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Abstract

Background: Microarrays have become a routine tool to address diverse biological questions. Therefore, different
types and generations of microarrays have been produced by several manufacturers over time. Likewise, the
diversity of raw data deposited in public databases such as NCBI GEO or EBI ArrayExpress has grown enormously.
This has resulted in databases currently containing several hundred thousand microarray samples clustered by
different species, manufacturers and chip generations. While one of the original goals of these databases was to
make the data available to other researchers for independent analysis and, where appropriate, integration with their
own data, current software implementations could not provide that feature.

Only those data sets generated on the same chip platform can be readily combined and even here there are batch
effects to be taken care of. A straightforward approach to deal with multiple chip types and batch effects has

been missing.

input to other Bioconductor packages.

The software presented here was designed to solve both of these problems in a convenient and user friendly way.

Results: The virtualArray software package can combine raw data sets using almost any chip types based on current
annotations from NCBI GEO or Bioconductor. After establishing congruent annotations for the raw data, virtualArray
can then directly employ one of seven implemented methods to adjust for batch effects in the data resulting from
differences between the chip types used. Both steps can be tuned to the preferences of the user. When the run is
finished, the whole dataset is presented as a conventional Bioconductor “ExpressionSet” object, which can be used as

Conclusions: Using this software package, researchers can easily integrate their own microarray data with data from
public repositories or other sources that are based on different microarray chip types. Using the default approach a
robust and up-to-date batch effect correction technique is applied to the data.

Background

Transcriptome analysis by microarray technology has
become a routine tool in many research areas ranging from
basic cell biology to clinical research [1]. Almost as broad
as the range of applications is the number of array formats
and chip generations available, each with its individual
scientific, economic or practical strengths and weaknesses.
Furthermore, prices continue to decline as the market
develops, so that more researchers gain access to micro-
array technology, generating and banking even more
transcriptome data in public databases such as Gene
Expression Omnibus (GEO) [2] or Array Express [3]. There
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are currently over 650000 samples (from RNA) stored in
the GEO database, which were recorded on more than
4000 different microarray platforms (in situ oligonucleotide
arrays).

Considering the amount of data and platforms already
available, we believe it is becoming increasingly important
to cross-compare data generated by different research
groups. In the past, this has mostly been done via meta-
analysis studies, such as the microarray quality control
consortium (MAQC) study I, comparing the outcomes of
different microarray projects [4,5]. A direct comparison of
raw data from different research groups was hampered by
the different data formats of the various array types and
by batch effects obscuring meaningful information with
systematic non—biological perturbations. These derive for
example from differences in sample preparation and
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hybridization protocols, lot-to-lot variability, limited shelf-
life of microarrays, and, most importantly, differences
intrinsic to the platforms themselves [6-8].

To address these problems, a number of algorithms have
been designed to reduce batch effects. Mean centering,
implemented in the “pamr” R package (MC, [9,10]), and
standardization, implemented e.g. in the dChip software
[11,12] function at a rather superficial and global level,
while cross-platform normalization (XPN, [13]) and empir-
ical Bayes methods (EBM, [14]) are more sophisticated
algorithms that work more flexibly on a smaller per gene
or per cluster basis. The ability of these and other algo-
rithms to remove batch effects has been assessed by differ-
ent groups [6,15-17]. While batch effects are reduced by all
methods, in particular situations and especially in the case
of smaller datasets, XPN and EBM have been shown to
outperform the others. A downside of all methods men-
tioned is that they require one consistent dataset and are
thus applicable only to cross-batch but single-platform
problems. Although cross-platform mappings are possible,
current implementations only support meta-analysis [18].
A straightforward and easy to use tool to combine raw data
from different platforms has been lacking.

To fill this gap we have developed the R/Bioconductor
package virtualArray [19]. The package is able to integrate
raw data from most microarray platforms available and
generates a combined “ExpressionSet” object, allowing
unrestricted further manipulation and analysis in R and
other software. Raw microarray data can be matched by
transcript, gene, protein or any identifiers known to R.
And most importantly, batch effects are removed by a
method of choice (default EBM). In total there are seven
methods directly available in the virtualArray package for
multi-platform batch effect removal: quantile discretization
(QD, [20]), normal discretization normalization (NorDij,
[21]), gene quantile normalization (GQ, [22]), median rank
scores (MRS, [20]), quantile normalization (QN, [23]),
empirical Bayes methods (EBM, [14]) and mean centering
(MC, [10]).

Implementation

General aspects and design

All parts of the software are written in the R pro-
gramming language [24] and rely on the Bioconductor
[25] extension packages. The package has two central
functions:

Firstly, the "virtualArrayCompile" function can inte-
grate the major human microarray platforms in a default
mode. It requires minimal user input, but is restricted to
the most commonly used platforms. The second func-
tion is called "virtualArrayExpressionSets". This function
can integrate any kind of raw expression data that can
be loaded into an ExpressionSet object in R/BioC.
While being highly versatile, the user has to deal with
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details such as logarithmic transformations, depth of
data precision (e.g. 16 bit vs. 20 bit), or assignment
of correct annotations.

The data precision in bit can be critical, because the raw
data for each microarray can derive from different array
scanners. A scanner with a 16 bit precision for example
uses its analog-digital converter to assign a value between 0
and 65535 to a given point on that array, whereas a 20 bit
precision would allow assigning values between 0 and
1048575. When comparing the resulting data, it is
necessary to take these differences into account.

If no Bioconductor annotation package is available for
a particular chip type, it is possible to create one using
the packages AnnotationForge and SQLForge [26].

Additionally, each of these two approaches can be
used with a method of choice to remove multi-platform
batch effects. There are seven methods available within
the virtualArray package: EBM, GQ, QN, QD, MC,
MRS, NorDi. The default method is EBM, which can be
used either in a supervised or in a non-supervised mode
[14]. The supervised mode allows to “pre-cluster” samples
according to their biological or experimental origin by
assigning covariates (e.g. “cardiomyocytes”, “neurons”,
“iPS-cells”, or “t0”, “2 h”, “4 h”, “6 h”, “8 h”). The grouping
has an impact on the results, and should hence be correct
and complete for all samples included. Last but not least it
is possible to use the package to integrate data without
batch effect removal, so that other, user-defined, methods
of batch effect removal can be employed later. The
combined data is presented as a regular Bioconductor
"ExpressionSet” object, which allows the subsequent
implementation of all R/Bioconductor functions and
packages on the dataset.

Detailed stepwise explanations

The procedure that is performed by virtualArray can be
split up into several steps. The first two steps are prerequi-
sites involving user input and need to be set up before
employing the package. From step 3 onwards everything
is run without user intervention. Steps 3 and 4 act on one
batch/chip type at a time, whereas the last three steps are
applied to all batches/chip types simultaneously, resulting
ultimately in the creation of a new “ExpressionSet” object.
A scheme of all steps is shown in Figure 1.

Step 1 - loading and storage of raw data

The raw data must be provided as ExpressionSets in
Bioconductor by means of manufacturer specific packages
e.g. "afty" [27], "lumi" [28] or "limma" [29]. The "annotation”
slot of the ExpressionSet must contain the name of a
Bioconductor compliant annotation package. This should
be checked and adjusted manually, if necessary. This
is particularly important when pulling data from
NCBI GEO [2] or EBI ArrayExpress [3].
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input data: more than one ExpressionSet with valid annotation link

ExpressionSet A ExpressionSet B

extract chip platform

load current annotation, respectively

if not available, fetch from internet

el
QAQ

ZC3 131 12.9

S~
Experiment study A Experiment study B
ID sample x sampley sample z raw ID sample a sample b sample ¢
probe x 5.1 5.2 5.005 A probe a 5.2 5.005 5.1
probey 83 9.1 8.4 expression data  probeb 9.1 8.4 8.3
probe z 12.8 131 12.9 probe c 12.9 12.8 131
s N
ID symbol ID symbol
probe x  XA1 current probea XA1
probey YB2 . probeb YB2
probez ZC3 annotation probec ZC3
. J
@ discard non-matching lines @
collapse multiple values targetting
the same gene by given function
ID sample x sampley sample z ID samplea sampleb samplec
XA1 5.1 5.2 5.005 reannotated XA1 5.2 5.005 5.1
YB2 8.3 9.1 8.4 A YB2 9.1 8.4 8.3
ZC3 12.8 131 12.9 expression data ZC3 129 12.8 131
@ discard non-matching lines
G concatenate expression matrices
batch 1 batch 1 batch 1 batch 2 batch2 batch 2
ID le x pl le z ple a sample b sample ¢
combined XA1 51 52 5.005 5.2 5.005 5.1
H 3 YB2 8.3 9.1 8.4 9.1 8.4 8.3
Xprt 1on matrix
expressio at ZC3 12.8 131 12.9 12.9 12.8 13.1
batch effect removal using empirical
bayes networks
batch 1 batch1  batch 1 batch2 batch2 batch 2
ID ple x pley ple z lea sample b sample ¢
modified XA1 51 5.5 5.005 5.2 5.005 5.6
H 3 YB2 8.3 9.1 8.4 10.1 8.4 8.3
expression matrix 10.0 129 128 131

Figure 1 Scheme of the steps performed by virtualArray. A total of seven distinct steps is needed to create a virtual array. The first two
require user input while all others are performed without user intervention. Please see “Implementation” for detailed descriptions.
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Step 2 - transformations of raw data

Even samples from the same platform may yield raw data
in different formats dependent on the hardware employed
or the mode of measurement. Thus, each dataset needs to
be transformed to one common scale (e.g. log2, logl0 or
linear) and one common precision (12, 14, 16 or 20 bit)
by using standard R functions on the "exprs" slot of the
ExpressionSets. In the case of personally collected data
the precision of the raw data may be known. It is also pos-
sible, that this information was deposited along with the
data in an NCBI GEO database entry. If only information
on the scanner used is available, the precision can possibly
be obtained from the manufacturer’s website. When the
precision is unknown it can be determined empirically
(please see Additional file 1).

Step 3 - annotation of raw data

Raw data are comprised of expression levels annotated
with manufacturer specific IDs that cannot be matched
across platforms directly. In order to allow a later matching
of corresponding pairs, step 3 annotates common identi-
fiers to each single dataset. The default common identifier
in "virtualArrayExpressionSets()" is gene symbols (named
"SYMBOL" in the annotation packages). However, any
identifier present in the annotation packages, including
identifiers for genes, transcripts or proteins can be used.

Step 4 - collapsing of redundant probesets

In many chips, several probes or probesets target the
same gene, transcript or protein, resulting in > 1 entry
for otherwise unique identifiers. Thus, before the
annotated common identifiers can be matched, redun-
dant rows need to be collapsed to a single value. This
is done by either selecting the "median" (default) or
applying a user supplied function, e.g. “medpolish” or
“mean”. This operation reduces the size of the expression
matrices (Table 1).

Step 5 - compilation of the virtual array

In the next step, the software matches common identi-
fiers. A new expression matrix is built, that includes only
the rows for identifiers that are present in all datasets.
Non-matching rows are discarded.

Step 6 - construction of new ExpressionSet

virtualArray now constructs a new ExpressionSet object
using the expression matrix generated in step 5 and a
"pData" slot that contains the array and sample names as
well as pre-existing “pData” and the relations between
batches and samples. Thus, each sample carries its
parent batch as an attribute and can be directly linked to
it during the process.
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Step 7 - removal of batch effects

The newly generated ExpressionSet can now either be
returned without further modifications or directly
subjected to batch effect removal using empirical Bayes
methods as a default. This can be decided by the user
with the logical or character vector "removeBatchEffects".
Selecting “removeBatchEffects=FALSE” will result in a
non-adjusted ExpressionSet. A value of QD, NorDi, GQ,
MRS, QN, EB or MC can be used to remove batch effects
on the basis of quantile discretization [20]), normal
discretization normalization [21], gene quantile norma-
lization [22]), median rank scores [20], quantile normali-
zation [23]), empirical Bayes methods [14] and mean
centering [10], respectively.

Note, however, that even the contents of a resulting
non-adjusted ExpressionSet are not a simple concaten-
ation of the input expression matrices. On the one hand
incompatible probes/probesets are excluded during the
process. On the other hand expression values targeting the
same identifier (e.g. gene) are collapsed by the function
defined in the first place (e.g. "median”).

Results
Combining three human microarray studies from
different platforms using defaults (example 1)
In order to demonstrate an application of the pack-
age, a consistent dataset is compiled out of three dif-
ferent previously published studies carried out on
Affymetrics, Agilent and Illumina platforms, respect-
ively. Each study features datasets from human
induced pluripotent stem cells (iPSC), human fibro-
blasts, and human embryonic stem cells (ESC). We
selected the studies GSE23402 [30], GSE26428 [31]
and GSE28688 [32] for this example. Before being
able to apply the virtualArray package to these
datasets, they need to be prepared to meet the
following requirements: raw data must be log2-
scaled and all datasets must exhibit the same data
precision. A detailed explanation of all steps needed
to fulfill these prerequisites can be found in the
Additional file 1 and in the package documentation.

Firstly, raw data from the studies were pulled from the
NCBI GEO database. The raw data of each dataset are
imported into R and stored in a regular ExpressionSet
by means of the GEOquery [33] package:

> GSE23402 <- getGEO("GSE23402")

> GSE26428 <- getGEO("GSE26428")

> GSE28688 <- getGEO("GSE28688")

> GSE23402 <- GSE23402[[1]][,1:24]

> GSE26428 <- GSE26428[[1]]

> GSE28688 <— GSE28688[[1]]

Now the compatibility of all data has to be assured.
And all three datasets are transformed into log2 space
and 16 bit precision as follows:
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Table 1 Example identifier coverages and overlaps between selected chip platforms
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Platform Chip Species Identifier Original feat. num.  Collapsed feat. num.  Merged feat. num.  Overlap
Agilent G4112F H. sapiens gene symbols 41078 18575 17981 96.8%
Affymetrix U133Plus2 H. sapiens gene symbols 54675 19798 90.8%
Agilent G4112F H. sapiens gene symbols 41078 18575 16976 91.4%
Affymetrix U133Plus2 H. sapiens gene symbols 54675 19798 85.7%
lllumina HumanRef8v3 H. sapiens gene symbols 24526 21090 80.5%
Agilent G4112F H. sapiens ENTREZ ID 41078 18575 17981 96.8%
Affymetrix U133Plus2 H. sapiens ENTREZ ID 54675 20723 86.8%
Agilent G4112F H. sapiens ENTREZ ID 41078 18575 16976 91.4%
Affymetrix U133Plus2 H. sapiens ENTREZ ID 54675 20723 81.9%
lllumina HumanRef8v3 H. sapiens ENTREZ ID 24526 21090 80.5%
Agilent G4112F H. sapiens Unigene 41078 19712 19163 97.2%
Affymetrix U133Plus2 H. sapiens Unigene 54675 21505 89.1%
Agilent G4112F H. sapiens Unigene 41078 19712 18189 92.3%
Affymetrix U133Plus2 H. sapiens Unigene 54675 21505 84.6%
lllumina HumanRef8v3 H. sapiens Unigene 24526 21153 86.0%
Agilent G4112F H. sapiens ENSEMBL 41078 17899 17574 98.2%
Affymetrix U133Plus2 H. sapiens ENSEMBL 54675 18618 94.4%
Agilent G4112F H. sapiens ENSEMBL 41078 17899 17281 96.5%
Affymetrix U133Plus2 H. sapiens ENSEMBL 54675 18618 92.8%
lllumina HumanRef8v3 H. sapiens ENSEMBL 24526 19291 89.6%
lllumina MouseRef8v2 M. musculus  gene symbols 25697 22221 18037 81.2%
Affymetrix M430.2 M. musculus  gene symbols 45101 22114 81.6%
lllumina MouseRef8v2 M. musculus ENTREZ ID 25697 22221 18037 81.2%
Affymetrix M430.2 M. musculus ENTREZ ID 45101 22114 81.6%
lllumina MouseRef8v2 M. musculus Unigene 25697 22663 19510 86.1%
Affymetrix M430.2 M. musculus Unigene 45101 22261 87.6%
lllumina MouseRef8v2 M. musculus ENSEMBL 25697 20126 17384 86.4%
Affymetrix M430.2 M. musculus ENSEMBL 45101 17780 97.8%

Several major microarray chip platforms have been tested with virtualArray. The collapsing of probes/probesets was based on gene symbols, ENTREZ ID, Unigene

ID or ENSEMBL ID, resulting in different reduced feature numbers (collapsed feature number). When two or three platforms are merged, the feature number is
further reduced. However, the fraction of overlap in respect to the single chips was always above 80%.

> exprs(GSE23402) <— log2(exprs(GSE23402))

> exprs(GSE26428) <— (exprs(GSE26428)/20%16)

> exprs(GSE28688) <— log2 (exprs(GSE28688))

A Bioconductor compliant annotation is now assigned
to the ExpressionSets. However, this step only hands
over the name of the annotation packages, while the
packages themselves are fetched automatically later on.
Note that the spelling of the annotation in quotation
marks must be correct, in order to assure Bioconductor
compliance. ExpressionSets downloaded from NCBI
GEO already contain a GPL code annotation. The most
commonly used ones can be directly converted into
Bioconductor compliant ones by virtualArray. This is
true in the case of the example datasets used here.
However, if a GPL code is not available, or the source of

the data is not NCBI GEO, an additional step is required
to derive correct annotations. An example for this is
shown in the Additional file 1.

At this point there are three ExpressionSets present
in the current R workspace that have their expression
values presented as log2-transformed in 16 bit preci-
sion with the correct annotation package linked. The
virtual array can now be compiled in a very easy way
by a single call:

> virtArrays <- list()

> virtArrays[[“EB”]] <- virtualArrayExpressionSets()

The default options in this call annotate probes and
probesets with gene symbols, then collapse probes and
probesets targeting the same gene symbol to their median.
A batch effect removal is performed using empirical Bayes
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methods in non-supervised mode, taking only batch
contribution of the samples into account.

Combining three human microarray studies from
different platforms without batch effect removal
(example 2)
To see the impact of the batch effect, another
ExpressionSet without batch effect removal can be
compiled as follows:

> virtArrays[[“wBatchEffects”]] <—

virtual ArrayExpressionSets(removeBatcheffect=FALSE)

Despite omitting batch effect removal the resulting
ExpressionSet is not equivalent to the raw data, because
redundant values have been collapsed and genes with
missing values discarded. Thus the reduction of the
expression matrix depends on the general overlap of the
platforms concerned and the degree of completion of
the annotation packages.

Impact of batch effect on output ExpressionSets

The two new ExpressionSets can be used to illustrate
the batch effect. Distance matrices were derived from
both ExpressionSets using Euclidian distances. These
were then used to create hierarchical clusterings based
on average linkage (see Figure 2).

The examples illustrate that the biggest source of vari-
ation in the dataset without batch effect removal
(Figure 2A) is batch contribution, which prohibits any
valuable analysis of the underlying biology. On the other
hand, the same data become biologically meaningful
after batch effect removal (Figure 2B): there are two
clusters of fibroblasts and one cluster of pluripotent
cells, indicating that biological variance has now become
the main source of variation.

Improving outcome with user input — supervised mode
(example 3)

While batch effect removal in the non-supervised mode
resulted in a dramatic improvement, the result can be
further improved via the assignment of samples into
groups by choice (supervised mode). The basis for this,
however, is that in addition to the batch information
other attributes are made available (e.g. “celltype”). This
additional information can be provided in a column in
the “pData” slot common to all single ExpressionSets (e.g.
hand over the parameter “covars=c(‘Batchcelltype’)”). An-
other way to store this information would be a data.frame
or tab delimited text file holding a “sample_info” table
(hand over the parameter “sampleinfo="; see Table 2 for
an example). The third option allows the creation of a
sample_info.txt file on the fly in the current working
directory, prompting the user to modify it with respect to
additional sample information. The detailed usage can be
found in the package documentation.
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In the following example we will hand over the
“sampleinfo="create” parameter to the “virtualArray-
ExpressionSets” function to pass on the information:

> virtArrays[[“EBsupervised”]] <—virtualArrayExpression-
Sets(sampleinfo="create”)

During this run, virtualArray will prompt for a modifica-
tion of the “sample_info.txt” file. This file is automatically
created and deposited in the current working directory.
For the supervised mode to work as expected, at least col-
umn 4, which holds the covariate 1, needs to be modified.
If more than one covariate is needed, more columns can
be added in order to include more information about the
samples (e.g. tissue type, sex, age, type of treatment, etc.).
In our example, only column 4 is needed. The
running numbers are modified and group names such
as “fibroblast”, “ESC” or “iPSC” are assigned to each
sample (see Table 2).

When the hierarchical clusterings of this new dataset
(Figure 2C) are compared with the non-supervised ver-
sion from above (Figure 2B), there is little obvious differ-
ence. However, a principle component analysis of the
latter two datasets reveals some improvement upon su-
pervised batch effect removal (Figure 2D and E). All fi-
broblasts have become clearly distinct from the iPSCs
and ESCs, while adult or dermal fibroblasts become dis-
tinct from neonatal or foreskin fibroblasts in this setting,
indicating an increase in resolution.

Discussion

A number of bioinformatics tools can be used to merge
raw data from different platforms. However, many of the
available programs like ArrayMining.net [34], CrossChip.
org [35], WebArrayDB [22] and CONOR [17] can handle
no more than two batches at once, and are in some cases
even restricted to different chip generations of the same
platform. Other tools, such as AnyExpress, are able to inte-
grate several platforms at once, but have no routine to deal
with batch effects, which must be removed before mean-
ingful analysis can be derived from cross-platform studies
[36]. Aiming to perform direct cross-platform comparison
of raw microarray data, we felt the need to develop a new
tool that would facilitate both (1) the integration of a
broad range of different kinds of raw microarray data
and (2) the removal of batch effects in order to pro-
vide one consistent dataset that can be subjected
directly to further meaningful analysis.

Our package virtualArray can integrate raw data
generated on most common microarray platforms,
including Affymetrics, Illumina and Agilent. By default,
batch effects are removed using empirical Bayes methods,
but the package also offers a variety of other methods
for batch effect removal. Importantly, and unlike most
of the tools named above, virtualArray is entirely
based on open source common standards, as it uses R/
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Figure 2 Hierarchical clusterings and principle component analyses of ExpressionSets outputted by virtualArray. On the basis of the
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iPSC, human induced pluripotent stem cells. A, clustering of combined data without batch effect removed, B, clustering of combined data with batch
effect removed in non-supervised mode; C, clustering of combined data with batch effect removed in supervised mode. The direct analysis of the
combined dataset exhibits strong batch effects (A), that can be reduced by the use of EBM (B) in non-supervised mode. The benefit of the supervised
mode can be seen in PCA plots (D, E) but not hierarchical clusterings (C). Principle component analyses were performed on the combined batch
effect removed dataset. The batch effects were removed in non-supervised (D) and supervised mode (E), respectively.
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BioC ExpressionSet objects both as input and output
formats. This ensures direct access to public databases
such as NCBI GEO and EBI ArrayExpress independent
from platform or manufacturer specific features, as well as
an easy route to further analysis of the merged dataset, e.

g. in R/BioC or MeV [37]. virtualArray retains a high
number of genes even after multi-platform comparison
(generally > 80%; Table 1). It can be used flexibly to build
a comparison based on gene, transcript or protein identi-
fiers, and has several tools for batch effect removal already
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Table 2 Contents of an exemplary “sample_info.txt” file

Array.name Sample.name Batch Covariate
1 GSM574058 GSM574058 GSE23402 fibroblast
2 GSM574059 GSM574059 GSE23402 fibroblast
3 GSM574060 GSM574060 GSE23402 fibroblast
4 GSM574061 GSM574061 GSE23402 ESC
5 GSM574062 GSM574062 GSE23402 ESC
6 GSM574063 GSM574063 GSE23402 ESC
7 GSM574064 GSM574064 GSE23402 ESC
8 GSM574065 GSM574065 GSE23402 ESC
9 GSM574066 GSM574066 GSE23402 ESC
10 GSM574067 GSM574067 GSE23402 ESC
" GSM574068 GSM574068 GSE23402 ESC
12 GSM574069 GSM574069 GSE23402 ESC
13 GSM574070 GSM574070 GSE23402 ESC
14 GSM574071 GSM574071 GSE23402 ESC
15 GSM574072 GSM574072 GSE23402 ESC
16 GSM574073 GSM574073 GSE23402 ESC
17 GSM574074 GSM574074 GSE23402 ESC
18 GSM574075 GSM574075 GSE23402 ESC
19 GSM574076 GSM574076 GSE23402 ESC
20 GSM574077 GSM574077 GSE23402 ESC
21 GSM574078 GSM574078 GSE23402 iPSC
22 GSM574079 GSM574079 GSE23402 iPSC
23 GSM574080 GSM574080 GSE23402 iPSC
24 GSM574081 GSM574081 GSE23402 iPSC
25 GSMe48497 GSMe48497 GSE26428 iPSC
26 GSM648498 GSM648498 GSE26428 iPSC
27 GSM648499 GSM648499 GSE26428 fibroblast
28 GSM710513 GSM710513 GSE28688 fibroblast
29 GSM710514 GSM710514 GSE28688 fibroblast
30 GSM710515 GSM710515 GSE28688 fibroblast
31 GSM710516 GSM710516 GSE28688 fibroblast
32 GSM710517 GSM710517 GSE28688 fibroblast
33 GSM710518 GSM710518 GSE28688 fibroblast
34 GSM710519 GSM710519 GSE28688 fibroblast
35 GSM710520 GSM710520 GSE28688 fibroblast
36 GSM710521 GSM710521 GSE28688 ESC
37 GSM710522 GSM710522 GSE28688 ESC
38 GSM710523 GSM710523 GSE28688 iPSC
39 GSM710524 GSM710524 GSE28688 iPSC
40 GSM710525 GSM710525 GSE28688 iPSC
41 GSM710526 GSM710526 GSE28688 iPSC

The first two columns need to correspond to the sample names used in the
ExpressionSets, respectively. In column 3 the contribution of individual
samples to batches is tracked. Finally, column 4 contains user defined group
assignments of each sample. Group assignments (covariates) can include more
than one column, for example to include source tissue, sex, age, etc.
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implemented. Being open source, virtualArray could be
easily extended to integrate next-generation sequencing
data in ExpressionSet format, and even allow cross-
species comparison if required. The DESeq package for
example allows for the conversion of next-generation
sequencing data into ExpressionSets using variance-
stabilizing transformation [38]. The Bioconductor hom-
ology annotation packages permit mapping between
different species. A routine to use multi-core CPUs on
unix-like systems such as Linux or Mac OS X is built into
the package, allowing for the robust computation of large
scale analyses comprising several hundred complete
datasets using conventional computer hardware.

Conclusion

vitrualArray is a highly versatile tool that allows the user to
combine self generated and publicly available raw datasets
according to their biological coherency, but independently
of the platform on which the data were recorded. The ex-
amples shown here demonstrate the importance of batch
effect removal and also show that the integration of data
from different platforms can yield biologically meaningful
results. We have used virtualArray to compare directly the
transcriptional profiles of a range of different adult and
pluripotent stem cells, together with mature cell types from
different tissues in one consistent principal component
analysis (PCA) based on > 200 individual microarray
datasets [39]. The resulting PCA yielded a hierarchical
picture of cellular development, ranging from the most
primitive embryonic stem cells, to the most mature differ-
entiated cells types. To the best of our knowledge, this type
of analysis has not been possible to date. It is our hope that
virtualArray will prove useful also in other areas of
research and may complement or even substitute
conventional meta-analysis studies in the future.

Availability and requirements
The software package virtualArray has been written in
the platform independent R programming language. It
requires R version 2.16 or newer to run. A mid to high
performance computer is recommended for larger
datasets (50+ samples). On systems running Mac OS X
or Linux/Unix the software can benefit from parallel
processing on several CPUs via the multicore [40] or
BiocParallel [41] packages. The examples shown above
were run successfully on an Intel Core 2 Duo 2.0 GHz
with 2 GB of RAM running Windows XP SP3 (32 bit).
The license under which the software is distributed is
the general public license version 3 (GPL-3). The soft-
ware can be downloaded for free at http://www.
bioconductor.org/packages/2.12/bioc/html/virtualArray.
html [19]. It can be installed directly in R by:
source("http://www.bioconductor.org/biocLite.R")
biocLite("virtualArray")


http://www.bioconductor.org/packages/2.12/bioc/html/virtualArray.html
http://www.bioconductor.org/packages/2.12/bioc/html/virtualArray.html
http://www.bioconductor.org/packages/2.12/bioc/html/virtualArray.html
http://www.bioconductor.org/biocLite.R
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