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Abstract

Background: Finding genes that are differentially expressed between conditions is an integral part of
understanding the molecular basis of phenotypic variation. In the past decades, DNA microarrays have been
used extensively to quantify the abundance of mRNA corresponding to different genes, and more recently
high-throughput sequencing of cDNA (RNA-seq) has emerged as a powerful competitor. As the cost of
sequencing decreases, it is conceivable that the use of RNA-seq for differential expression analysis will increase
rapidly. To exploit the possibilities and address the challenges posed by this relatively new type of data, a number of
software packages have been developed especially for differential expression analysis of RNA-seq data.

Results: We conducted an extensive comparison of eleven methods for differential expression analysis of RNA-seq
data. All methods are freely available within the R framework and take as input a matrix of counts, i.e. the number of
reads mapping to each genomic feature of interest in each of a number of samples. We evaluate the methods based
on both simulated data and real RNA-seq data.

Conclusions: Very small sample sizes, which are still common in RNA-seq experiments, impose problems for all
evaluated methods and any results obtained under such conditions should be interpreted with caution. For larger
sample sizes, the methods combining a variance-stabilizing transformation with the ‘limma’ method for differential
expression analysis perform well under many different conditions, as does the nonparametric SAMseq method.

Keywords: Differential expression, Gene expression, RNA-seq
Background
Transcriptome analysis is an important tool for
characterization and understanding of the molecular
basis of phenotypic variation in biology, including dis-
eases. During the past decades microarrays have been
the most important and widely used approach for such
analyses, but recently high-throughput sequencing of
cDNA (RNA-seq) has emerged as a powerful alternative
[1] and it has already found numerous applications [2].
RNA-seq uses next-generation sequencing (NGS) methods
to sequence cDNA that has been derived from an RNA
sample, and hence produces millions of short reads. These
reads are then typically mapped to a reference genome
and the number of reads mapping within a genomic
feature of interest (such as a gene or an exon) is used as a
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measure of the abundance of the feature in the analyzed
sample [3].
Arguably the most common use of transcriptome pro-

filing is in the search for differentially expressed (DE)
genes, that is, genes that show differences in expression
level between conditions or in other ways are associated
with given predictors or responses. RNA-seq offers sev-
eral advantages over microarrays for differential expres-
sion analysis, such as an increased dynamic range and a
lower background level, and the ability to detect and
quantify the expression of previously unknown tran-
scripts and isoforms [3-5]. The analysis of RNA-seq data
is, however, not without difficulties. Some of these diffi-
culties are inherent to next-generation sequencing
procedures. For example, the variation in nucleotide
composition between genomic regions implies that the
read coverage may not be uniform along the genome.
Further, more reads will map to longer genes than to
shorter ones with the same expression level. In differen-
tial expression analysis, where the genes are tested
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individually for expression differences between condi-
tions, such ‘within-sample’ biases are usually ignored
since they are assumed to affect all samples similarly [3].
Other types of non-uniformities are seen between sam-

ples in an RNA-seq experiment. First, the sequencing
depths or library sizes (the total number of mapped
reads) are typically different for different samples, which
means that the observed counts are not directly compar-
able between samples. Indeed, even in the absence of
any true differential expression, if one sample is se-
quenced to twice the depth of another we expect all the
genes to obtain twice as high count in the first sample
compared to the second, and we do not want to confuse
such effects with true differential expression. The most
straightforward way of approaching the different library
sizes is to simply rescale or resample the read counts to
obtain equal library sizes for all samples. However, such
a normalization is generally not enough. The reason is
that even if the library sizes are indeed identical, RNA-
seq counts inherently represent relative abundances of
the genes. A few highly expressed genes may contribute
a very large part of the sequenced reads in an experi-
ment, leaving only few reads to be distributed among
the remaining genes [6]. The presence of the few highly
expressed genes thus represses the counts for all other
genes, and in comparison to a sample where the reads
are more evenly distributed, the latter group of genes
may, perhaps incorrectly, seem to have a lower expres-
sion which can lead to a lot of genes being falsely called
differentially expressed. To account for this difficulty
and attempt to make the counts comparable across
samples, more complex normalization schemes have
been proposed [6-8]. In addition to the library sizes,
these procedures also include the estimation of sample-
specific normalization factors that are used to rescale the
observed counts. Using these normalization methods, the
sum of the normalized counts across all genes are therefore
not necessarily equal between samples (as it would be if
only the library sizes were used for normalization), but the
goal is instead to make the normalized counts for non-
differentially expressed genes similar between the samples.
In this study, we use the TMM normalization (trimmed
mean of M-values [8]) and the normalization provided in
the DESeq package [7]. A comprehensive evaluation of
seven different normalization methods was recently
performed [9], in which these two methods were shown to
perform similarly, and they were also the only ones provid-
ing satisfactory results with respect to all metrics used in
that evaluation. Still, it is important to keep in mind
that even these methods are based on an assumption
that most genes are equivalently expressed in the
samples, and that the differentially expressed genes
are divided more or less equally between up- and
downregulation [9].
Microarrays have been used routinely for differential
expression analysis for over a decade, and there are well-
established methods available for this purpose (such as
limma [10]). These methods are not immediately trans-
ferable to analysis of RNA-seq data [11], since these are
somewhat different from the data obtained from
microarrays. The intensities recorded from microarrays
are treated as continuous measurements, commonly
assumed to follow a log-normal distribution, while the
counts from an RNA-seq experiment are non-negative
integers and thus inherently follow a discrete distribu-
tion. In the methods explicitly developed for differential
expression analysis of this type of count data, the
Poisson distribution and the Negative Binomial (NB)
distribution are the two most commonly used models
[7,12-15]. Other distributions, such as the beta-binomial
[16], have also been proposed. The Poisson distribution
has the advantage of simplicity and has only one param-
eter, but it constrains the variance of the modeled
variable to be equal to the mean. The Negative Binomial
distribution has two parameters, encoding the mean and
the dispersion, and hence allows modeling of more
general mean-variance relationships. For RNA-seq, it has
been suggested that the Poisson distribution is well
suited for analysis of technical replicates, whereas the
higher variability between biological replicates necessi-
tates a distribution incorporating overdispersion, such as
the Negative Binomial [6,17]. Instead of using integer
counts directly, some software packages represent RNA-
seq data by transformed quantities such as RPKM
(Reads Per Kilobase per Million mapped reads) [1] or
the related FPKM (Fragments Per Kilobase per Million
mapped reads) [18]. The goal of such transformations is
to normalize the counts with respect to the differing
library sizes and with respect to the length of the
transcripts, since a long transcript is expected to obtain
more reads than a short transcript with the same expres-
sion level. Other normalization strategies can be
employed to handle other biases, arising for example
from the variable GC content of the reads. After
transformations such as these, the resulting values are
no longer integer counts, which means that they should
not be plugged into count-based methods for differential
expression analysis. Among the methods evaluated in
this study, only the non-parametric ones would thus be
suitable also for RPKM values. Other software, such as
Cufflinks/Cuffdiff [18], provide an integrated analysis
pipeline from the aligned reads to the differential expres-
sion results, where the inference is based on FPKM
values.
The field of differential expression analysis of RNA-

seq data is still in its infancy and new methods are con-
tinuously being presented. So far, there is no general
consensus regarding which method performs best in a
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given situation and few extensive comparisons between
the proposed methods have been published. In a recent
paper [19], four parametric methods were compared in
terms of their ability to discriminate between truly dif-
ferentially expressed (DE) and truly non-DE genes,
under different simulation conditions. The authors also
compared the overlap between the sets of DE genes
found by the different methods in a real data set.
Another recent study [20] evaluated the impact of in-
creasing sequencing depth on the ability to detect DE
genes and contrasted this with the benefits of increasing
the sample size, and the latter were found to be consid-
erably larger. In [21], the authors presented a case study
on Saccharomyces cerevisiae, comparing the results
obtained by several differential expression analysis
methods for RNA-seq with each other and with results
obtained from microarrays, and reported a generally
good agreement between the different methods.
In the present paper we conduct a comparison of

eleven methods, developed for differential expression
analysis of RNA-seq data, under different experimental
conditions. Among the eleven methods, nine model the
count data directly, while the remaining two transform
the counts before applying a traditional method for dif-
ferential expression analysis of microarray data. The
study is confined to methods that are implemented and
available within the R framework [22] and that are ap-
plicable to count matrices (containing the count for each
of a number of genes or other genomic features of inter-
est in each of a number of samples). Several methods for
obtaining such a matrix from the raw sequence data
exist, but a comprehensive evaluation of these are out-
side the scope of the present study. We further focus on
finding genes that are differentially expressed between
two conditions only, since this is arguably the most com-
monly encountered application. Moreover, it is sup-
ported by all evaluated methods, although most methods
allow also more complex experimental designs (see
further in the Materials and Methods section).

Results and discussion
Eleven methods for differential expression analysis of
RNA-seq data were evaluated in this study. Nine of them
work on the count data directly: DESeq [7], edgeR [23],
NBPSeq [15], TSPM [13], baySeq [14], EBSeq [24],
NOISeq [25], SAMseq [26] and ShrinkSeq [27]. The
remaining two combine a data transformation with
limma [10] for differential expression analysis, and we
will refer to them as voom(+limma) [10] and vst
(+limma) [7,10]. More detailed descriptions of the
methods can be found in the Materials and Methods
section and in the respective original publications.
The methods were evaluated mainly based on syn-

thetic data, where we could control the settings and the
true differential expression status of each gene. Details
regarding the different simulation studies can be found
in the Materials and Methods section. As the baseline
(simulation studies abbreviated ‘B’), we simulated all
counts using Negative Binomial distributions, with mean
and dispersion parameters estimated from real data. In
these simulations, the dispersions in both conditions
were assumed to be identical. Note that this does not
imply that the variances are the same in the two condi-
tions, since the variance depends also on the mean. We
also evaluated the robustness of the methods against
variations in the distribution of the input data, by in-
stead imposing a Poisson distribution for the counts for
some of the genes (simulation studies denoted ‘P’), or in-
cluding outliers with abnormally high counts (simulation
studies denoted ‘S’ and ‘R’). The outliers were introduced
in two different ways. For the ‘single’ outlier simulation
studies (denoted ‘S’), we selected 10% of the genes, and
for each of these genes we selected a single sample for
which we multiplied the observed count with a ran-
domly generated factor between 5 and 10. For the ‘ran-
dom’ outlier simulation studies (denoted ‘R’), we
considered each observed count independently, and with
probability 0.05 we multiplied it with a randomly gener-
ated factor between 5 and 10.
The total number of genes in each simulated data set

was 12,500, and the number of differentially expressed
(DE) genes was set to either 0, 1,250 or 4,000. We also
varied the composition of the DE genes, that is, the frac-
tion of DE genes that were up- and downregulated, re-
spectively, in one condition compared to the other.
Finally, we evaluated the effect of varying the sample
size, from 2 to 5 or 10 samples per condition. These
sample sizes were chosen to reflect a wide range of ex-
perimental settings. Since, however, most current RNA-
seq experiments exhibit small sample sizes and the
choice in the experimental design is often between two
or three samples per condition, we also performed some
comparisons with 3 samples per condition. These com-
parisons, contrasted with the results from 2 and 5 sam-
ples per condition, are given in the supplementary
material (Additional file 1). In the supplementary mater-
ial we also present some results obtained for data sets
where the dispersion parameters were different between
the two conditions.
In addition to the simulated data, we compared

the methods based on their performance for three real
RNA-seq data set. The results from one of these
data sets are shown in the main article, and the
remaining two are discussed in the supplementary ma-
terial (Additional file 1).
Using the synthetic data, we studied the following as-

pects of the methods under different experimental
conditions:
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� The ability to rank truly DE genes ahead of non-DE
genes. This was evaluated in terms of the area under
a Receiver Operating Characteristic (ROC) curve
(AUC), as well as in terms of false discovery curves,
depicting the number of false detections
encountered while going through the list of genes
ranked according to the evidence for differential
expression.

� The ability to control type I error rate and false
discovery rate at an imposed level. This was
evaluated by computing the observed type I error
and the true false discovery rate, respectively, among
the genes called differentially expressed at given
significance levels.

� The computational time requirement for running the
differential expression analysis. These results are given
in the supplementary material (Additional file 1).

For the real RNA-seq data we compared the collec-
tions of genes called DE by the different methods, both
in terms of their individual cardinalities and in terms of
their overlaps. We also studied the concordance of the
gene rankings obtained by the different methods.

Discrimination between DE and non-DE genes
We first evaluated to what extent the eleven considered
methods were able to discriminate between truly DE
genes and truly non-DE ones. We computed a score for
each gene and each method, which allowed us to rank
the genes in order of significance or evidence for differ-
ential expression between the two conditions. For the six
methods providing nominal p-values (edgeR, DESeq,
NBPSeq, TSPM, voom+limma, vst+limma), we defined
the score as 1 - pnom. For SAMseq we used the absolute
value of the averaged Wilcoxon statistic as the ranking
score, and for baySeq, EBSeq and ShrinkSeq we used the
estimated posterior probability of differential expression
or, equivalently in terms of ranking, 1 - BFDR, where
BFDR denotes the estimated Bayesian False Discovery
Rate [28] (see Materials and Methods for more informa-
tion about the different methods). For NOISeq, we used
the statistic qNOISeq (see Materials and Methods). All
these scores are two-sided, that is, they are not affected
by the direction of differential expression between the
two conditions. Given a threshold value for such a score,
we may thus choose to call all genes with scores exceed-
ing the threshold DE, and correspondingly all genes with
scores below the threshold are called non-DE. Consider-
ing the genes that were simulated to be DE as the true
positive group and the remaining genes as the true nega-
tive group, we computed the false positive rate and the
true positive rate for all possible score thresholds and
constructed a ROC (Receiver Operating Characteristic)
curve for each method. The area under the ROC curve
(AUC) was used as a measure of the overall discrimina-
tive performance of a method, that is, the overall ability
to rank truly DE genes ahead of truly non-DE ones.
Under baseline conditions, and when only 10% of the

genes were simulated to be DE (simulation studies B1250
0

and B625
625 ), the composition of the set of DE genes (in

terms of up- or downregulation) had only a minor im-
pact on the gene ranking accuracy for most methods
(compare Figures 1A and 1B). When almost one third of
the genes were DE (simulation studies B4000

0 and B2000
2000 ),

the effect of the composition of the set of DE genes be-
came more dramatic. Now, the performances of all
methods were considerably worse when all DE genes
were upregulated in S2 compared to S1 than when some
genes were upregulated and some were downregulated
(compare Figures 1C and 1D). A possible explanation
for this effect is that the normalization factors, which
are designed to account for this type of varying count
distributions, are not able to estimate the effect to a full
extent which leads to a lot of false positive results, mixed
with the true positives. Notably, SAMseq, which uses a
resampling strategy to equalize library sizes and thus im-
plicitly assumes that all normalization factors are equal,
showed the best performance in simulation study B4000

0 ,
where all the 4,000 DE genes were upregulated in condi-
tion S2 compared to condition S1 (Figure 1C).
For the largest sample sizes (5 or 10 samples per condi-

tion) and when there were both up- and downregulated
genes, all methods performed similarly in terms of the
AUC. All methods performed better for large sample
sizes. TSPM and EBSeq showed the strongest sample
size dependencies among the methods, followed by
SAMseq and baySeq. For the smallest sample size (2
samples per condition), the best results were generally
obtained by DESeq, edgeR, NBPSeq, voom+limma and
vst+limma.
When all DE genes were upregulated in condition S2

compared to condition S1 (Figures 1A and 1C), we saw a
high variability in the results obtained by baySeq. This
variability was reduced when the DE genes were regu-
lated in different directions (Figures 1B and 1D).
We chose to evaluate the effect of introducing non-

overdispersed genes or outliers under the settings of
simulation study B625

625 (Figure 1B). When the fraction of
genes following a Poisson distribution was increased from
0 to 50% (simulation study P625

625) the AUC increased, es-
pecially for the smallest sample size (Additional file 1:
Figure S17, compare to Figure 1B). Outliers with abnor-
mally high counts reduced the AUC slightly for all
methods, but less for the transformation-based methods
(vst+limma and voom+limma) and SAMseq than for the
other methods (Figures 1E and 1F).
While the AUC provides an overall measure of the

ability to rank truly DE genes ahead of truly non-DE
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Figure 1 Area under the ROC curve (AUC). Area under the ROC curve (AUC) for the eleven evaluated methods, in simulation studies B12500

(panel A), B625625 (panel B), B
4000
0 (panel C), B20002000 (panel D), S

625
625 (panel E) and R625625 (panel F). The boxplots summarize the AUCs obtained across 10

independently simulated instances of each simulation study. Each panel shows the AUCs across three sample sizes (|S1| = |S2| = 2, 5 and 10,
respectively, signified by the last number in the tick labels). The methods are ordered according to their median AUC for the largest sample size.
When all DE genes were regulated in the same direction, increasing the number of DE genes from 1,250 (panel A) to 4,000 (panel C) impaired
the performance of all methods. In contrast, when the DE genes were regulated in different directions (panels B and D), the number of DE genes
had much less impact. The variability of the performance of baySeq was much higher when all genes were regulated in the same direction
(panels A and C) compared to when the DE genes were regulated in different directions (panels B and D). Including outliers (panels E and F)
decreased the AUC for most methods (compare to panel B), but less so for the transformation-based methods (voom+limma and
vst+limma) and SAMseq.
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Figure 2 False discovery curves. Representative false discovery curves, depicting the number of false positives encountered among the T
top-ranked genes by the eleven evaluated methods, for T between 0 and 1,500. In all cases, there were 5 samples per condition. A: Simulation
study B12500 . B: Simulation study B625625. C: Simulation study B40000 D: Simulation study B20002000. E: Simulation study S625625 F: Simulation study R625625. Some of
the curves do not pass through the origin, since many genes obtained the same ranking score and had to be called simultaneously.
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genes, it does not immediately tell us if the deviation
from a perfect discrimination is mainly due to false posi-
tives or false negatives. We therefore also constructed
false discovery curves, depicting the number of false dis-
coveries encountered as the total number of discoveries
increased (that is, as the significance threshold for the
ranking score was changed). Figure 2 shows representative
false discovery curves for the same simulation studies that
were considered in Figure 1, with 5 samples per condition.
In the supplementary material (Additional file 1) we show
corresponding curves for 2 and 10 samples per condition,
respectively (Additional file 1: Figures S18-S19). Given that
we are most interested in the genes showing the strongest
evidence of differential expression, we confined the analysis
to the 1,500 top-ranked genes for each method. We noted
that although NBPSeq was among the best methods in
terms of the overall ranking (the highest AUC, see Figure 1),
it had problems with false discoveries among the very top-
ranked genes under many simulation settings. Indeed, while
the total number of false discoveries among the 1,500 top-
ranked genes were in parity with many other methods,
there were often some false discoveries ranked very near
the top by NBPSeq. TSPM and NOISeq also tended to rank
some truly non-DE genes in the very top. For simulation
study P625

625 , where half of the genes were generated
according to a Poisson distribution, the performance of
TSPM was improved and fewer non-DE genes were ranked
near the top (Additional file 1: Figure S17). Overall, the best
performance, in terms of ranking mainly true positives in
the very top, was obtained with the transformation-based
methods (voom+limma and vst+limma) and ShrinkSeq.
SAMseq also performed well, but returned the same (top)
score for many genes, both truly DE and truly non-DE.
Larger sample sizes led to considerably fewer false

positives found among the top-ranked genes (compare
Figure 2 to Additional file 1: Figures S18 and S19). Actu-
ally, as seen by comparing Additional file 1: Figure S18
to Additional file 1: Figures S10(b) and 11(b), already in-
creasing the number of samples per condition from 2 to
3 provided a tangible improvement.
Control of type I error rate
Next, we evaluated the six methods returning nominal
p-values (edgeR, DESeq, NBPSeq, TSPM, voom+limma
and vst+limma) in terms of their ability to control the
type I error at a pre-specified level in the absence of any
truly DE genes. Under baseline conditions (simulation
study B0

0) and using a nominal p-value cutoff of 0.05, all
six methods performed quite well and in many cases
called around 5% of the genes differentially expressed
(Figure 3A). NBPSeq and TSPM found the highest num-
ber of false positives and DESeq was the most conserva-
tive among the six methods. This is concordant with the
findings in a previous study [19] where the type I error
rate control of edgeR, DESeq and NBPSeq were com-
pared. The strongest dependence on sample size was
seen for TSPM, which performed poorly for the smallest
sample size (two samples per condition), but in parity
with the other methods for the larger sample sizes. A
slight reduction in type I error rate with increasing sam-
ple size was seen also for edgeR and DESeq while the
performance of the transformation-based approaches
and NBPSeq were less sample-size dependent.
The results stayed largely similar when we let the

counts for half of the genes be Poisson distributed
(simulation study P0

0 , Figure 3B), but for the smallest
sample size we noted a reduction of the type I error rate
for TSPM and an increase of the type I error rate for the
transformation-based methods and NBPSeq. Introducing
‘single’ outliers (simulation study S00 ) had a considerable
effect on the type I error of the three methods that are
explicitly modeling the counts using a Negative Binomial
distribution (edgeR, DESeq and NBPSeq). Under these
conditions, the type I error rates of NBPSeq and edgeR
increased substantially, while DESeq instead became
even more conservative (Figure 3C). The type I error
rates of the transformation-based methods and the
TSPM were less affected, but tended to decrease rather
than increase following the introduction of outliers.
Similar effects, but even more pronounced, were noted
when we instead introduced ‘random’ outliers (simula-
tion study R0

0) Figure 3D, see the Materials and Methods
section for a more extensive explanation of the different
types of outliers). If these outliers were instead intro-
duced by dividing the counts by a random factor be-
tween 5 and 10 (instead of multiplying with this factor),
the results were largely similar to those from the base-
line study (without outliers), except for a slight reduc-
tion of the type I error rate for NBPSeq and edgeR
(data not shown). In Additional file 1 (Additional file 1:
Figures S20 and S21), we show representative p-value
distributions under the different simulation settings. In
these figures, we note that even when all null hypoth-
eses are true, the p-values are not always uniformly dis-
tributed. Specifically, some methods (edgeR, DESeq
and NBPSeq) exhibit an excess of large p-values. This
has been observed also in previous studies and has been
attributed to the use of exact tests based on discrete prob-
ability distributions [20]. Since the total number of reads
mapping to the different genes is very different, the null
distribution of p-values will be a mixture of a large num-
ber of different discrete distributions [29].

Control of the false discovery rate
Next, we examined whether setting a significance
threshold for the adjusted p-value (or an FDR threshold)
indeed controlled the false discovery rate at the desired
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level. We put the FDR threshold at 0.05, and calculated
the true false discovery rate as the fraction of the genes
called significant at this level that were indeed false dis-
coveries. Since NOISeq does not return a statistic that is
recommended to use as an adjusted p-value or FDR esti-
mate, it was excluded from this evaluation. For baySeq,
EBSeq and ShrinkSeq, we imposed the desired threshold
on the Bayesian FDR [28].
As above, when only 10% of the genes were DE, the

direction of their regulation had little effect on the false
discovery rate (simulation studies B1250

0 and B625
625 , com-

pare Figures 4A and 4B). The main difference between
the two settings was seen for ShrinkSeq, whose FDR
control was worse when all genes were regulated in the
same direction. The high false discovery rate seen for
ShrinkSeq can possibly be reduced by setting a non-zero
value for the fold change threshold defining the null
model. Also the variability of the baySeq performance
was considerably reduced when there were both up- and
downregulated genes among the DE ones. For the largest
sample size (10 samples per group), ShrinkSeq, NBPSeq,
EBSeq, edgeR and TSPM often found too many false
positives. The remaining methods were essentially able
to control the false discovery rate at the desired level
under these conditions. A possible explanation for the
high false discovery rates of NBPSeq is that the
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Figure 4 (See legend on next page.)
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(See figure on previous page.)
Figure 4 True false discovery rates. True false discovery rates (FDR) observed for an imposed FDR threshold of 0.05, for the nine methods
returning adjusted p-values or FDR estimates, in simulation studies B12500 (panel A), B625625 (panel B), B

4000
0 (panel C) B20002000, (panel D), S

625
625 (panel E)

and R625625 (panel F). With only two samples per condition, three of the methods (vst+limma, voom+limma and SAMseq) did not call any DE genes,
and the FDR was considered to be undefined.
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dispersion parameters, and thereby also the variances,
are understimated for many genes which implies that
the significance of these genes are overestimated. When
the sample size was decreased, all methods except
ShrinkSeq performed considerably worse in terms of
FDR control, and with only two samples per group, all
methods were far from controlling the true false discov-
ery rate at the desired level. TSPM was most heavily af-
fected by the decreasing sample size, in terms of
increasing FDR, which is in agreement with previous ob-
servations [19]. With only 2 samples per condition, nei-
ther SAMseq nor the two transformation-based methods
called any genes significantly DE. As for the false discov-
ery curves above, already an increase in sample size from
2 to 3 samples per condition improved the FDR for
many of the methods, in particular DESeq and baySeq,
and both transformation-based methods were able to
find differentially expressed genes (with reasonably low
FDR) with 3 samples per condition (Additional file 1:
Figures S10(c) and S11(c)).
When the DE genes were regulated in different direc-

tions, increasing the number of DE genes from 1,250 to
4,000 improved the ability to control the FDR (simula-
tion study B2000

2000 Figure 4D, compare to Figure 4B). Con-
versely, when all DE genes were regulated in the same
direction, increasing the number of DE genes impaired
the ability to control the FDR especially for the largest
sample sizes (simulation study B4000

0 , Figure 4C, compare
to Figure 4A). When outliers with extremely high counts
were introduced (simulation studies S625625 and R625

625 the
FDRs of baySeq, NBPSeq and edgeR, which are all based
on a Negative Binomial distribution, were considerably
increased. The transformation-based methods were less
affected and controlled the FDR under these conditions
as well (Figures 4E and 4F). Also the FDRs of SAMseq
and TSPM were largely unaffected by the inclusion of
outliers.
In a practical situation, we are not only interested

in keeping the rate of false discoveries low, but also
to actually be able to find the true positives. There-
fore, we also computed the true positive rate (the
fraction of truly DE genes that were found to be sig-
nificant) among the genes that were called significant
at a FDR threshold of 0.05. In general, DESeq and
baySeq tended to give the lowest number of true pos-
itives (Additional file 1: Figure S22). This should be
viewed in relation to Figure 4, where it was shown
that these methods often also gave low fractions of
false discoveries. The other two methods that are
based on the NB model, edgeR and NBPSeq, as well
as ShrinkSeq, in which we used a zero-inflated NB
model, returned more true positives but at the price
of a higher false discovery rate. The non-parametric
SAMseq method gave high true positive rates across
all simulation settings, seemingly without an accom-
panying high false discovery rate. However, for the
smallest sample sizes this method did not find any
significantly differentially expressed genes at all which
is not surprising due to its non-parametric nature
and reliance on sample permutations. The true posi-
tive rate of EBSeq was largely unaffected by the sam-
ple size, but the false discovery rate decreased as
sample size increased.
As expected, increasing the expression difference be-

tween the two conditions (wg, see Materials and
Methods) improved the ability to detect truly DE genes
and reduced the observed false discovery rate, in a con-
cordant manner for all methods (data not shown). When
the dispersions in the two conditions were different, we
observed an increased FDR for the majority of the
methods (Additional file 1: Figure S12(c), compare to
Figure 4B).

Real RNA-seq data from two mouse strains
In addition to the synthetic data set, we also analyzed an
RNA-seq data set from 21 mice, 10 of the C57BL/6J
strain and 11 of the DBA/2J strain [30]. After filtering
out genes for which the total count across the 21 mice
was less than 10, the data set contained 11,870 genes.
We applied the eleven methods to find genes that
showed differential expression between the two mouse
strains. All genes found to be DE at a FDR or Bayesian
FDR threshold of 0.05 were considered significantly DE.
It is not clear how to set a threshold for the q-value
returned by NOISeq to be comparable with the FDR es-
timate or adjusted p-value from the other methods, and
hence NOISeq was excluded from most of the subse-
quent analysis.
First, we compared the number of DE genes found by

each method (Figure 5A). The highest number of DE
genes was found by ShrinkSeq, while baySeq returned
relatively few. As can be seen in Figure 5A, TSPM,
edgeR, NBPSeq and the two transformation-based
methods found approximately the same number of DE
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Figure 5 Analysis of the Bottomly data set. A: The number of genes found to be significantly DE between the two mouse strains in the
Bottomly data set. B-C: Overlap among the set of DE genes found by different methods. D: The average number of genes found to be
significantly DE genes when contrasting two subsets of mice from the same strain, in which case we expect no truly DE genes.
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genes. Next, we studied the overlap between the sets of
genes called DE by different methods. Figure 5B shows
the overlap between the sets of DE genes found by
edgeR, DESeq, NBPSeq and TSPM (only four methods
were included in order to make the Venn diagram inter-
pretable). From this figure, we noted that the DE genes
found by DESeq were to a large extent found also by
edgeR, NBPSeq and TSPM (recall that the three latter
found more DE genes). In contrast, both edgeR, NBPSeq
and TSPM found a fair amount of ‘unique’ DE genes,
that were not shared with the other methods. Figure 5C
shows the corresponding comparison for baySeq, EBSeq
and the two transformation-based methods. The DE
genes found by voom+limma essentially formed a subset
of the slightly larger set of DE genes found by vst
+limma. Similarly, many of the DE genes found by
baySeq were also found by EBSeq, and the DE genes
found by EBSeq were to a large extent found also by the



Table 1 The number of shared differentially expressed genes found by the different methods for the Bottomly data set

ShrinkSeq DESeq edgeR NBPSeq TSPM voom vst baySeq EBSeq SAMseq

ShrinkSeq 3259 583 1125 985 1075 971 1049 192 803 1821

DESeq 583 598 598 567 588 589 587 191 523 592

edgeR 1125 598 1160 877 886 942 1013 194 753 1099

NBPSeq 985 567 877 1082 695 753 797 194 612 924

TSPM 1075 588 886 695 1161 891 907 191 794 1014

voom 971 589 942 753 891 1009 971 194 752 991

vst 1049 587 1013 797 907 971 1095 194 752 1061

baySeq 192 191 194 194 191 194 194 195 175 194

EBSeq 803 523 753 612 794 752 752 175 819 801

SAMseq 1821 592 1099 924 1014 991 1061 194 801 1860

The table contains the number of differentially expressed genes that are shared between each pair of methods, for the Bottomly data set (compare to Figure 5).
The numbers on the diagonal, indicating the number of differentially expressed genes found by the respective methods, are highlighted in bold.
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transformation-based methods. The set of DE genes
found by SAMseq and ShrinkSeq, finally, contained a
large part of the genes found by all the other methods.
Table 1 shows the overlap between the collections of dif-
ferentially expressed genes for each pair of methods. To
characterize the sets of genes preferentially called DE by
the different methods, we marked the DE genes in
an MA-like plot (Additional file 1: Figure S23).
These results showed clearly that for all methods, a
higher fold change was needed for significance
for the genes with low average expression. baySeq
seemed to require a higher fold change than the
other methods across all expression levels, and did
not call any highly expressed genes DE. In contrast,
SAMseq and ShrinkSeq required a lower fold change
for calling highly expressed genes DE, while the
threshold for lowly expressed genes was similar to
that from the other methods. The low fold change
required for highly expressed genes may potentially
compromise the biological significance of some of
the findings from SAMseq and ShrinkSeq and may
necessitate the inclusion of an additional fold change
threshold.
In Additional file 1: Figures S24-S28, we show the nor-

malized counts (normalized using the normalization fac-
tors provided by the TMM method [8] together with the
library sizes) across all samples for some of the genes
found to be DE by only a single method. DESeq, edgeR,
voom+limma, baySeq and EBSeq did not find any
unique DE genes and hence there are no figures corre-
sponding to these methods. From Additional file 1:
Figures S24-S28, we noted that the DE genes found
uniquely by ShrinkSeq, and to some extent for those
found uniquely by SAMseq, tended to be reasonably
highly expressed and consistently expressed across the
samples from both conditions while for many of the
other methods, the unique DE genes exhibited highly
inconsistent counts even within conditions. The two
genes found exclusively by vst+limma both had very low
counts in all samples, as was the case for most genes
found uniquely by TSPM.
In Additional file 1: Figure S29 we compare the

gene ranking scores obtained by the different methods
for the Bottomly data set (the scores were computed
as described previously, recall that high scores corres-
pond to genes considered DE). From this figure, we
noted that edgeR, DESeq, voom+limma, vst+limma,
TSPM and SAMseq tended to rank the genes simi-
larly, while the rankings obtained by NBPSeq were
less similar to these. The rankings obtained by baySeq
and EBSeq were considerably different from the other
rankings.
To further evaluate the performance of the methods,

we applied them to the data set consisting of only the
mice from the C57BL/6J strain, within which we de-
fined two arbitrary sample classes of 5 samples each.
The analysis was repeated five times for different arbi-
trary divisions. Under these conditions, we expect that
no genes are truly DE. Nevertheless, most methods
found differentially expressed genes in at least one in-
stance. TSPM found by far the largest number of DE
genes (Figure 5D), which supports our previous obser-
vation that this method may be too liberal. By studying
the genes called DE in the five instances, we noted that
the DE genes found by edgeR often overlapped with
the DE genes found by NBPSeq, while only few of the
DE genes called by TSPM overlapped with those found
by the other methods. Also EBSeq tended to call
unique genes, that were not found by any of the other
methods. The lack of consensus among the DE genes
found by the different methods may be a further indi-
cation that they are indeed false positives, and that
the different methods tend to favor different types of
patterns.



Table 2 Summary of the main observations

DESeq - Conservative with default settings. Becomes more
conservative when outliers are introduced.

- Generally low TPR.

- Poor FDR control with 2 samples/condition, good
FDR control for larger sample sizes, also with outliers.

- Medium computational time requirement, increases
slightly with sample size.

edgeR - Slightly liberal for small sample sizes with default
settings. Becomes more liberal when outliers are
introduced.

- Generally high TPR.

- Poor FDR control in many cases, worse with outliers.

- Medium computational time requirement, largely
independent of sample size.

NBPSeq - Liberal for all sample sizes. Becomes more liberal
when outliers are introduced.

- Medium TPR.

- Poor FDR control, worse with outliers. Often truly
non-DE genes are among those with smallest
p-values.

- Medium computational time requirement, increases
slightly with sample size.

TSPM - Overall highly sample-size dependent performance.

- Liberal for small sample sizes, largely unaffected
by outliers.

- Very poor FDR control for small sample sizes,
improves rapidly with increasing sample size. Largely
unaffected by outliers.

- When all genes are overdispersed, many truly
non-DE genes are among the ones with smallest
p-values. Remedied when the counts for some genes
are Poisson distributed.

- Medium computational time requirement, largely
independent of sample size.

voom / vst - Good type I error control, becomes more
conservative when outliers are introduced.

- Low power for small sample sizes. Medium TPR for
larger sample sizes.

- Good FDR control except for simulation study B40000 .
Largely unaffected by introduction of outliers.

- Computationally fast.

baySeq - Highly variable results when all DE genes are
regulated in the same direction. Less variability when
the DE genes are regulated in different directions.

- Low TPR. Largely unaffected by outliers.

- Poor FDR control with 2 samples/condition, good
for larger sample sizes in the absence of outliers.
Poor FDR control in the presence of outliers.

- Computationally slow, but allows parallelization.

EBSeq - TPR relatively independent of sample size and
presence of outliers.

- Poor FDR control in most situations, relatively
unaffected by outliers.

- Medium computational time requirement, increases
slightly with sample size.

Table 2 Summary of the main observations (Continued)

NOISeq - Not clear how to set the threshold for qNOISeq to
correspond to a given FDR threshold.

- Performs well, in terms of false discovery curves,
when the dispersion is different between the
conditions (see supplementary material).

- Computational time requirement highly dependent
on sample size.

SAMseq - Low power for small sample sizes. High TPR for
large enough sample sizes.

- Performs well also for simulation study B40000 .

- Largely unaffected by introduction of outliers.

- Computational time requirement highly dependent
on sample size.

ShrinkSeq - Often poor FDR control, but allows the user to
use also a fold change threshold in the inference
procedure.

- High TPR.

- Computationally slow, but allows parallelization.

The table summarizes the present study by means of the main observations
and characteristic features for each of the evaluted methods. We have
grouped voom+limma and vst+limma together since they performed overall
very similarly.
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Conclusions
In this paper, we have evaluated and compared eleven
methods for differential expression analysis of RNA-seq
data. Table 2 summarizes the main findings and observa-
tions. No single method among those evaluated here is
optimal under all circumstances, and hence the method
of choice in a particular situation depends on the
experimental conditions. Among the methods evaluated
in this paper, those based on a variance-stabilizing trans-
formation combined with limma (i.e., voom+limma and
vst+limma) performed well under many conditions, were
relatively unaffected by outliers and were computation-
ally fast, but they required at least 3 samples per condi-
tion to have sufficient power to detect any differentially
expressed genes. As shown in the supplementary mater-
ial (Additional file 1), they also performed worse when
the dispersion differed between the two conditions. The
non-parametric SAMseq, which was among the top
performing methods for data sets with large sample
sizes, required at least 4-5 samples per condition to have
sufficient power to find DE genes. For highly expressed
genes, the fold change required for statistical significance
by SAMseq was lower than for many other methods,
which can potentially compromise the biological signifi-
cance of some of the statistically significantly DE genes.
The same was true for ShrinkSeq, which however has an
option for imposing a fold change requirement in the
inference procedure.
Small sample sizes (2 samples per condition) imposed

problems also for the methods that were indeed able to



Soneson and Delorenzi BMC Bioinformatics 2013, 14:91 Page 14 of 18
http://www.biomedcentral.com/1471-2105/14/91
find differentially expressed genes, there leading to false
discovery rates sometimes widely exceeding the desired
threshold implied by the FDR cutoff. For the parametric
methods this may be due to inaccuracies in the estima-
tion of the mean and dispersion parameters. In our
study, TSPM stood out as the method being most
affected by the sample size, potentially due to the use of
asymptotic statistics. Even though the development
goes towards large sample sizes, and barcoding and
multiplexing create opportunities to analyze more
samples at a fixed cost, as of today RNA-seq experi-
ments are often too expensive to allow extensive replica-
tion. The results conveyed in this study strongly suggest
that the differentially expressed genes found between
small collections of samples need to be interpreted with
caution and that the true FDR may be several times
higher than the selected FDR threshold.
DESeq, edgeR and NBPSeq are based on similar prin-

ciples and showed, overall, relatively similar accuracy
with respect to gene ranking. However, the sets of sig-
nificantly differentially expressed genes at a pre-specified
FDR threshold varied considerably between the methods,
due to the different ways of estimating the dispersion pa-
rameters. With default settings and for reasonably large
sample sizes, DESeq was often overly conservative, while
edgeR and in particular NBPSeq often were too liberal
and called a larger number of false (and true) DE genes.
In the supplementary material (Additional file 1) we
show that varying the parameters of edgeR and DESeq
can have large effects on the results of the differential
expression analysis, both in terms of the ability to con-
trol type I error rates and false discovery rates and in
terms of the ability to detect the truly DE genes. These
results also show that the recommended parameters
(that are used in the main paper) are indeed well chosen
and often provide the best results.
EBSeq, baySeq and ShrinkSeq use a different infer-

ential approach, and estimate the posterior probabil-
ity of being differentially expressed, for each gene.
baySeq performed well under some conditions but
the results were highly variable, especially when all
DE genes were upregulated in one condition com-
pared to the other. In the presence of outliers,
EBSeq found a lower fraction of false positives than
baySeq for large sample sizes, while the opposite was
true for small sample sizes.

Methods
In the following section we give a brief overview of the
eleven methods for differential expression analysis that
are evaluated and compared in the present paper. For
more elaborate descriptions we refer to the original pub-
lications. All methods take their starting point in a count
matrix, containing the number of reads mapping to each
gene in each of the samples in the experiment. Nine of
the methods work directly on the count data, while the
remaining two transform the counts and feed the
transformed values into the R package limma [10], which
was originally developed for differential expression
analysis of microarray data.
The methods working directly on the count data can

be broadly divided into parametric (baySeq [14], EBSeq
[24], ShrinkSeq [27], edgeR [23], DESeq [7], NBPSeq
[15] and TSPM [13]) and non-parametric methods
(NOISeq [25] and SAMseq [26]). The two-stage Poisson
model (TSPM) proposed in [13] is based on a Poisson
model for the counts, which is extended via a quasi-
likelihood approach to allow for overdispersion if there
is enough evidence for it in the data. Hence, the first
step is to test each gene individually for evidence of
overdispersion, in order to decide which of the two
models to use for the differential expression analysis.
The tests for differential expression are based on asymp-
totic statistics, which implies that the total count for
each gene, across all samples, must not be too small.
The authors therefore recommend that genes with a
total count less than 10 are removed from the analysis.
They also note that for the TSPM to work well, it
may be important that there are indeed some genes
for which there is no overdispersion.
Most of the remaining parametric models (baySeq,

DESeq, EBSeq, edgeR and NBPSeq) use instead a Negative
Binomial (NB) model to account for the overdispersion,
while ShrinkSeq allows the user to select among a number
of different distributions, including the NB and a zero-
inflated NB distribution. DESeq, edgeR and NBPSeq take a
classical hypothesis testing approach, while baySeq, EBSeq
and ShrinkSeq instead are cast within a Bayesian frame-
work. It is acknowledged that a crucial part of the inference
procedure is to obtain a reliable estimate of the dispersion
parameter for each gene, and hence considerable effort is
put into this estimation. Due to the small sample size in
most RNA-seq experiments it is difficult to estimate the
gene-wise dispersion parameters reliably, which motivates
information sharing across all genes in the data set in order
to obtain more accurate estimates. Both DESeq, edgeR and
NBPSeq incorporate information sharing in the dispersion
estimation, and the way that this information sharing is
done accounts for the main difference between the three
methods. The first suggestion [12] was to assume that all
genes had the same dispersion parameter. This could then
be estimated from all the available data using a conditional
maximum likelihood approach. A common dispersion for
all genes may however be a too restrictive assumption,
and so this procedure was developed further to allow for
gene-wise dispersion estimates, but where the individual
estimates were squeezed towards the common one using
a weighted likelihood approach [31]. This method is used
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by edgeR. In contrast, DESeq and NBPSeq obtain the
dispersion estimates by modeling the observed mean-
variance (or the mean-dispersion) relationship for the
genes in the data set using either parametric or local
regression. After having obtained the fitted values,
DESeq takes a conservative approach by defining the dis-
persion of a gene as the largest of the value obtained from
the fitting and the individual dispersion estimate for the
gene. NBPSeq does not take the same type of conservative
approach as DESeq, and uses the fitted dispersion values
only. After obtaining an estimate of the mean and the dis-
persion parameter for each gene, edgeR, DESeq and
NBPSeq test for significant differential expression using
either a variant of an exact test (for two-group compari-
sons) or a generalized linear model (allowing more com-
plex experimental designs).
The approach used by baySeq and EBSeq is similar to

the three previously mentioned methods in terms of the
underlying NB model, but differs in terms of the infer-
ence procedure. For baySeq, the user defines a collection
of models, each of which is essentially a partitioning of
the samples into groups, where samples in the same group
are assumed to share the same parameters of the under-
lying distribution. Within an empirical Bayes framework,
baySeq then estimates the posterior probability of each
model for each of the genes in the data set. Information
from the entire set of genes is used to form an empirical
prior distribution for the parameters in the NB model.
EBSeq uses a similar approach, but assumes a parametric
form of the prior distribution of the parameters, with
hyperparameters that are shared between all the genes
and estimated from the data.
ShrinkSeq, which also takes a Bayesian perspective,

supports a number of different count models, including
the NB and a zero-inflated NB. It provides shrinkage of
the dispersion parameter, but also of other parameters
such as the regression coefficients that are of interest for
the inference. Furthermore, it incorporates a step for re-
fining the priors, and subsequently the posteriors, non-
parametrically after fitting the model for each feature.
The two non-parametric methods evaluated here,

NOISeq and SAMseq, do not assume any particular distri-
bution for the data. SAMseq is based on a Wilcoxon statis-
tic, averaged over several resamplings of the data, and uses
a sample permutation strategy to estimate a false discov-
ery rate for different cutoff values for this statistic. These
estimates are then used to define a q-value for each gene.
NOISeq explores the distribution of fold-changes and ab-
solute expression differences between the two contrasted
conditions for the observed data, and compares this
distribution to the corresponding distribution obtained by
comparing pairs of samples belonging to the same condi-
tion (this is called the “noise distribution”). Briefly,
NOISeq computes, for each gene, a statistic (here denoted
qNOISeq) defined as the fraction of points from the noise
distribution that correspond to a lower fold change and a
lower absolute expression difference than those of the
gene of interest in the original data.
Finally, the two transformation approaches (the vari-

ance stabilizing transformation provided in the DESeq R
package and the voom transformation from the limma R
package) aim to find a transformation of the counts to
make them more amenable to analysis by traditional
methods developed for differential expression analysis in
the microarray context. The variance-stabilizing trans-
formation provided in the DESeq R package (here
denoted ‘vst’) explicitly computes the transformation by
assuming a NB distribution and using dispersion esti-
mates obtained as for DESeq. The ‘voom’ transformation
from the limma R package essentially log-transforms the
normalized counts and uses the mean-variance relation-
ship for the transformed data to compute gene weights,
which are then used by limma during the differential
expression analysis.
In the present study, we focus on two-group compari-

sons only, since this is arguably the most common
situation in practice. However, most of the evaluated
methods support also more complex experimental de-
signs. Most methods (edgeR, DESeq, NBPSeq, TSPM)
achieve this through a generalized linear model (GLM)
framework, where the user can specify desired contrasts
to test. The limma package offers similarly flexible design
options for the transformed data. The Bayesian methods
(baySeq and EBSeq) allow the user to provide models de-
fining collections of samples that are supposed to share
the same distributional parameters, and return the pos-
terior likelihood of each model thus defined. ShrinkSeq is
based on the general framework of Gaussian latent
models through the INLA approach [32], which allows
very flexible experimental designs, including also random
effects. It is also possible to impose a fold change thresh-
old in the estimation of the posterior probabilities of dif-
ferential expression. SAMseq provides nonparametric
tests for various situations, such as paired and unpaired
two-group comparisons, multigroup comparisons and
survival analysis. NOISeq, in its current implementation,
allows only two-group comparisons.

Parameter choices
Many of the methods that are compared in this paper
allow the user to select the value of certain parameters,
that can affect the results in various ways. We have
mostly used the default values provided in the
implementations, but in the supplementary material
(Additional file 1) we also provide some comparisons of
the performances for different choices of the parameter
values. This section summarizes the parameter values
that were used for the evaluations in the main paper.
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For more detailed information about the meaning of the
different parameters, we refer to the original publica-
tions describing the respective methods.
For edgeR, we used the TMM method (Trimmed

Mean of M-values [8]) to calculate normalization factors
between samples. We used tagwise dispersion estimates,
squeezed towards a trended estimate computed by the
‘moving average’ approach. We performed an exact test
to find genes that were differentially expressed between
two conditions.
For DESeq, we computed a pooled estimate of the

dispersion parameter for each gene. We used local
regression to find the mean-variance relationship and
employed the conservative approach of selecting the
largest among the fitted value and the individual disper-
sion estimate for each gene. Also here, we used the
implemented exact test to find DE genes. The local regres-
sion approach was also used in the variance-stabilizing
transformation provided by the DESeq package (denoted
‘vst’). Here, we used instead the ‘blind’ option for the
dispersion estimation.
Also for TSPM, baySeq, voom and NBPSeq we used

the TMM method to compute normalization factors. For
NOISeq, we normalized the counts using the TMM
method before feeding the data into the differential
expression analysis. Furthermore, for NBPSeq we used
the ‘NBP’ parametrization of the Negative Binomial dis-
tribution. For baySeq, we assumed a Negative Binomial
distribution and used the quasi-likelihood approach to
estimate priors. We used a sample size of 5,000 to esti-
mate the priors. Furthermore, we assumed equal disper-
sion for a gene in the two sample groups and used the
Table 3 Summary of the parameters used to generate the syn

Sim. study jGup
DEj jGdown

DE j |{g; φg = 0}|

B00 0 0 0

B12500 1,250 0 0

B625625 625 625 0

B40000 4,000 0 0

B20002000 2,000 2,000 0

P00 0 0 6,250

P625625 625 625 6,250

S00 0 0 0

S625625 625 625 0

R00 0 0 0

R625625 625 625 0

In all synthetic data sets, the observations were distributed between two condition
each condition. We let Gup

DE

�� �� and Gdown
DE

�� �� denote, respectively, the number of genes
of genes whose counts were drawn from a Poisson distribution (i.e., with the dispersio
fraction denotes the fraction of the genes for which we selected a single samp
‘random’ outlier fraction denotes the fraction of counts that were selected randomly (a
notation for the simulation studies (leftmost column) summarizes the type of s
number of DE genes that are upregulated in S2 (i.e., Gup

DE

�� ��, in the superscript) and the n
the subscript).
‘BIC’ option for the prior re-estimation step. For EBSeq,
we used the default ‘median’ normalization method, that
is, the normalization provided with DESeq [7].
Before applying ShrinkSeq, we normalized the counts

using TMM normalization factors. Within ShrinkSeq we
then employed a zero-inflated Negative Binomial distri-
bution, and applied shrinkage to the dispersion param-
eter as well as the regression coefficient of interest in
the inference procedure. To make the results from
ShrinkSeq comparable to those from the other methods,
we did not impose a non-zero fold change threshold
when estimating the false discovery rates.
Data sets
Most of the evaluations in this paper are based on syn-
thetic data, where we could control the settings and the
true differential expression status of each gene. We gener-
ated the counts for each gene from a Negative Binomial
distribution, with mean and dispersion parameters esti-
mated from real RNA-seq data, following the same ap-
proach as in [20]. We refer to the supplementary material
(Additional file 1) for more detailed information about
how the parameters were estimated. All methods were
run on the same data sets.
We let G = {g1, . . ., g|G|} denote the set of genes in our

data set. In the synthetic data sets, we took |G|=12,500.
Similarly, we let S = {s1, . . ., s|S|} denote the set of sam-
ples, and assumed that these were partitioned into two
subsets S1 and S2. In our experiments, we let |S1|=|S2|
and we thought of S1 as the “control” group of samples
and S2 as a group of samples with an abnormal
thetic data sets

‘Single’ outlier fraction ‘Random’ outlier fraction

0 0

0 0

0 0

0 0

0 0

0 0

0 0

10% 0

10% 0

0 5%

0 5%

s (denoted S1 and S2), with the same number of observations (2, 5 or 10) in
that were up- and downregulated in condition S2 compared to S1. The number
n parameter equal to zero) is given by |{g; φg = 0}|. The ‘single’ outlier
le and multiplied the corresponding count with a factor between 5 and 10. The
mong all counts) and multiplied with a factor between 5 and 10. The
imulation (B - ‘baseline’, P - ‘Poisson’, S - ‘single outlier’, R - ‘random outlier‘), the
umber of DE genes that are downregulated in S2 (i.e., Gdown

DE

�� ��;, in
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phenotype. We let Gup
DE � G denote the set of genes that

were differentially expressed between the two sample
groups, and which were upregulated in S2. Similarly,
Gdown

DE � G denoted the set of genes that were down-
regulated in S2 compared to S1.
The random variable representing the count for gene g

in sample s was denoted Ygs. It was modeled by a
Negative Binomial distribution, following the approach
outlined in [8], by letting

YgseNB mean ¼ μgs; var ¼ μgs 1þ μgsφgs

� �� �
:

Here, φgs is the dispersion parameter, controlling the
level of overdispersion. Moreover,

μgs ¼ E Ygs
� � ¼ λgc sð ÞX

g∈G
λgc sð Þ

Ms

where Ms is the sequencing depth for sample s, which
we defined as Ms = 107Us for Us ~Unif[0.7, 1.4], and
c(s) ∈ {S1, S2} denoted the condition for sample s. We
let the dispersion parameter ϕgs be the same in the two
sample groups, that is, ϕgs = ϕg for all s.
For each gene, we drew a pair of values λgS1 and ϕg from

those estimated from the real RNA-seq data. We then de-
fined λgS2 ¼ γ

vg
g λgS1 where γg ¼ wg þ �γg ; �γgeExp 1ð Þ and

vg ¼
1 if g∈Gup

DE
�1 if g∈Gdown

DE
0 otherwise

8<
:

The parameter wg denoted the lower bound on the
differential expression between the two groups. In our
simulations, we let wg = 1.5 for all g.
To simulate different real situations, we also evaluated

the effect of generating the counts for half of the genes
using a Poisson distribution (i.e., without overdispersion,
simulation studies denoted ‘P’). Furthermore, we studied
the effect of including outliers with extremely high
counts. The outliers were introduced in two different
ways. For the ‘single’ outlier simulation studies (denoted
‘S’), we selected 10% of the genes, and for each of these
genes we selected a single sample for which we multi-
plied the observed count with a randomly selected factor
between 5 and 10. For the ‘random’ outlier simulation
studies (denoted ‘R’), we considered each observed count
independently, and with probability 0.05 we multiplied a
count by a randomly selected factor between 5 and 10.
Table 3 summarizes the parameter values that were used
in the different simulation studies. For each synthetic
data set, we filtered out all genes for which the total
count across all samples was less than 10 before the dif-
ferential expression analysis was performed.
In addition to the synthetic data, we also considered a

real RNA-seq data set [30] that we downloaded from
http://bowtie-bio.sourceforge.net/recount/. The data set
contained RNA-seq data taken from 21 samples from two
different mouse strains. Also for this data set we filtered
out all genes for which the total count across the 21 sam-
ples did not exceed 10, which left 11,870 genes in the data
set. In the supplementary material, we analyse two other
real data sets [33,34], downloaded from the same source.

Additional file

Additional file 1: Contains supplementary figures referred to in the
text. Here, we also evaluate the effect of selecting different values for the
parameters of edgeR and DESeq and evaluate two additional
transformation-based methods, and we evaluate the effect of simulating
data with different dispersion parameter in the two compared conditions.
We also present some comparisons based on data sets with 3 samples
per condition. The file also contains information regarding the estimation
of the mean and dispersion parameters from real data, and an additional
analysis of two real RNA-seq data sets. Finally, it contains sample R code
to run the differential expression analysis and estimates of the
computational time requirements for the different methods.
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