V1 ® V2. The interolog network is
defined as GI(VI, EI), where VI = {vI= {p, q} | pÎV1,
qÎV2, and (p, q)Î θ}, and EI= {(vI, v’I) | vI ={p,q}; v’I={r,
s}; (p, r)ÎE1 and (q,s)ÎE2}.

Each node in the interolog network represents a pair
of homologous proteins, one from each species. Each
edge in the interolog network represents an interaction
that is conserved in both species (interolog). However, if
a protein p Î V1 can be orthologous to multiple pro-
teins x Î V2 and x Î V2, then we add two vertices to GI

namely {p, x} and {p, y}, and add an edge between two
vertices. Doing so integrates the many-to-many relation-
ships obtained due to domain conservation into the
interolog network. Figure 2 below gives a simple exam-
ple of this network-construction.
Any connected sub-network in this interolog network

can be mapped back to conserved sub-networks in the
two PPI networks, and this is similar to the orthology
graph method introduced by Kelley et al. [9] and Sharan
et al. [10]. However, one unique advantage of our inter-
olog network offers is that we can infer a collection of
homologous complexes between the species. This prop-
erty is highly relevant for identifying conserved com-
plexes between yeast and human (revisit Figure 1).
In order to achieve this, we integrate multiple data-

bases including Ensembl [17] and OrthoMCL [18] to
build our homology relationships among proteins; these
databases use a variety of information to construct
orthologous groups among proteins including checking
for conserved domains.

Clustering the interolog network and detection of
conserved complexes
We identify dense clusters in the interolog network to
detect conserved complexes between the two species.
To do this, we tested a variety ‘state-of-the-art’ PPI net-
work-clustering methods, and found the following three

Figure 2 Construction of the interolog network - a simplified example. Our interolog network constructing integrates PPI and domain
conservation information to generate a network that is conducive for clustering algorithms to identify considerably more conserved complexes
compared to direct clustering of the original PPI networks from species.
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to perform the best - CMC (Clustering by merging Maxi-
mal Cliques) by Liu et al. [19], MCL (Markov Clustering)
by van Dongen [20] and HACO (Hierarchical Clustering
with Overlaps) by Wang et al. [21]. The comparative
assessment of these methods has been confirmed with
earlier works [1,2,22-24].
CMC operates by first enumerating all maximal cliques

in network, and ranks them in descending order of the
weighted interaction density. It then iteratively merges
highly overlapping cliques to identify dense clusters in the
network. MCL simulates a series of random paths (called a
flow) and iteratively decomposes the network into a num-
ber of dense clusters. HACO performs hierarchical cluster-
ing by repeatedly identifying smaller dense clusters and
merging these into larger clusters. HACO has an advantage
over the traditional hierarchical clustering because it allows
for overlaps (protein-sharing) among the clusters.
Upon finding dense clusters in the interolog network,

we map back these clusters to sub-networks within the
two PPI networks to identify conserved complexes.

Building a benchmark dataset for conserved protein
complexes
Due to lack of benchmark datasets of conserved protein
complexes between human and yeast in the literature,
we built our own “gold standard” conserved dataset as
follows. Using currently available datasets of manually
curated protein complexes of human and yeast, we
selected pairs of complexes that shared significant frac-
tion of (homologous) proteins.

For measuring the conservation level of a given com-
plex pair {C1, C2}, where C1 belongs to species S1 and C2

belongs to species S2, we adopted the following Multi-set
Jaccard score:
Multi-set Jaccard score: Let GC1 and GC2 be the col-

lections of ortholog groups in complexes C1 and C2,
respectively. For any group giÎGci(i = 1, 2), let ICi repre-
sent the multiplicity of the group gi in complex Ci,
which essentially is the number of paralogs within the
group. Multi-set Jaccard score is then given by:

MSJ(C1,C2) =

∑

gi∈(GC1∪GC2)
min(I C1(gi), I C2(gi))

∑

gi∈(GC1∪GC2)
max(I C1(gi), I C2(gi))

,

There are often duplication of genes (paralogs)
within complexes and clusters. Therefore, MSJ takes
into account the multiplicity of the groups and does a
more conservative and accurate estimation of the con-
servation between C1 and C2. See Figure 3 for an
illustration.
We selected pairs of complexes that show MSJ ≥ 50%

(see result section for details).

Results
Preparation of experimental data
We combined multiple PPI datasets to enhance the cover-
age of our interactome. We collected PPIs from IntAct
[25] (version November 13, 2012) and Biogrid [26] (ver-
sions 3.2.95 and 3.2.89) databases for yeast; and from

Figure 3 Conservation scores for building benchmark complex datasets. We generate a “gold standard” conserved complexes dataset to
test our method. We use two scores here - the Jaccard score for orthologous groups and multi-set Jaccard score.
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Biogrid [26] and HPRD [27] (Release 9, 2010) for human.
Table 1 and 2 summarise these datasets.
Yeast curated complexes were gathered from Wodak

database (CYC2008) [28] and human curated complexes
from CORUM (version 09/2009) [29]; these form our
benchmark complex datasets (details in Table 3). We
used Ensembl [17] and OrthoMCL [18] for the homology
mapping between human and yeast proteins.

Criteria for evaluating predicted complexes
For a predicted complex Ci of one species and a manu-
ally curated (benchmark) complex Bj, we used Jaccard
score based on collections of complex proteins:

J(Ci,Bj) =
|Ci ∩ Bj|
|Ci ∪ Bj|, which considers Ci a correct predic-

tion for Bj if J(Ci, Bj)≥t, a match threshold. We chose t =
0.50 in our experiments as suggested by earlier works
[19,22]. Ci is then referred to as a matched prediction or
matched predicted complex, and Bj is referred to as a
derived benchmark complex.
Based on this, precision is computed as the fraction of

predicted complexes matching benchmark complexes,
and the recall is computed as the fraction of benchmark
protein complexes covered by our predicted complexes.
A correctly predicted complex is also checked against our
“gold standard” testing dataset to see if it is a conserved
complex, in which case the derived complex is a derived
conserved complex.

Results of complex detection using interolog network (IN)
Table 4 summarizes the interolog network constructed
from yeast and human PPIs. We map back each predicted

cluster from the IN to the original PPI networks to predict
conserved complexes between the two species.
Firstly, we compared the results of complex detection

from COCIN with direct clustering of the original PPI
networks using CMC, HACO and MCL as shown in
Tables 5 and 6. Interestingly, we observed that COCIN,
which employs CMC, HACO and MCL for clustering
the interolog network, yielded a better recall than these
methods on the original PPI networks. Further, because
IN capitalises on the existence of interactions in both
PPI networks (that is, conservation of interactions), the
number of noisy dense clusters in COCIN is consider-
ably reduced thereby enhancing its precision.
Figure 4 compares a predicted complex Ci through

COCIN with two predictions Cy and Chfrom the original
PPI networks; Cy and Chform a pair of orthologous
complexes, but by direct clustering of the original PPI
networks and matching them and not using COCIN.
We noticed that Cy and Chcontained several noisy proteins
and interactions among them which were false positives.
These false positives reduced the Jaccard accuracy of these
complexes when matched to known benchmark com-
plexes. We also note that when we computed the com-
plex-derivability index called Component-Edge score (this
index measures how much of chance a complex can
be detected given the topology of a PPI network) proposed
in [24], Ci had a higher CE-score compared to Cy and Ch

in the networks.
Figure 5 highlights the improvement of COCIN over

CMC, that is, the additional protein complexes of
human and yeast detected by COCIN. As many noisy
interactions are removed in the IN, among the conserved
complexes that are detected by both CMC and COCIN,
COCIN on an average obtained higher Jaccard scores.
Some important additional conserved complexes found

Table 1 Properties of yeast physical PPI datasets

Database #
proteins

# (non self and duplicated)
interactions

IntAct (version Nov 13,
2012)

5276 18834

Biogrid (version 3.2.95, Nov
30, 2012)

5886 73923

IntAct ∪Biogrid 6332 83777

IntAct∩Biogrid 4620 8930

ICDScore(IntAct ∪ Biogrid) 5239 71636

Table 2 Properties of human physical PPI datasets

Database # proteins #interactions

HPRD (Release 9, 2010) 9617 39184

Biogrid (April 25, 2012) 12515 59027

HPRD ∪ Biogrid 13624 76719

HPRD ∩ Biogrid 8615 21491

ICDScore(HPRD ∪ Biogrid) 8521(EntrezID) 61868

ICDEnrich(HPRD ∪ Biogrid) 9764 (EntrezID) 192053 (EntrezID)

Table 3 Properties of manually curated protein complex
datasets

Databases # complexes

Wodak[28] yeast complexes (CYC 2008) 149 with size>3
(36.5%)

Total: 408

CORUM [29] human complexes (September
2009)

722 with size>3 (39.1%)

Total: 1843

Table 4 Properties of the interolog network constructed
from yeast and human PPIs

# Mapped nodes using orthology 2470

# Interologs 6133

Size of biggest connected component 2434 nodes, 6112 edges

#Other connected components 16 (size from 2-3)

Nguyen et al. BMC Bioinformatics 2013, 14(Suppl 16):S8
http://www.biomedcentral.com/1471-2105/14/S16/S8

Page 6 of 16



Table 5 Comparisons of different methods on yeast data.

Method # Predicted
complexes

# Matched
predictions

Precision # Gold standard conserved
complexes

# Detected conserved
complexes

Recall (of conserved
complexes)

COCIN 71 36 50.7% 42 32 76.2%

CMC 1202 145 12.1% 42 23 54.8%

HACO 1040 69 6.6% 42 17 40.5%

MCL 387 37 9.6% 42 5 11.9%

Predicted complexes: resulting network clusters

Matched predictions: resulting network clusters that match with benchmarks

Precision = #matched prediction/#predicted complexes

Recall = # detected conserved complexes/# gold standard conserved complexes

Table 6 Comparisons of different methods on human data

Method # Predicted
complexes

# Matched
predictions

Precision # Gold standard conserved
complexes

# Detected conserved
complexes

Recall (of conserved
complexes)

COCIN 71 36 50.7% 118 78 66.1%

CMC 1389 156 11.2% 118 66 55.9%

HACO 1290 80 6.2% 118 36 30.5%

MCL 631 45 7.1% 118 24 20.3%

Predicted complexes: resulting network clusters

Matched predictions: resulting network clusters that match with benchmarks

Precision = #matched prediction/#predicted complexes

Recall = # detected conserved complexes/# gold standard conserved complexes

One predicted complex of COCIN can match with many benchmark complexes, this explains for #detected conserved complexes > #matched predictions (as
illustrated in Figures 5-8)

Figure 4 An illustration on a predicted complexes from IN. (a) A predicted complex in the IN. (b) The corresponding complex in the human
PPI network. (c) The corresponding complex in the yeast PPI network.
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using COCIN were: RNA Polymerase II, EIF3 complex,
MSH2-MLH1-PMS2-PCNA DNA-repair initiation com-
plex, MCM complex, MMR complex, Ubiquitin E3 ligase,
transcription factor TFIID, DNA replication factor C, 20S
proteasomes (descriptions of these complexes are listed
in Tables 7 and 8).

The result of complex detection in the conserved
subnetworks
To further understand the advantage of COCIN on lever-
aging conservation for better detection of complexes, we
performed another experiment alternative to the interolog
network as follows. We predicted complexes from the

Figure 5 COCIN compared to CMC. COCIN over the interolog network identifies significantly more conserved complexes compared to direct
clustering of the original PPI networks using CMC [19].
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Table 7 Additional conserved complexes found in yeast

ID Complex name Size Jaccard
score

Functional
category

Functional description

96 eIF3 complex 7 0.63 Translation Eukaryotic translation initiation factor

247 Transcription factor
TFIID complex

15 0.73 Transcription mRNA synthesis

27 DNA-directed RNA
polymerase II complex

12 0.69 Transcription mRNA synthesis

45 DNA replication factor
C complex (Rad24p)

5 0.67 DNA processing DNA synthesis and replication

152 DNA replication factor
C complex (Rcf1p)

5 0.67 DNA processing DNA synthesis and replication

294 Mcm2-7 complex 6 0.6 DNA processing Chromosome maintainance, DNA synthesis and replication

268 SF3b complex 6 0.57 RNA processing mRNA splicing

65 U6 snRNP complex 8 0.5 RNA processing This complex combines with other snRNPs, unmodified pre-mRNA, and various
other proteins to assemble a spliceosome, a large RNA-protein molecular
complex upon which splicing of pre-mRNA occurs.

375 AP-3 adaptor complex 4 0.67 Cellular transport,
vesicular transport

This complex is responsible for protein trafficking to lysosomes and other
related organelles.

25 20S proteasome 14 0.5 Cell cycle, protein
fate

Proteasomal degradation (ubiquitin/proteasomal pathway), protein processing
(proteolytic)

137 Chaperonin-containing
T-complex

8 0.67 Protein fate A multisubunit ring-shaped complex that mediates protein folding in the
cytosol without a cofactor.

Table 8 Additional conserved complexes found in human

ID Complex name Size Jaccard
score

Functional
category

Function description

4392 EIF3 complex (EIF3A, EIF3B,
EIF3G, EIF3I, EIF3C)

5 0.57 Translation Translation initiation

4403 EIF3 complex (EIF3A, EIF3B,
EIF3G, EIF3I, EIF3J)

5 0.57 Translation Translation initiation

104 RNA polymerase II core complex 12 0.69 Transcription mRNA synthesis

2685 RNA polymerase II 17 0.59 Transcription mRNA synthesis

2686 BRCA1-core RNA polymerase II
complex

13 0.64 Transcription mRNA synthesis

471 PCAF complex 10 0.6 Transcription, DNA
processing

DNA conformation modification (e.g. chromatin), modification by
acetylation, deacetylation, organization of chromosome structure.

2200 RFC2-5 subcomplex 4 0.5 DNA processing DNA synthesis and replication

387 MCM complex 6 0.6 DNA processing Chromosome maintainance, DNA synthesis and replication

369 MMR complex 2 4 0.67 DNA processing DNA damage repair

290 MSH2-MLH1-PMS2-PCNA DNA-
repair initiation complex

4 0.67 DNA processing DNA damage repair initiation

1169 SNARE complex 4 0.6 Cellular transport,
vesicular transport

Vesicle fusion, synaptic vesicle exocytosis

562 LSm2-8 complex 7 0.67 RNA processing mRNA splicing

561 LSm1-7 complex 7 0.67 RNA processing Control of mRNA stability during splicing

3036 Ubiquitin E3 ligase (SKP1A, SKP2,
CUL1, CKS1B, RBX1)

5 0.5 Cell cycle, protein
fate

Mitotic cell cycle and cell cycle control, modification by
ubiquitination, deubiquitination

2188 Ubiquitin E3 ligase (CDC34,
NEDD8, BTRC, CUL1, SKP1A,
RBX1)

5 0.5 Cell cycle, protein
fate

Mitotic cell cycle and cell cycle control, modification by
ubiquitination, deubiquitination

2189 Ubiquitin E3 ligase (SMAD3,
BTRC, CUL1, SKP1A, RBX1)

5 0.5 Cell cycle, protein
fate

Mitotic cell cycle and cell cycle control, modification by
ubiquitination, deubiquitination
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subset of protein interactions of the first species that are
conserved in the second (we call this the conserved subnet-
work in the first species). However, this can only find com-
plexes of one species at a time, so we map these predicted
complexes onto the PPI network of the other species to
identify the corresponding conserved complexes. We
employed CMC to do clustering on the conserved
subnetworks.
Complex prediction from conserved subnetworks

showed similar result as COCIN -16 additional con-
served complexes in human and 9 additional conserved
complexes in yeast are found. This supported the pur-
pose of IN - to leverage conserved interactions for
improving complex prediction.
Figure 6 shows two other examples that explain why

additional conserved complexes are found by COCIN but
missed by CMC. We see from this picture that the pre-
dicted human complex from IN (the leftmost figure) and
the corresponding predicted complex from the conserved
subnetwork (the center figure) were contained in a larger
CMC-predicted complex (the rightmost figure) from the
original PPI networks. This larger complex included sev-
eral noisy proteins that reduce the accuracy of the com-
plex, thereby causing the complex to be missed.

Comparisons with other complex detection methods in
PPI networks
Similar results were obtained using the other two meth-
ods HACO and MCL as well, thereby supporting the
effectiveness of COCIN in identifying conserved protein
complexes. Tables 5 and 6 present these comparisons in
more details, while Figures 7 and 8 highlight further
substantiate these results.

Integrating domain information significantly enhances
interolog construction
Finally, Table 9 summarizes the quality of our testing
dataset for conserved protein complexes between yeast
and human. We compared the number of benchmark
conserved complexes found in both human and yeast
using mappings from Ensembl and OrthoMCL under
multiple conservation score thresholds (Figure 9). Note
that Ensembl contains homology information based on
both sequence similarity as well as domain conservation,
while OrthoMCL is predominantly based on sequence
similarity. We noticed that using Ensembl homology
information can yield more conserved complexes at
all conservation score thresholds. Further, Figure 10
shows that there exist 1-to-many and many-to-many

Figure 6 Some examples of additional conserved complexes found in IN. The clusters detected from the original PPI networks include
several noisy proteins and noisy interactions (false positives), thereby reducing their Jaccard accuracies.
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relationships of conservation between human and yeast
complexes.
Sharan et al. used whole-sequence similarity to con-

struct the interolog network. Here, we used OrthoMCL

as a substitute for the whole-sequence similarity due to
technical difficulties of running BLAST for a large num-
ber of proteins. We compared the performance of using
OrthoMCL against using Ensembl, which uses domain

Figure 7 COCIN compared to HACO. COCIN over the interolog network identifies significantly more conserved complexes compared to direct
clustering of the original PPI networks using HACO [20].
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conservation along with sequence similarity to deter-
mine orthology. Table 10 and Figure 11 show that we
obtain an overall improvement in terms of the number
of mapped protein pairs, interologs, as well as con-
served protein complexes in both human and yeast by
incorporating domain information (through Ensembl).
This substantiates the improved performance of
COCIN over traditional sequence-similarity based
methods.

Figure 8 COCIN compared to MCL. COCIN over the interolog network identifies significantly more conserved complexes compared to direct
clustering of the original PPI networks using MCL [21].

Table 9 Details of gold standard testing dataset for
conserved protein complexes between human and yeast

Score usage MSJ≥threshold

Threshold 50%

# conserved yeast complexes 42/149 with size>3 (28.1%)

Total: 79/408 (19.3%)

# conserved Human complexes 118/722 with size>3 (16.3%)

Total: 219/1843 (11.9%)
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Figure 9 Assessment of Ensembl and OrthoMCL based homology for IN construction and conserved-complex detection. Ensembl [17]
contains protein orthologs based on sequence similarity as well as domain information, while OrthoMCL [18] is predominantly based on
sequence similarity. As we can see from the table, using domain information (through Ensembl) generates significantly more many-to-many
ortholog mappings thereby enhancing our interolog construction.

Figure 10 Some examples of the one-to-many and many-to-many relationships of complex conservation between human and yeast.
Ensembl [17] contains protein orthologs based on sequence similarity as well as domain information, while OrthoMCL [18] is predominantly
based on sequence similarity. As we can see from the table, using domain information (through Ensembl) generates significantly more many-to-
many ortholog mappings thereby enhancing our interolog construction.

Nguyen et al. BMC Bioinformatics 2013, 14(Suppl 16):S8
http://www.biomedcentral.com/1471-2105/14/S16/S8

Page 13 of 16



Discussion
Figure 1 paints a very complicated picture for the con-
servation pattern of protein complexes from yeast to
human. We believe that this picture reflects the actual
situation, and it overrides the belief that a yeast complex
is essentially a (proper) subset of a human complex with
only a few new proteins added to the human complex.
In other words, the conservation pattern from yeast to
human is highly intricate involving dispersion and
re-distribution of proteins and their functions across
complexes along with addition of several new proteins

in human. At a very high level, though core cellular
mechanisms such as cell cycle and DDR are indeed
conserved from yeast to human, within these mechan-
isms, considerable re-arrangements have occurred.
This finding can have implications on studies attempt-
ing to extrapolate relationships such as synthetic leth-
ality (SL) from yeast to human. In particular, we believe
that many of the SL relationships may not be conserved
from yeast to human, or even if conserved, may not be
identifiable by simple BLAST-based sequence-similarity
mappings.

Table 10 Homology data: Ensembl and OrthoMCL

Ensembl database OrthoMCL database

# Ortholog groups: # 1-to-1 groups 1096 1153

# 1-Yeast-to-many groups 756 434

# 1-Human-to-many groups 116 116

# many-to-many groups 197 167

Total: 2165 (5503 pairs) 1870

# Human paralog groups: 2573 2435

# Yeast paralog groups: 426 393

Total # homolog groups: 5164 4698

Ensembl [17] contains protein orthologs based on sequence similarity as well as domain information, while OrthoMCL [18] is predominantly based on sequence
similarity. As we can see from the table, using domain information (through Ensembl) generates significantly more many-to-many ortholog mappings thereby
enhancing our interolog construction.

Figure 11 Comparison between using Ensembl and OrthoMCL in constructing the interolog network. Ensembl [17] contains protein
orthologs based on sequence similarity as well as domain information, while OrthoMCL [18] is predominantly based on sequence similarity. As
we can see from the table, using domain information (through Ensembl) generates significantly more many-to-many ortholog mappings thereby
enhancing our interolog construction.
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Conclusions
Identifying conserved complexes between species is a
fundamental step towards identification of conserved
mechanisms from model organisms to higher level
organisms. Current methods based on clustering PPI
networks do not work well in identifying conserved
complexes, and they are severely limited by lack of true
interactions and presence of large amounts of false
interactions in existing PPI datasets. Here, we presented
a method COCIN based on building interolog networks
from the PPI networks of species to identify conserved
complexes. Our experiments on yeast and human data-
sets revealed that our method can identify considerably
more conserved complexes that plain clustering of the
original PPI networks. Further, we demonstrated that
integrating domain information generates many-to-many
ortholog relationships which significantly enhances inter-
olog quality and throws further light on conservation of
mechanisms between yeast and human.

Availability
Our COCIN software and the datasets used in this work are
freely available at: http://www.comp.nus.edu.sg/~leonghw/
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