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Abstract

Background: Transcription factors (TFs) and microRNAs (miRNAs) are primary metazoan gene regulators. Regulatory
mechanisms of the two main regulators are of great interest to biologists and may provide insights into the causes of
diseases. However, the interplay between miRNAs and TFs in a regulatory network still remains unearthed. Currently, it
is very difficult to study the regulatory mechanisms that involve both miRNAs and TFs in a biological lab. Even at data
level, a network involving miRNAs, TFs and genes will be too complicated to achieve. Previous research has been
mostly directed at inferring either miRNA or TF regulatory networks from data. However, networks involving a single
type of regulator may not fully reveal the complex gene regulatory mechanisms, for instance, the way in which a TF
indirectly regulates a gene via a miRNA.

Results: We propose a framework to learn from heterogeneous data the three-component regulatory networks, with
the presence of miRNAs, TFs, and mRNAs. This method firstly utilises Bayesian network structure learning to construct
a regulatory network from multiple sources of data: gene expression profiles of miRNAs, TFs and mRNAs, target
information based on sequence data, and sample categories. Then, in order to produce more meaningful results for
further biological experimentation and research, the method searches the learnt network to identify the interplay
between miRNAs and TFs and applies a network motif finding algorithm to further infer the network.

We apply the proposed framework to the data sets of epithelial-to-mesenchymal transition (EMT). The results
elucidate the complex gene regulatory mechanism for EMT which involves both TFs and miRNAs. Several discovered
interactions and molecular functions have been confirmed by literature. In addition, many other discovered
interactions and bio-markers are of high statistical significance and thus can be good candidates for validation by
experiments. Moreover, the results generated by our method are compact, involving a small number of interactions
which have been proved highly relevant to EMT.

Conclusions: We have designed a framework to infer gene regulatory networks involving both TFs and miRNAs from
multiple sources of data, including gene expression data, target information, and sample categories. Results on the
EMT data sets have shown that the proposed approach is able to produce compact and meaningful gene regulatory
networks that are highly relevant to the biological conditions of the data sets. This framework has the potential for
application to other heterogeneous datasets to reveal the complex gene regulatory relationships.

Background

The regulation of gene expression is a critical mechanism
in the control of biological processes in cellular organisms.
At the transcriptional level, the main regulators contribut-
ing to the control are transcription factors (TFs), proteins
that bind to cis-regulatory elements in the gene promoter
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regions [1]. By activating or repressing their target genes,
TFs can regulate the global gene expression program of a
living cell, and form transcriptional regulatory networks
[2-4].

Recent studies have identified that microRNAs
(miRNAs) play an important role in gene regulation at the
post-transcriptional level. The regulation process takes
place via mRNA cleavage or translational repression, with
miRNAs binding to the 3’-untranslated regions (3’-UTRs)
of target mRNAs through base pairing to complemen-
tary sequences [5-8]. It has also been demonstrated in a
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body of literature that miRNAs regulate a wide range of
biological processes in proliferation [9,10], metabolism
[11,12], differentiation [13], development [14,15], apop-
tosis [12,16,17], cellular signaling [18] and even cancer
development and progression [7,19,20].

It is necessary to draw a unified picture for the reg-
ulatory relationships between TFs, miRNAs and genes.
However, a challenge is that the combined regulations
of miRNAs and TFs are complicated, since they involve
not only the interactions between each regulator and
their target genes, but also the interactions between the
regulators themselves. Studies of the gene regulatory net-
works with the presence of both TFs and miRNAs will
help elucidate the regulatory mechanisms involving both
direct and indirect regulatory relationships. However, It
is still highly unlikely for these relationships to be dis-
covered by biological experiments directly, as the process
would be extremely costly and time consuming. On
the other hand, well-designed computational approaches
may facilitate the understanding of such complex
relationships.

Previously, researchers studied the co-regulation of TFs
and miRNAs by finding out their shared downstream tar-
gets [21,22]. The methods used probabilistic models or
statistical tests to measure the significance of the shared
targets between the regulators, and to remove the insignif-
icant co-regulating interactions that occurred by chance.
Gene enrichment analysis was used in [23] to identify
significant co-regulation between the transcriptional and
post-transcriptional layers. They found that some bio-
logical processes emerged only in co-regulation and that
the disruption of co-regulation may be closely related to
cancers, suggesting the importance of the co-regulation
of miRNAs and TFs. In [23] available predicted targets
databases are used to construct the network, and then
Gene Ontology (GO) was used to discover the significant
functional co-regulation pairs. Tran et al. [24] proposed a
rule based method to discover the gene regulatory mod-
ules that consist of miRNAs, TFs, and their target genes
based on the available predicted target binding informa-
tion. Le Béchec et al. [25] integrated available target pre-
diction databases to construct a regulatory network that
involves miRNAs, TFs, and mRNAs. This work provides
a good resource for exploring the regulatory relationships
or identifying the network motifs. However, target predic-
tion based on sequences have high rate of false discoveries,
which affect the quality of the discoveries of the above
mentioned methods. It would be ideal if expression data
can be used to refine the discoveries.

Roqueiro et al. [26] proposed a method to identify
the key regulators (miRNAs or TFs) of pathways. The
method used Bayesian inference on known pathway struc-
tures to infer a set of regulators in the pathway network.
The Bayesian network in this method was constructed
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manually using the known KEGG pathways by remov-
ing the cycles in the pathways and applying some filtering
criteria. The method drew findings based on existing
knowledge and provided a good resource for other meth-
ods to validate their results. However, it may not be good
for exploratory study.

Recently, Huang et al. [27] developed a web tool
(mirConnX) for constructing the regulatory networks that
include miRNA, TFs, and mRNAs. The built networks
can be further analysed to identify network motifs. The
method has used both predicted targets and expression
data to build the network. The method integrated the
association network based on expression data and the
prior network based on sequence data. However, an edge
in this network shows association, which may not indi-
cate a regulation relationship. A strong association of A
and B may be a result of a common regulator which regu-
lates both A and B. Zacher et al. [28] proposed a Bayesian
inference method based on expression data to explain the
activity of miRNAs and TFs. However, this approach does
not take into account the interactions between miRNAs
and TFs.

In this paper, we present a framework to construct the
complex regulatory network with three components: TFs,
miRNAs, and target genes. Our approach aims to dis-
cover the regulatory relationships of miRNAs and TFs
on their target genes respectively, as well as the interplay
between the two different types of regulators. The method
utilises multiple sources of data, including gene expres-
sion data, target information of each regulator based on
sequence data, and sample categories (conditions). To test
the proposed method, we use the expression data from
the NCI-60 panel of cell lines [29], and investigate the
interactions that may involve in the biological process of
epithelial-to-mesenchymal transition (EMT).

Methods

Notation and definitions

Consider three expression data sets profiling K miRNAs,
I TFs, and /] mRNAs across S samples, respectively. Let
x = {xr},y = {9i}, 2 = {zj} be the vectors of miRNAs, TFs,
and mRNAs, respectively, where 1 < k < K,1 < i < I,
and 1 < j < J. Each sample is labelled by its category, i.e.
the biological condition of the samples, such as cancer or
normal.

In this paper, our goal is to discover the interactions
between «,y,z (x and y are regulators) supported by the
expression data and under the constraint of target infor-
mation (see Figure 1). Target information for a regulator is
the interactions between the regulator and the regulated
genes that are predicted based on the sequence data. We
are particularly interested in the interactions between x
and y (called the interplay of miRNAs and TFs), and net-
work motifs, which are patterns of subgraphs that recur at
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Figure 1 Method overview. The method utilises Bayesian network learning and graph search to produce a three-component regulatory network
(mIRNA-TE-mRNA) from multiple sources of data. Target information is used to create the initial structure representing the interactions between
mMiRNA-MRNA, miRNA-TF, TF-miRNA, TF-TF, and TF-mRNA. For illustration, we only draw one bipartite graph in the initial structure. Expression
profiles are then used in the Bayesian network learning procedure to construct the networks in each sample condition. Bootstrapping and
averaging procedure is used to integrate the Bayesian networks learnt from each condition into the integrated global network. The interplays
between miRNAs and TFs and the network motifs that involve at least 2 regulators are extracted from the global network and are final results.

frequencies much higher than those found in randomised
networks [2].

Method overview

In the remaining parts of the Methods section, we
present our framework for constructing the regulatory
network with the co-existence of both regulators, TFs
and miRNAs. The method aims to produce regulatory
networks including miRNAs, TFs, and genes that are
relevant to diseases. The overall process is shown in
Figure 1.

There are three main steps in the framework: (1)
data preparation, (2) network learning and integration,
and (3) network inferences. In Step (1), we prepare
the input for the network structure learning, includ-
ing collecting target information for TFs and miRNAs,
normalising expression data, and analysing differentially

expressed genes. At the beginning of Step (2), the target
information is transformed into the 5 types of network
sub-structures (miRNA-mRNA, miRNA-TF, TF-miRNA,
TF-TF, and TF-mRNA), which are used as the ini-
tial structure for the Bayesian network learning process
(refer to Figure 1). Additionally the expression datasets
are split according to sample conditions. The initial
structure are evaluated based on the expression pro-
files in each condition. The Bayesian networks learnt
under each condition are integrated using a bootstrap-
ping and averaging procedure. Therefore the result of Step
(2) is an integrated global network with three compo-
nents: miRNAs, TFs, and mRNAs. In the network infer-
ence step (Step (3)), we search the global network for
the subgraphs that show the interplay between miRNAs
and TFs, and network motifs that involve at least two
regulators.
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In the following, we describe each of the three steps in
detail.

Step (1): Data preparation

Epithelial-to-mesenchymal transition (EMT) is part of the
process of tissue remodeling during embryonic develop-
ment and wound healing [30], and during carcinogenesis
[31] when cancer cells undergo a change transforming into
a more invasive tumor [30,32].

After EMT induction, cells lose their epithelial features
characterised by the high E-cadherin expression level, and
acquire mesenchymal characteristics, including Vimentin
filaments and a flattened phenotype. By expressing pro-
teases, cells become more invasive, and they can pass
through the underlying basement membrane and migrate.
These are crucial steps in the multistep process of metas-
tasis [33].

Data used in this study contain miRNA expression pro-
files for the NCI-60 panel of 60 cancer cell lines obtained
from So et al. [34] (available at [http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE26375]). The mRNA
expression profiles for NCI-60 are downloaded from
ArrayExpress [http://www.ebi.ac.uk/arrayexpress], acces-
sion number E-GEOD-5720. Cell lines categorised as
epithelial (11 samples) and mesenchymal (36 samples) are
used in this work.

In order to identify all the TF genes in the data sets, we
use the list of TF repertoire mined from [1]. This list is
then used to query against the mRNA expression profiles
from NCI-60 to extract TF expression profiles.

After normalising the expression data of miRNAs, TFs,
and mRNAs, differentially expressed gene analysis is con-
ducted respectively to all the three components, TFs,
miRNAs, and mRNAs. The differentially expressed genes
between epithelial and mesenchymal samples are identi-
fied using the limma package of Bioconductor [35] with
the Benjamini and Hochberg’s (BH) correction method
[36]. 148 probes of TFs, and 2251 probes of mRNAs are
identified as differentially expressed at significant levels
(adjusted p-value< 0.1). Also 43 probes of miRNAs are
identified with adjusted p-value< 0.01. The reason for
choosing adjusted 0.01 as the cut-off for miRNA differen-
tially expressed analysis is that the B statistic value out-
put from limma changes the value significantly between
adjusted p-value< 0.01 and adjusted p-value> 0.01. This
is a good sign for using the value of 0.01 as a cut-off,
and the number of miRNAs obtained with this cut-off is
also reasonable for analysing the results. (The details of
differentially expressed genes are in Additional file 1).

The data input to the Bayesian network learning in
the next step is the expression profiles of three com-
ponents, miRNAs, TFs, and mRNAs. To integrate the
data profiled from different platforms, we discretise the
expression values of each gene in each sample to binary
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values (standing for up-regulation and down-regulation)
by using the median of each array as the cut-off.

Another input to the Bayesian network learning is the
target information, which is used as the prior knowl-
edge (initial Bayesian network structure) to reduce the
search space in the learning. miRNA targets and TF tar-
gets are collected via commonly used databases. These
databases usually predict target genes using sequence
data. In this paper, we are particularly interested in the
information of TFs targeting both mRNA and miRNA
genes, and the miRNAs targeting mRNA and TF genes.
We use TRANSFAC 9.3 [37] and the promoter database
[38] to generate TF target information. TF target infor-
mation for TF-mRNA and TF-TF pairs is obtained from
CRSD [39], the database utilising and integrating six well-
known large scale databases, including TRANSFAC 9.3
and promoter databases. To obtain the TF-miRNA tar-
get information, we use MIR@NT@N downloaded from
[25]. Meanwhile miRBase V5.0 [40] from the Bioconduc-
tor package RmiR.Hs.miRNA 2.11 is used to build the
putative target for miRNAs. The detailed results of all
target information are shown in the Additional file 2.

Step (2): Bayesian networks structure learning and
integration

Bayesian network structure learning has been widely used
for discovering gene-gene interaction networks [41], but
not often for the discoveries of the interactions between
regulators and their target genes. To represent the interac-
tions between regulators (miRNAs and TFs) and between
the regulators and their target genes in a Bayesian net-
work, regulators and target genes are denoted by nodes
and regulatory interactions are denoted by directed edges.
When the expression data of regulators and target genes
are given, we can use Bayesian network structure learning
to discover the interactions. To start the learning process,
we use the target information of regulators to initialise the
search space. Therefore in this step, we take the expression
profiles and target information as the input to produce a
network that indicates the interactions between miRNA-
TF, miRNA-mRNA, TF-miRNA, TF-TF, and TF-mRNA.
The following four sub-steps are carried to obtain the
network.

Step (2.1): Sample splitting

To explore all possible interactions including up-, down-,
and mix- regulations (up-regulation in one condition and
down-regulation in the other) in different biological con-
ditions, in [42] we developed the “splitting and averaging”
strategy for Bayesian networks structure learning. This
strategy splits samples in a data set by their categories of
biological conditions. Bayesian network structure learn-
ing is used to learn the networks from the samples of
each condition respectively, and these networks are then
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integrated or averaged into a single network. In our cur-
rent problem, we firstly use this strategy to learn the
networks for the epithelial and mesenchymal conditions
separately, then obtain the integrated network from the
networks learnt under the two conditions. So in this sub-
step, we split each of the three expression datasets accord-
ing to sample conditions, 11 samples in epithelial and 36
samples in mesenchymal (conditions 1 and 2 in Figure 1
respectively).

Step (2.2): Creating the initial structure

To learn a Bayesian network with # variables or nodes,
the search space, if not restricted, will be all the possible
networks formed with the variables. It has been shown
that finding the best network from all the networks is NP-
hard [43]. Therefore in this paper, we assume that the
regulatory relationships between regulators and their tar-
get genes form a bipartite graph. This assumption reduces
the search space significantly. Moreover, we use target
information to initialise the network structure and the
topology of the network structure is further constrained.
Therefore, we are able to discover the optimal solutions
using the exhaustive search method in the given search
space. Graphically, the target information can be repre-
sented using bipartites as illustrated in Figure 1. There are
5 types of such bipartites or sub-structures, corresponding
to our initial knowledge of the interactions of miRNA-
TE, miRNA-mRNA, TF-TE, TF-miRNA and TF-mRNA.
These bipartites are used as the initial structure for the
Bayesian network learning.

Step (2.3): Bayesian network learning process

Each interaction in the initial structure is evaluated based
on the expression data, and the high-confidence interac-
tions are retained. The learning process searches through
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all possible candidate structures and evaluates the inter-
actions with a Bayesian scoring function. The candidate
structures are generated by removing edges from the ini-
tial structure one by one. The scoring function measures
the degree of fitness of any candidate structure G to the
dataset. The goal is to select the structure that best fits the
data. In other words, we need to calculate the probability
of each candidate structure G given the data D, P(G|D).
According to Bayes’ theorem, we have:

P(G)P(D|G)

P(G|D) = PD)

In the above formula, the term P(D) is the same for
all candidate structures. Regarding the term P(G), it is
quite common to assume a uniform distribution [44], and
thus it is a constant. Therefore, for comparative purposes,
it is sufficient to calculate only P(D|G) for the scoring
function. In this paper, we use the BDe (Bayesian metric
with Dirichlet priors and equivalent) scoring function
developed by Heckerman et al. [45] in the following.

(@)
G (N
_ R I 4 ij
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where:
n is the number of variables (nodes), X1, Xs, ..., X,

qi is the number of different instantiations of the
parent of a variable Xj; in G,
r; is the number of possible values of X; in G,
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Figure 2 An example of Bayesian network structure learning. (a) The initial structure corresponding to regulator Ry and target gene Gj.

This initial structure is created based on target information of the regulator. (b) All possible candidate structures generated from the initial structure.
The interaction between Ry and G; in each candidate structure is evaluated using a scoring function. () The presence or absence of an edge
between Ry and Gy based on the average score of each case. The candidate structure with higher average score will be chosen.
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a?}i) are the hyperparameters for the Dirichlet prior

distributions of the parameters given the network
structure.

SEJi) are the corresponding observations from data,

N© = 59, and MO = ¥, 59
More details of the Bayesian scoring function can be
found in [45,46]. In practice, we use the Bayes Net tool-
box for Matlab (BNT) [47], and the BDe scoring function
is included in BNT. In the next step (Step (2.4)) we eval-
uate the confidence levels of the interactions output from
the Bayesian network structure learning.

For illustration purpose, consider the learning proce-
dure for the interaction between a regulator R; and its
target gene G;. Assume that in total R; has two targets
and the corresponding initial structure is in Figure 2a. The
interactions in each of the four possible candidate struc-
tures (see Figure 2b) can be evaluated with the scoring
function based on expression data. The scores will decide
if there is no edge between R; and G or an edge between
them. In this example, there are two structures with an
edge between R; and G, and two structures with no edge
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between them. The average score in each of the two cases
is calculated and the structure with higher average score
((-4.6-6.2)/2=-5.4) is chosen (Figure 2c).

Step (2.4): Integrating and bootstrapping

It is common to have small number of samples in the
dataset of a typical microarray experiment, which unfor-
tunately cannot support statistically significant discov-
eries. To overcome this problem, bootstrapping [48] is
usually used to improve the confidence of discoveries.
Especially, in Bayesian network structure learning, boot-
strapping can be combined with model (structure) average
procedure to discover the interactions with high confi-
dence. In this paper, the averaging procedure is firstly
applied to the Bayesian network learning process across
different candidate structures. This procedure is then
applied to the sample splitting step across different sam-
ple conditions to calculate the average score for each
interaction. Next, the score of each interaction is aver-
aged over the number of bootstrapping, and the confi-
dence levels are estimated based on a statistical model
as illustrated in the next paragraph. The interactions
with high confidence (p-value< 0.05) are selected to

Figure 3 The interplays between TFs and miRNAs - miRNAs regulate TFs. miRNAs are coloured in red and TFs are in green. The confirmed
edges are highlighted with bold lines. All of the nodes in the confirmed interactions are EMT bio-markers. They are the miR-200 family, ZEB1, ZEB2,
and SNAI2 (SLUG). The miR-200 family that regulates ZEB1, ZEB2 for EMT has been confirmed by literature.
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form the integrated network (called global network in the
paper)

Consider again the example about learning the inter-
action between R; and Gji. Let # be the number of
bootstrapping iterations, g, be the event of learning the
interaction on the local data set D, of the ¢ condition
(¢ € {1,...,C}). As there are only two possible cases
of interactions between R; and G;, we approximate the
whole learning process of the interaction between R; and
G as a Bernoulli experiment. We denote g, = 1 when
there is an edge between R; and G; (otherwise g, = 0),
and assume that p(q. = 1) = p(q. = 0) = 0.5. g, fol-
lows a binomial distribution g, ~ B(n, p), as the samples
drawn with replacement in the bootstrap are independent
[49]. At the integration stage by averaging, the interac-
tions from local data sets D, are aggregated, and the
interactions of the regulator R; and its target G; learnt
through multiple data sets for the C different conditions
(denoted as Qr,6;, = Y .4qc) also follows a binomial
distribution Qp,G, ~ B(Cn,p). Adopting this statisti-
cal model, we are able to extract the learnt interactions
at significant levels. The interaction that has the confi-
dence level greater than the threshold will be included
into the integrated global network. The Matlab codes
for the whole process is available on request, and the
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results for the integrated global network is in Additional
file 3.

Step (3): Network inference

A challenging problem of Bayesian network learning is the
complexity of the resulting networks. Bayesian network
learning usually produces a large number of interactions,
including false discoveries. In this step, we extract from
the global network learnt in the previous step the interplay
between miRNAs and TFs. We search the learnt global
network for all of the interactions between miRNAs and
TFs. The resulting interplay network will help elucidate
the complex regulatory mechanism in specific biological
conditions.

In addition to discovering the interplay between miR-
NAs and TFs, we use the network motif finding algorithm,
Cyclus3D [50], to discover the network motifs that involve
at least 2 regulators. Network motifs are patterns of sub-
graphs that recur at frequencies much higher than those
found in randomised networks [2]. The randomised net-
works satisfy the following criteria: 1) they have the same
number of nodes as in the real network, 2) each node in
a randomised network has the same number of incom-
ing and outgoing edges as the corresponding node has
in the real network, 3) the randomised networks used to

Figure 4 The interplays between TFs and miRNAs - TFs regulate miRNAs. The confirmed edges are highlighted with bold lines. All of the nodes
in the confirmed interactions are EMT bio-markers. SNAI2 (SLUG) regulates miR-200 family to indirectly control ZEB1 and ZEB2 for activating EMT
regulation procedure. These interactions have been confirmed by literature.




Le et al. BMC Bioinformatics 2013, 14:92
http://www.biomedcentral.com/1471-2105/14/92

calculate the significance of #-node subgraphs were gen-
erated to preserve the same number of appearances of
all (n — 1)-node subgraphs as in the real network. These
criteria ensure the randomised networks have the similar
structure to the real network, and ensure that a high-
significance pattern is assigned not because it has a highly
significant sub-pattern [2].

The resulting motifs can be considered as simple build-
ing blocks from which the network is composed [51], and
are believed to have specific functions which play criti-
cal roles in biological network inference [52]. The results
presented in the next section show that this network
inferences step can produce a set of interactions and
molecules which are highly relevant to the biological con-
dition of the EMT datasets.

Results

The output of the method are two types of networks:
1) the interplays between miRNAs and TFs, with their
details shown in Figure 3 and Figure 4; 2) the results
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of network motif finding, which are the Feed For-
ward Loops (FFLs) that involve at least two regulators
(see Figure 5).

From Figures 3, 4, and 5, we can see that the results
generated by our method are compact with only a small
number of interactions. These interactions have been
shown to be highly relevant to the biological conditions
of EMT, and also several EMT bio-markers which have
been confirmed by literature are identified by our method.
In the rest of this section, firstly we present the inter-
actions and bio-markers that have been confirmed from
literature, then we describe the enrichment analysis we
have conducted to show the relevance of identified genes
to EMT.

Confirmed interactions and bio-markers for EMT

Previous studies [33,53,54] have demonstrated that the
miR-200 family targets the E-cadherin transcriptional
repressors zinc finger E-box binding homeobox 1(ZEB1)
and ZEB2 for EMT. These results have confirmed the
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interactions found using our method (shown in Figure 3),
where we see that the hsa-miR-200 family (miR-200a,
miR-200b, miR-200c, miR-429) regulates both ZEB1 and
ZEB2. These interactions are the important interac-
tions that are involved in the process of inhibition and
induction of EMT. Figure 6 shows the process in detail
where genes identified by our method are marked with
red bars.
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Apart from the miR-200 family, several important tran-
scription factors that act as the bio-markers for EMT
are also confirmed by our method. The two transcrip-
tion factors, ZEB1 and ZEB2, which are regulated by the
miR-200 family, are the markers in all three subtypes of
EMT [55]. Another transcription factor that plays a cru-
cial role in EMT is SNAI2 (SLUG). In fact, all known EMT
events during development, cancer, and fibrosis appear
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Figure 6 The pathway of development_microRNA-dependent inhibition of EMT. Genes identified by our method are marked with red bars.
miR-200 family regulates ZEB1 and ZEB2 in the process of inhibition and induction of EMT. These interactions are also identified by our method.
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to be associated with SNAI activation [56]. Our results
suggest that SNAI2 indirectly regulates ZEB1 and ZEB2
by regulating the miR-200 family transcript (Figure 4), and
in turn the miR-200 family regulates ZEB1 and ZEB2 (see
Figure 3). This result is consistent with the literature as
SNAI2 is confirmed to regulate the miR-200 family [57].
The other EMT bio-marker identified by our method is
ETS1 (see Figure 4). It has been suggested that ETS1 is an
upstream regulator of ZEB1 and ZEB2 [58], and therefore
plays a critical role in activating the regulation of EMT.

Functions of identified genes being highly enriched for
EMT
The functions of the identified genes (in Figures 3, 4, and
5) and the pathways which the genes potentially consti-
tute are analysed using GeneGo Metacore from GeneGo
Inc. and the Ingenuity Pathway Analysis (IPA, Ingenu-
ity Systems, www.ingenuity.com). The genes identified as
a result of the network inference step are significantly
enriched for several biological functions. The top func-
tions output from IPA that are known to be critical for
EMT are gene expression, cellular development, cellu-
lar growth and proliferation, cellular movement, and cell
death. Moreover, several genes belong to the classes of
invasion and migration. These classes are sub-categories
of cellular movement, and they have been confirmed as
the functional markers of EMT [59]. This suggests that
many target genes and their interactive regulators are
involved in EMT. Table 1 shows the genes in the class of
invasion and migration together with their p-values.

In addition, the pathways which the genes in our
results potentially constitute are identified using GeneGo

Table 1 Identified genes are significantly involved in the
functional markers of EMT

Functions Molecules Number  p-value
Invasion VDR, FGF8, miR-17-5p, 16 1.26E-06 -
54E-03
miR-200a-3p, miR-429, miR-7-5p
TIMP1, CDX2, ETST, FLNA,
FOSL1, SPDEF, TNK2, YY1
ZEB1, ZEB2.
Migration  ESRRA, ETST, FOSLT, 24 3.59E-09 -
7.96E-03

PRKDT1, SNAI2, SPDEF, TIMP1,
TNK2, ABL2, CDX2, FGF8,

FLNA, GRB7, let-7a-5p, miR-16-5p,
miR-17-5p, miR-200a-3p, miR-429,
NFIC, PRAP1, PTPRU, RXRA,
SREBF1, ZEB1

A significant number of genes identified in the inference step belong to the
class of invasion and migration which are EMT functional markers. The results
are generated by IPA.
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Metacore. The statistically mapped pathways show that
they are highly relevant to EMT. There are direct path-
ways that regulate EMT, such as the pathway of devel-
opment_microRNA-dependent inhibition of EMT. This
pathway shows the regulation of the miR-200 family
and other miRNAs on the EMT bio-markers ZEB1 and
ZEB2, and results in the inhibition and induction of EMT.
Figure 6 shows the details of this pathway. Other direct
pathways such as the development_TGF-beta-dependent
induction of EMT via SMADs, and cell adhesion_tight
junctions, are known to play critical roles in the regulatory
procedure of EMT. The summary of these pathways and
the corresponding p-values are given in Table 2.

Discussion

During the past few decades, considerable efforts have
been made to explore the transcriptional regulatory net-
works in which transcription factors play the role as a
main regulator. Other recent studies have investigated the
post-transcriptional regulatory networks with miRNAs as
the main regulator. However, with the ultimate goal of
achieving a profound understanding of the mechanisms
that control gene activities, it is sensible and desirable
to find regulatory relationships involving both types of
regulators from diverse sources of data.

In this paper, we utilise Bayesian network learning in
constructing the network, but the integrated global net-
work in general is not a Bayesian network. For instance,
one of the requirements for Bayesian networks is that
the network structure must be a Directed Acyclic Graph
(DAG). Our integrated global network may include some
loops of interactions where two regulators interact with
each other, hence it is not a Bayesian network. Such
cyclic network behaviour is more reasonable in real-
ity, as more and more feedback loops between miRNAs
and TFs are being reported. For instance, the ZEB/miR-
200 pair is a feedback loop that regulates EMT [60].
Therefore, the integrated global network may provide
more information than normal Bayesian networks which
are DAGs.

In the network inference step, we use network motif
finding algorithm to discover the sub-networks that recur
at statistically significant level. Interestingly, the results
from these small sub-networks still retain several impor-
tant interactions and molecules relevant to the biological
condition of the dataset. The relationships between the
significance in frequency of graphs and biological func-
tions are still open and interesting research topics. In the
dataset used in this paper, the results are supportive for
this hypothesis. An advantage of motif finding is that it
produces a manageable number of interactions that can
be used for further experimentation. The results from this
paper, therefore, can provide good resources for future
validating experiments.
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Table 2 The statistically mapped pathways for EMT involve identified genes

# Pathway p-value

1 Development_microRNA-dependent inhibition of EMT 8.645E-17
2 Development_WNT signaling pathway. Part 2 2.227E-05
3 Development_TGF-beta-dependent induction of EMT via SMADs 7.325E-05
4 Cell adhesion_Chemokines and adhesion 4.632E-04
5 Cell adhesion_Tight junctions 1.614E-03
6 Cell adhesion_Role of tetraspanins in the integrin-mediated cell adhesion 1.748E-03
7 Development_TGF-beta receptor signaling 4.154E-03

The mapped pathways involve identified genes that are important for EMT. The results are generated by GeneGo Metacore.

While the network motifs found based on the regulatory
network may provide useful patterns to guide biologi-
cal experiments, these motifs depend on the structure of
the regulatory network. The structure of the regulatory
network in this paper is obtained based on the assump-
tion that miRNAs and TFs are regulators and mRNAs
are targets. However, the knowledge of gene regulatory
relationships is still limited and the assumption may not
always hold in reality. When the structure of the regula-
tory network changes the resulting network motifs may
change too.

In the paper, we use the differentially expressed genes
as the nodes for the gene regulatory network. We assume
that genes whose expression levels do not change signif-
icantly between conditions would not play an important
role in the regulatory network. There may be the case
that a gene is the target of two regulators that cancel
out each other, resulting in the expression level of the
target gene unchanged. However, to make our method
computationally practical we do not consider such cases.

To start the process of Bayesian network structure
learning, target information is used to initialise the net-
work. The target information based on sequence data
may involve false discoveries. Bayesian network struc-
ture learning uses gene expression data to evaluate the
confidence level of each interaction (edge) in the initial
network, and only the interactions of high confidence
are integrated into the global network. Therefore, graph-
ically the set of edges in the global network is a subset
of the set of edges in the initial network. The enrich-
ment analysis shows that the important interactions for
EMT are retained in the global network, demonstrating
the effectiveness of the method. Other high-confidence
interactions provide strong hypotheses for experimental
validations.

Conclusions

In this study, we have proposed a framework for inferring
complex gene regulatory networks using diverse sources
of data, including target information for regulators,
expression profiles, and sample categories. The interplay

between regulators and the motifs with which they reg-
ulate target genes are revealed in the three-component
network, and it is impossible to infer the interplay from
any single regulator regulatory networks. The analysis of
the EMT datasets has produced several results that have
been validated by literature, a number of statistically sig-
nificant interactions between miRNAs and TFs, and novel
network motifs.
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