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Abstract

Background: For the last 25 years species delimitation in prokaryotes (Archaea and Bacteria) was to a large extent
based on DNA-DNA hybridization (DDH), a tedious lab procedure designed in the early 1970s that served its purpose
astonishingly well in the absence of deciphered genome sequences. With the rapid progress in genome sequencing
time has come to directly use the now available and easy to generate genome sequences for delimitation of species.
GBDP (Genome Blast Distance Phylogeny) infers genome-to-genome distances between pairs of entirely or partially
sequenced genomes, a digital, highly reliable estimator for the relatedness of genomes. Its application as an in-silico
replacement for DDH was recently introduced. The main challenge in the implementation of such an application is to
produce digital DDH values that must mimic the wet-lab DDH values as close as possible to ensure consistency in the
Prokaryotic species concept.

Results: Correlation and regression analyses were used to determine the best-performing methods and the most
influential parameters. GBDP was further enriched with a set of new features such as confidence intervals for
intergenomic distances obtained via resampling or via the statistical models for DDH prediction and an additional
family of distance functions. As in previous analyses, GBDP obtained the highest agreement with wet-lab DDH among
all tested methods, but improved models led to a further increase in the accuracy of DDH prediction. Confidence
intervals yielded stable results when inferred from the statistical models, whereas those obtained via resampling
showed marked differences between the underlying distance functions.

Conclusions: Despite the high accuracy of GBDP-based DDH prediction, inferences from limited empirical data are
always associated with a certain degree of uncertainty. It is thus crucial to enrich in-silico DDH replacements with
confidence-interval estimation, enabling the user to statistically evaluate the outcomes. Such methodological
advancements, easily accessible through the web service at http://ggdc.dsmz.de, are crucial steps towards a
consistent and truly genome sequence-based classification of microorganisms.
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Background
DNA-DNA hybridization (DDH) is a wet-lab method cur-
rently still used as the taxonomic gold standard for species
delineation in Archaea and Bacteria. If the genomic DNA
of two respective organisms reveals a DDH similarity of
below 70% this is the main argument to regard them as
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distinct species and vice versa [1,2]. DDH is widely con-
sidered as tedious, laborious and potentially rather error-
prone [3,4]. Moreover, in contrast to genome sequencing
it does not return more information than the DDH value
itself and, as a consequence, it is impossible to work
incrementally by re-using data.
The DDH technique is currently established in only

a few specialized labs (mainly microbial service collec-
tions) and, because it is prone to experimental deviation,
requires several experimental repetitions to determine
the statistical confidence of that experiment. For instance,
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regarding species delimitation in microbiology, the rel-
evant question is whether or not the DDH value is
significantly below or above 70%. This is particularly
important in the context of a polyphasic approach, in
which the evidence from DDH has to be traded off against
other criteria such as phenotypic measurements [5].
DDH experiments can be omitted in descriptions of novel
species only if the 16S rRNA sequence similarity is below
a certain threshold, indicating that DDH values above
70% cannot be expected [2].
The increasing availability of genome sequences thus

triggered the development of computational techniques
to replace wet-lab DDH [6-8]. These were expected to
provide the deepest possible resolution for differentia-
tion, to ensure much higher reproducibility of the results
and to allow incremental work by filling databases with
type-strain genome sequences [4]. But unless high corre-
lations with wet-lab DDH, and precise models for estimat-
ing DDH or at least DDH-analogous species boundaries
from genome-to-genome comparisons, were available,
the newly calculated values were not comparable to the
previous ones and could yield largely deviating species-
boundary estimates and, thus, an inconsistent microbial
taxonomic classification. Hence, for obvious reasons the
literature on in-silico replacements for DDH considered
correspondence with wet-lab DDH values as optimality
criterion. As a consequence, regression and/or correlation
analyses with wet-lab DDH values were used through-
out for the calibration and optimization of the in-silico
replacement methods [6-8].
In view of the technical problems and progress the

relation between the wet-lab DDH procedure and digi-
tal estimation of DDH equivalents reminds very much
to what happened some 30 years ago when DNA:rRNA
cross-hybridization melting curves [9,10] were replaced
by 16S rRNA sequences, which supported a significant
progress in microbial phylogeny [11].
The Genome Blast Distance Phylogeny approach

(GBDP) was originally devised as an approach for the infer-
ence of phylogenetic trees or networks from a given set
of wholly (or even incompletely) sequenced genomes [12],
and was subsequently revisited and enhanced [8,13-16].
The underlying principle is as follows: in the first step two
genomes A and B are locally aligned using tools such as
BLAST [17], which produce a set of high-scoring segment
pairs (HSPs; these are intergenomic matches). In the sec-
ond step, information contained in these HSPs (e.g., the
total number of identical base pairs) is transformed into
a single genome-to-genome distance value by the use of a
specific distance formula. Phylogenetic trees can then be
inferred from such distance matrices using standard tech-
niques such as neighbour joining [18]. These methods are
robust even in the presence of a significant amount of par-
alogous genes, large repeats and reduced genomes [12], as

well as low complexity-regions within the sequences [16].
GBDP could also be applied to proteomic data [13] and
even to single genes [19].
A further use of GBDP was recently evaluated, namely

to infer digital equivalents for DDH values [8,16]. These
turned out to successfully mimic the wet-lab hybridization
results, providing higher correlations with an empirical
set of DDH values than antecedent genome sequence-
based methods [6] and being able to deal with rather
incomplete genomes [8]. Microbiologists can make use
of GBDP by means of a free web service at http://ggdc.
dsmz.de [16] for submitting genome pairs and receiving
DDH analogues as well as model-based DDH estimates.
Such values on the original scale of wet-lab DDHmeasure-
ments have the practical advantage that the well-known
70% threshold can still be applied [8], even though they
are mathematically equivalent to in-silico DDH analogues
that use a scale of their own, and accordingly represent a
novel species-delimitation threshold [6,7].
The first goal of the present study is to improve DDH

estimation from genome-sequence comparisons by using
a more comprehensive empirical database and by consid-
ering a broader range of numerical data transformations
and statistical models. Previous studies were limited
to regression models of the untransformed data and
thus presupposed a linear relationship between wet-lab
DDH and the results of genome-sequence comparisons
[6-8]. But this assumption might be unjustified, and the
inspection of more complex models ([20], pp. 58–79)
and distinct data transformations [21,22] has frequently
been recommended. In addition to suboptimal fits, lin-
ear models can lead to DDH predictions below 0% and
above 100% similarity if the underlying (dis-)similarity
values are close to the upper bound (1 if distances are
not logarithmically transformed) or the lower bound (0),
respectively.
The second goal of these examinations is to obtain

confidence intervals for in-silico DDH values – an indi-
cator showing taxonomists how uncertain a reported
value is, especially if it is close to the 70% boundary.
Even though it is safe to assume a priori that digital
DDH values display much less variability than wet-lab
DDH experiments given the high sequence coverage that
can be obtained with state-of-the-art sequencing tech-
nology [4], it is of interest whether, and how, confidence
intervals can be calculated for the in-silico replacement
methods, too. Hence, GBDP was further extended by inte-
grating resampling techniques for calculating a confidence
interval per point estimate (i.e., pairwise distance). Boot-
strapping [23] and jackknifing [24] are well-known and
robust resampling techniques for estimating the variance
of a sample. But uncertainty might additionally or mainly
be caused by the empirical modeling of the relation-
ship between DDH and genome-sequence comparisons
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(see below), and the relative proportions of resampling-
andmodel-based confidence intervals need to be assessed.
Confidence intervals would render GBDP the first in-silico
procedure to infer DDH analogs that can be statistically
evaluated, which is particularly important in the context
of the polyphasic approach to microbial taxonomy (see
above).
The third topic of this study is to broaden the range

of considered GBDP distance functions. Whereas [8]
already investigated amuchmore diverse range of in-silico
DDH analogues than previous publications on DDH-
replacement methods [6,7], here GBDP is further enriched
with so-called “coverage distances” [12] (and bootstrap-
ping and jackknifing for this algorithm). The performance
of the novel GBDP implementation could thus be assessed
under 4350 distinct settings (ranging from the local
alignment tools and their settings to the distance func-
tions), requiring a total of 136 million individual genome
comparisons (including bootstrapping and jackknifing),
and the overall best-performing settings determined. The
effects of the parameters used for the calculation of
intergenomic distances on the resulting correspondence
with the DDH values was also investigated in detail using
multiple regression.
The results of this study are thus likely to contribute

toward progress in using the comprehensive informa-
tion encoded in entire genomes for the taxonomy of
prokaryotes.

Methods
Extended benchmark data set
The DDH benchmark data set was extended compared
to previous studies aiming at an increased precision and
significance of the ranking of the genome-to-genome dis-
tance methods and the models for the conversion to DDH
values. In detail, the here used data set (henceforth called
“DS1”) comprised 156 unique genome pairs along with
their respective DDH values: 62 from Goris et al. [6], 31
from the GOLD database [25], and 63 from Richter et al.
[7]. Only the first two sources had been considered in a
previous publication on GBDP as DDH replacement [8].
If several DDH/ANIb/ANIm/Tetra values were present

for a single genome pair, they were averaged. A single
genome pair showed a DDH value above 100% similar-
ity (i.e., 100.9% between Escherichia coliO157:H7 EDL933
and Escherichia coli O157:H7 Sakai). As it biologically
made not much sense this value was set to 100% to main-
tain proper input data for some of the statistical models
(see below). Another genome pair (Thermotoga maritima
MSB8 and Thermotoga petrophila RKU-1) had a contra-
dicting relation between its DDH value (16.9%) and the
genome based distance/similarity measures (GBDP, ANI,
ANIb, ANIm and Tetra) on the other hand [7]. Following
[7], this questionable data point was excluded from the

correlation analyses. The full list of genome pairs used in
this study is found in the Additional file 1.
To detect significant deviations, if any, between the new

and the previous GBDP implementation, the data subset
“DS2” was created, containing only the previously avail-
able data points [8]. For comparing GBDP with the first
ANI implementation, data subset “DS3” comprised the
62 data points in common between [6,8]; for comparison
with the JSpecies study, subset “DS4” contained only
the 98 DDH values in common between [7,8].

The GBDP principle, and its technical update
To motivate the upcoming changes such as the addition
of support for BLAST+ [26] and the completion of the
implementation of the so-called “coverage” algorithm [12],
the major steps within the GBDP pipeline [8,12,13] are
summarized in the following.
The pipeline is primarily subdivided into two phases.

First, a genome X is BLASTed against a genome Y and vice
versa (here, the term “BLASTed” denotes the application
of one out of six supported local-alignment programs; a
full list of these programs is found in Additional file 2).
BLAST+ has recently been added to the list of available
programs, because it provides substantial speed improve-
ments for long queries and database sequences [26]. The
alignment process is done in one pass using all the avail-
able sequence information of both respective genomes,
i.e., GBDP does not require the sequences to be artificially
cut into pieces as do other approaches [6].
The resulting matches between both genomes are called

high-scoring segment pairs (HSPs) and represent local
alignments that are considered statistically significant if
the associated expect value (e-value) is sufficiently low
[27] (reliable thresholds are usually equal or less than
10−2, but GBDP conducts the filtering itself, and its effect
is explicitly addressed below).
In the second phase, these matches are transformed to

a single distance value d(X,Y ) by applying one out of ten
available distance formulae d0 to d9. To describe these, the
following definitions are required:

XY := BLAST run using genomes X (subject)
and Y (query) (1)

IXY := sum of identical base pairs over all HSPs
(2)

HXY := total length of all HSPs (3)

λ(X,Y ) := sum of both genomes’ lengths (4)

λmin(X,Y ) := twice the length of the smallest genome
(5)
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The web service at http://ggdc.dsmz.de makes use of
these formulae; the other GBDP formulae are minor vari-
ants [8,12,13] and are found in Additional file 3:

d0(X,Y ) = 1 − HXY + HYX
λ(X,Y )

(6)

d4(X,Y ) = 1 − 2 · IXY
HXY + HYX

(7)

d6(X,Y ) = 1 − 2 · IXY
λ(X,Y )

(8)

Each was devised to consider distinct aspects of interge-
nomic relationships. Formula d6 preserves most infor-
mation, because it is some kind of combination of d0
and d4. It also performs best in a phylogenetic context
[13]. However, d4 is immune against problems caused by
incompletely sequenced genomes, as it does not consider
the genome lengths [8]. It follows from d0 to d6 that sim-
ilarity instead of dissimilarity (distance) values could be
easily obtained by subtracting the distances from 1 ([28],
pp. 252–259) [8,13]. This would be mathematically analo-
gous for the subsequent correlation analyses because only
the sign changed, but using distances is more convenient
for inferring GBDP trees [12,13].
However, in practice, at least some HSPs from a BLAST

run between X and Y are very likely to overlap (see
Figure 1, segment “c”), mainly because paralogous genes
can be present [12]. With respect to definitions 2 and 3
these overlapping segments would introduce a bias in the
resulting distance value, because they would be consid-
ered more than once in the calculations. For this reason,

Figure 1 An example of a hypothetical HSP layout between two
genomes A and B as produced during the GBDP alignment
phase. Subsequences that are part of an HSP in either A or B are
labeled with small letters a-g. A special case is represented by
segment “c” where both HSP 2 and HSP 3 are overlapping. GBDP’s
algorithms are programmed to handle these distinctly, i.e., (i) by
simply completely omitting the smaller HSP 3 (“greedy” algorithm), (ii)
by omitting only segment “c”, i.e. trimming HSP 3
(“greedy-with-trimming” algorithm), or (iii) by merging information
from both HSPs regarding the overlapping segment (“coverage”
algorithm). (Figure redrawn from [15]).

GBDP includes three distinct approaches for filtering HSPs
and, thereby, resolving these conflicts before one of the
aforementioned 10 distance formulae is applied: “greedy”,
“greedy-with-trimming” and “coverage”. For technical
reasons, “coverage” was previously [8] only available in
connection with distance formulae d0-d3, but the missing
ones were implemented in the course of this study.

Greedy If two or more HSPs are overlapping in a specific
segment, this algorithm omits all HSPs except the largest
one (e.g., HSP 3 in Figure 1). Some information is thus
lost, but this approach is computationally faster than the
next one.

Greedy-with-trimming Here, only the overlapping
parts of HSPs in either genome are removed, as, for
instance, segment “c” in Figure 1. This preserves more
information and proved to be valuable in phylogenetic
inference from genomes with large numbers of repeats
[12].

CoverageThe content of the HSPs is mapped to two vec-
tors (henceforth called coverage vectors) representing the
positions within either genome. Concerning definition 3
this was implemented by considering a position within
a genome as covered by an HSP if there is at least one
HSP that covers it [12], whereas definition 2 in conjunc-
tion with coverage works by assigning the highest identity
among all HSPs that overlap in a certain genome segment
to the positions within this segment. In detail, a coverage
vector, as a vector of length |G|, is (formally) computed for
each genome as follows: Let h be a matching segment of
an HSP and I its proportion of identical characters. Then
segment h beginning at position i and with length l can be
displayed as a vector of length |G| (the genome length) as
follows:

h = (01, . . . , 0i−1, Ii, Ii+1, . . . , Ii+l−1, 0i+l, . . . , 0|G|) (9)

Each vector position which is not covered by h is set
to 0, while each covered position is set to I. Further, let
PMAX (“parallel maxima”) be a function that reduces a list
of equal-length vectors to a single vector by determining
the maximum for each vector position:

PMAX(a, b, . . . ) := (max(a1, b1, . . . ), . . . , max(an, bn, . . . ))
for a = (a1, . . . , an) and b = (b1, . . . , bn)

(10)

In the case of the coverage vectors n equals the length of
the respective genome (i.e., |G|). Then, the coverage vector
vG = PMAX(h1, . . . , hk) is calculated by applying PMAX

http://ggdc.dsmz.de


Meier-Kolthoff et al. BMC Bioinformatics 2013, 14:60 Page 5 of 14
http://www.biomedcentral.com/1471-2105/14/60

to the list of k HSP segments within genome G. Analo-
gously, a second vector is calculated for the HSP intervals
within the second genome. The numerator of the identity-
based dissimilarities (see formulae 7 and 8 above) can then
be calculated by using the sums over all vector positions:

IXY =
∑

(vX )

|vX | +
∑

(vY )

|vY |
2

(11)

Analogously, the number of genome positions covered
by HSPs, HXY and HYX , as used in formulae 6 and 8,
is calculated by counting all non-zero positions in the
vectors vX and vY , respectively. The coverage method
is faster than the other two approaches, because there
is no overhead caused by HSP sorting and/or trimming
algorithms.

Conducting genome comparisons for the correlation
analysis
A correlation analysis was conducted to show the over-
all performance of the GBDP method and to yield the
best GBDP parameter setup. Six local-alignment tools
were tested for genome comparisons: BLAST+ [26],
NCBI-BLAST [17], MUMmer [29], BLAT [30], WU-BLAST
[17] and BLASTZ [31]. These were not only used to con-
duct six genome comparisons per available genome pair
but were also applied in several passes, each time chang-
ing a chosen parameter, presumably affecting the local
alignment and thus potentially improving the correlation
with DDH. A special focus was on finding influential
parameters for BLAST+ because it is one of the techni-
cally most advanced local-alignment tools available [26].
Moreover, all available distance functions and HSP filter-
ing approaches were applied to each genome comparison
(see above). Thus, all in all 4350 distinct settings were
investigated, i.e., the product of 145 alignment settings,
three algorithms for dealing with overlapping HSPs, and
ten distance formulae. This resulted in a total of 136 mil-
lion GBDP-based genome comparisons which had to be
conducted. Additional file 2 provides a complete overview
on these settings and numbers.
In general, studies of that kind are computationally chal-

lenging, because a huge number of input and result files
need to be processed. This gave rise for equipping the
method with an extension allowing it to be executed on
compute clusters [32-34].

Analyzing correlations between intergenomic distances
and DDH values
According to [8] Pearson’s ρ ([35], pp. 533) and Kendall’s
τ ([28], pp. 198–199) were computed for all distinct GBDP
settings and the DDH values, respectively. The necessary
analysis pipeline was implemented as an R [36] script
and applied to the previously described main data set

DS1 and its subsets DS2-4. As GBDP-derived values are
distance measures, whereas ANI values are similarities
between genomes, the correlation coefficients’ sign had to
be inverted accordingly to allow for the direct comparison
of the performance of GBDP, ANI and JSpecies. The
full list of the genome pairs and their associated DDH and
ANI values is found in Additional file 1.
For GBDP, the influence of four predictor variables

was tracked by means of multiple linear regression ([37],
pp. 387-448): alignment method, algorithm for treating
overlapping HSPs, distance formula and e-value filter
method (Additional file 2). The identification of the least
complex model that still explained most of the varia-
tion in the data was conducted with the R package MASS
[38] under both forward variable selection and backward
elimination. For an interpretation of possible interac-
tion effects, the effects package [39] for R was used.
Additionally, each predictor variable’s relative importance
index [40] was computed.

GBDP bootstrapping and jackknifing
To obtain confidence-interval (CI) estimates, GBDP was
augmented with sampling with replacement (bootstrap-
ping [23]) and sampling without replacement (jackknifing
[24]), by default using 50% deletion in each replicate.
For the variants of GBDP that use a filtering approach
for removing overlapping (parts of ) HSPs, namely the
“greedy” and “greedy-with-trimming” algorithms (see
above), the implementation treats individual HSPs as the
observations for resampling. After applying the filtering
step, the original distance (the point estimate) is inferred
from the set of filtered HSPs using one of the distance
formulae described above. Then the set of HSPs is boot-
strapped or jackknifed, and in each replicate a distance
value is calculated using the same formula. For the “cover-
age” algorithm (see above), resampling was implemented
by bootstrapping (or jackknifing) the constructed cov-
erage vectors. For the evaluation of the methods, 100
replicates were used throughout.
The dependency of the resulting bootstrapping and

jackknifing CIs on each genome pair’s original distance
(point estimate) was investigated, as well as the effect of
the GBDP method on the replicates’ variation. The latter
was assessed via the median of the variation coefficients
[41] calculated for each genome pair and its respec-
tive replicates. It was also evaluated to what extent the
CI width was affected by the distribution of both num-
bers and sizes of HSPs derived from a respective pair of
genomes. This was done for a selected, well performing
BLAST+ method (see below). To assess the amount of
uncertainty indicated by the bootstrap/jackknife CIs in
DDH prediction, the bounds of each CI were transformed
to DDH (in addition to the distance point estimate) using
the investigated prediction model. Thus, the relationship
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between (i) the model’s CI estimating the uncertainty of
DDH prediction, as detailed in the next section, and, (ii)
the bootstrap/jackknife CI translated to DDH scale was
assessed for each observation.

DDH prediction using sophisticated statistical models
The problems caused by linear models (see above) for pre-
dicting DDH via intergenomic distances can be solved by
more sophisticated statistical models such as generalized
linear models (GLMs) [42], generalized additive mod-
els (GAMs) [43] and Loess models [44] and identifying
the one that provides the most robust predictions ([20],
pp. 58–79). All models used DDH values as response vari-
able and the corresponding intergenomic distance values
as predictor variable. Among the novel models assessed
in this study, GLMs came to our attention for several rea-
sons: (i) they do not require the response variable to be
normally distributed, (ii) the response predictions (here:
DDH) would be bound within a fixed interval between
a 0 and 100% and (iii) the predictor variable does not
need to have a constant variance. The latter was espe-
cially important because, in our case, as usual for pro-
portion data, the distance values are strictly defined in
a range between 0 and 1, thus leading to a decrease
in variance when approaching these boundaries, caus-
ing a dependency of the variance on the mean ([37],
pp. 571).
GLMs belong to the parametric modeling techniques

and make assumptions about the underlying distribution.
For proportional response data as present here a binomial
distribution is recommended ([37], pp. 515). One bene-
fit of such a logistic regression is the variance-stabilizing
effect on the response variable (removal of heteroscedas-
ticity). DDH response data was appropriately converted
to represent the number of failures and successes of an
event ([37], pp. 574). Another special type of GLM was
constructed by changing the response from DDH propor-
tions to a binary response variable ([37], pp. 593–610). For
any given intergenomic distance such a model yields the
probability of whether or not it corresponds to a DDH
value ≥ 70%. Finally, a non-parametric Loess smoother
was also evaluated, as well as generalized additive models
[45] but neither yielded better results than the GLMs (data
not shown).
To assess whether the fit of the overall model (deter-

mined by the model’s residual deviance) could be fur-
ther improved, a log transformation was applied to the
explanatory variable [21,22], and/or a variance-stabilizing
arcsine transformation was applied to the response vari-
able (see [37], pp. 570 and [35], pp. 386). In standard
linear-regression models the coefficient of determination
(R2) provides a measure of how well future outcomes
are likely to be predicted by a certain linear model.
As GLMs do not provide R2 for model diagnosis, we

checked for potential overdispersion (i.e., extra, unex-
plained variation) ([37], pp. 522) and where applicable
used the Akaike information criterion [46] to measure
the relative goodness of the GLM fits. Graphical eval-
uation of the model fits was done using the R package
ggplot [47].
The performance of the model types and data trans-

formations was also assessed by computing error ratios
in DDH prediction. For each of the 4350 GBDP settings
we calculated the models (under DS1) and compared the
DDH predictions with the respective wet-lab DDH value.
In a second pass, we calculated the model’s error ratio by
assessing the number of false positives (i.e., a predicted
DDH value equal or above 70% corresponding to a real
DDH value below that threshold) and false negatives (i.e.,
a predicted DDH value below 70% corresponding to a real
DDH value equal or above that threshold) relative to the
total number of observations. To investigate the impact of
the extension of the empirical data set, we chose the best-
performing GBDP method from this study and fitted the
aforementioned models to both the full data set (DS1) and
the reduced one (DS2).

Results
Performance of methods and settings in mimicking
wet-lab DDH
Figure 2A depicts the overall correlation results obtained
with the data sets DS1-DS4. Figure 2B-D contain details
of the contribution to the overall correlations of (i) local-
alignment methods, (ii) algorithms and (iii) distance for-
mulae. The correlation coefficients for all tested GBDP
methods and data sets are included in Additional file 4.
A preselection of well-performing GBDP settings are pre-
sented in Table 1 along with correlation values for the dis-
tinct ANI implementations. Regarding BLAST+, the best
Kendall’s τ (-0.752) resulted from an alteration of the word
length from 11 (default for nucleotide data) to 46, the
use of the “coverage” algorithm and either d6 or d8 as
distance formulae (no e-value filtering yielded the same
results as e-value thresholds of 10−1, 10−2 and 10−8). The
same setting except d4 (which is preferable when dealing
with incomplete genomes [8]) instead of d6 or d8 yielded
a τ of -0.677 and a Pearson’s ρ of -0.935. These results
confirmed and slightly improved on the results from a pre-
vious study of the (smaller) data set DS2 [8], which also
yielded BLAT and distance formulae d6 and d8 as the com-
bination with the globally best Kendall and Pearson corre-
lation (-0.763 and -0.954, respectively), the only exception
being that “greedy-with-trimming” instead of “coverage”
(which was not fully implemented at that time) per-
formed best.Regarding the correlation results, the most
successful GBDPmethods outperformedANIm, ANIb and
Tetra to an even higher degree than ANI (Figure 2A and
Table 1).
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Figure 2 Results of the correlation analyses between GBDP-derived distances and DDH as opposed to the correlations between ANI and
DDH. A: The performance of both GBDP and ANI regarding their correlation with wet-lab DDH is shown. The boxplots visualize the correlation
results for the data sets DS1-4, created for conducting fair comparisons between GBDP, the original ANI implementation [6] and JSpecies [7]
(green circles: Kendall’s τ ; orange triangles: Pearson’s ρ). For the purpose of an easier visualization, the scale has been bound by 0 and -1, thus
omitting a few outliers greater than 0, and the sign of correlation values involving similarities was inverted. The correlation coefficients between ANI
and DDH are highlighted by horizontal lines, either dotted (DS3, ANI; DS4, ANIm), dot-dashed (DS4, ANIb) or long-dashed (DS4, Tetra). B: GBDP
correlations (DS1) dependent on the alignment tools used: BLAT (BT), BLAST+ (BP), NCBI-BLAST (NB), WU-BLAST (WU), MUMmer (MU) and
BLASTZ (BZ). The dotted lines represent the globally best correlation (i.e., the most negative one), and the boxplots are sorted increasingly by their
most negative Kendall coefficient, i.e., the best setting can be found at the leftmost position. The same applies to C and D. C: Results for DS1
dependent on the algorithms “coverage” (COV), “greedy” (GR) and “greedy-with-trimming” (TR). D: Correlations based on DS1 dependent on
distance formulae d0 - d9. For obvious reasons, the distance formulae d0, d1, d4, d6 and d7 yielded the same Kendall correlations as their
logarithmized variants d2, d3, d5, d8 and d9.

Themost influential GBDP parameters were assessed via
a multiple regression under two types of model selection
(forward selection and backward variable elimination)
with both resulting in the same full regression model.
The latter contained the independent variables “alignment
tool”, “distance algorithm” and “distance formula” and
all possible interaction terms between them (Additional
file 5). That is, only “e-value filter method” got eliminated
as it could not explain a significant amount of variation
in the data. This was confirmed by the relative impor-
tance index (see Additional file 6, pictures 1 and 2) and
an ANOVA (here, p-values were 0.8136 for Pearson’s ρ as
response variable and 0.6594 for Kendall’s τ ). Additional

file 6 (pictures 3-6) shows the interaction effects and the
impact of all independent variables.

Confidence intervals via bootstrapping or jackknifing
The effect of the GBDP settings on the bootstrapping and
jackknifing confidence intervals as assessed by the aggre-
gated coefficients of variation (CVs) is shown in Figure 3.
The “coverage” algorithm resulted in low CVs with lit-
tle variation (Figure 3A), while the variation induced
by “greedy-with-trimming” was the most pronounced
one, and the CVs were on average much higher, but only
slightly higher than for the “greedy” variant (the median
CV of all GBDP settings was around 6%; data not shown).
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Table 1 Preselection of well-performing GBDPmethods from the correlation analysis

Correlations Settings

Dataset Type Estimate Alignment tool or method E-value filter Algorithm Formula

DS1 Kendall -0.761 BLAT 10 Coverage d6, d8

-0.752 BLAST+ (WL46) 10 Coverage d6, d8

-0.677 BLAST+ (WL46) 10 Coverage d4

Pearson -0.956 BLAT 10 Greedy d6

-0.956 BLAT 10−2 Trimming d6

-0.946 BLAST+ (WL38) 10 Coverage d4

-0.935 BLAST+ (WL46) 10 Coverage d6, d8

DS2 Kendall -0.763 BLAT 10 Coverage d6, d8

Pearson -0.954 BLAT 10 Coverage d6, d8

DS3 Kendall -0.783 BLAST+ (WL38) any Coverage d6, d8

-0.717 ANI - - -

Pearson -0.980 MUMmer (MR20) - Greedy d0, d6

-0.973 ANI - - -

DS4 Kendall -0.737 BLAT 10, 10−2 Coverage d6, d8

-0.735 BLAST+ (WL45) any Coverage d6, d8

-0.693 Tetra - - -

-0.598 ANIb - - -

-0.594 ANIm - - -

Pearson -0.957 BLAT 10−2 Greedy d6

-0.904 ANIm - - -

-0.703 ANIb - - -

-0.693 Tetra - - -

Juxtaposition of DDH correlation values for best-performing GBDPmethods as well as (i) ANI [6] and (ii) JSpecies [7] implementation (ANIm, ANIb, Tetra). The
content of the respective data sets DS1-DS4 is described in Materials and Methods, whereas the full table with all correlation results is found in Additional file 4. For
convenience, the correlation coefficients’ sign of the ANI values is inverted to allow for the direct comparison toward GBDP (-1 is the optimal value). Abbreviations
used: WL (wordlength) and MR (mumreference). The listed BLAT runs were all conducted under the same settings (minScore=30, minIdentity=90, tileSize=12).
GBDP-based correlations surpass any of the ANI implementations throughout the respective data sets.

The effect of the distance formulae on the CVs is shown
in Figure 3B. The median CV was around 1% for formulae
d4 - d7 and around 2.5% for the remaining ones. Boot-
strapping and jackknifing had nearly the same effect on
the CV’s distribution (compare Additional file 6, pictures
7 and 8).

Figure 4 shows the relationship between CIs of the
in-silico DDH values calculated by either bootstrapping
or via the model from the intergenomic distances, both
obtained with the chosen GBDP settings from data set
DS1 (but either the “coverage” or the “trimming” algo-
rithm). A simple linear regression model based on data
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Figure 3 Distributions of the median coefficients of variation of intergenomic distances obtained by resampling GBDP. The depicted
distributions were determined by grouping the median coefficient of variation (CV) for each setting by either algorithms (left; “greedy”, gr;
“greedy-with-trimming”, tr; “coverage”, cov) or formulae (right).
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Figure 4 Juxtaposition of confidence-interval widths for both model based DDH predictions and those induced by bootstrap replicates.
Distances were calculated under the selected well-performing GBDPmethod (see main text) either using the “Coverage” algorithm (A and C) or
“Greedy-with-Trimming” (B and D). For each distance value the respective DDH predictions were made with a simple linear regression model
(x-axis) and the widths of their 95% CIs determined accordingly (y-axis).

set DS1 was used (response variable: DDH, explanatory
variable: intergenomic distances). Under “coverage”, the
length of the CI decreased when the distances approached
either their lower or upper bound; the CI widths under
“trimming” were two orders of magnitude higher and con-
tinuously increased toward the lower bound. Both plots
of the model-based CIs in dependency of the point esti-
mates had an U-like shape; the size of the model-induced
CIs was an order of magnitude higher than the one of the
“coverage” bootstrapping CIs and an order of magnitude
smaller than the size of the “trimming” bootstrapping CIs.
For the same settings, the dependency of the confidence-
intervals’ width (CIs) directly on the sizes of the distance
point estimates is shown in Additional file 6 (picture 9),
confirming the results depicted in Figure 4C and 4D. A
fit by a Loess smoother revealed only minor differences
between bootstrapping and jackknifing.
The relationship between the intergenomic distance and

the underlying set of HSPs obtained by comparing the
respective pair of genomes is presented in Additional file
6 (picture 10). In brief, the lengths of the HSPs are more
unevenly distributed for more similar genomes (smaller
distance values).

Models for DDH prediction and species delineation
Figure 5 shows the results of the generalized linear model
(GLM)with a binary DDH response variable that indicates
whether an intergenomic distance would yield a wet-lab
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Figure 5 GLMwith a binary response variable. The curve depicts
the predictions from the model for the selected well-performing
GBDP settings (see main text). The y-axis indicates the GBDP-derived
probability that a DDH value is above 70%, indicating that two
genomes represent organisms of the same species. The orange
vertical line marks the distance threshold for species delineation as
provided by the GLM, i.e., denoting a probability of 0.5. The blue
vertical line marks an alternative error ratio-based distance threshold
as presented in our previous article [8].
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Figure 6 Comparison of generalized linear models and data transformations for DDH prediction. All model fits were based on distances
calculated with the selected well-performing GBDPmethod (see main text). The models were either inferred from (i) the complete data set DS1 (red
and blue curves, red circles and blue triangles) or (ii) the reduced data set [8] DS2 (blue curve and blue triangles). The green vertical line indicates
the 50% probability threshold as calculated by the GLM for binary response data (see Figure 5). Left: GLMs (generalized linear models with
quasi-binomial error family) based on DDH proportion data as response and untransformed distance values as predictor variable. Right: GLMs
(generalized linear models with quasi-binomial error family) based on DDH as response and logarithmized distance values as predictor variable.

DDH value above 70%. The distance threshold yielding a
probability of 0.5 was marked as this denotes a reason-
able model-based threshold for species delineation. The
model showed a steep transition area in which the prob-
ability rapidly dropped with an increase in intergenomic
distances. Under a well-correlating {BLAST+} setting (i.e.,
second one in Table 1 with formula d6), it yielded a dis-
tance threshold of 0.258 below of which all respective
genome pairs could safely be considered to be the same
species (because their DDH value would be above 70%).
An alternative way of computing such a distance thresh-
old was introduced in [8] and is based on choosing the
distance value associated with the lowest error ratio; if
applied to the same data this method resulted in a thresh-
old of 0.276 (Figure 5). The following figures, however,
show that the newly calculated cutoff fits better to the
other models applied.
The results for the GLMs using wet-lab DDH values

as response variable are shown in Figure 6; Additional
file 6 (picture 11) contains the results for the linear mod-
els. Each part of these figures is a superimposition of two
models, based on either DS1 or DS2 [8]. The best corre-
lating BLAST+ method (see above) was used throughout.
Both the standard GLM and its logarithmized variant
showed a substantial amount of overdispersion, as the
residual deviances (1205431 for the GLM and 855004
for the log-variant) were significantly greater than the
degrees of freedom (153). (For this reason, we chose a
quasi-binomial error family instead of the binomial one
as an additional means for reducing overdispersion thus
providing significantly reduced confidence intervals; see
Figure 6). The log-model had a smaller AIC (856739
compared to 1207167) and thus performed slightly better
according to the models’ diagnostics than the standard

GLM, in accordance with Figure 6. The standard linear
regression models (Additional file 6, picture 11A) yielded
an adjusted R2 of 0.89 for DS2 but only 0.86 for DS1,
indicating that the linear model fits the data less the more
observations are provided. The model for the arcsine-
transformed data (Additional file 6, picture 11B) yielded
approximately the same outcome (an R2 of 0.89 for the
small data set and 0.84 for the large one). Additional
file 7 holds DDH predictions for a series of distance values
between 0 and 1 for all discussed models.
In Table 2 the error ratios of selected GBDP methods

and distinct models are shown. Generalized linear models
with log transformation provided the lowest mean error
ratio and had the lowest deviation over distinct GBDP
settings. The error ratios in predicting DDH at the 70%
threshold subject to correlations between intergenomic
distances and DDH are shown in Additional file 6 (pic-
ture 12). All subplots reveal a similar kind of structure.
Moreover, as expected we observed that the error ratios

Table 2 Error ratios of selected GBDPmethods

Model types

GBDP settings GLMlog GLM LMAS LM

BLAT (d6) 0.045 0.058 0.052 0.052

BLAT (d8) 0.045 0.090 0.097 0.084

BLAST+ (d6) 0.090 0.065 0.071 0.052

BLAST+ (d8) 0.090 0.213 0.187 0.316

BLAST+ (d4) 0.039 0.052 0.052 0.052

Error ratios under different models and the full empirical data set. The here
presented GBDP settings are a well-performing selection (see Kendall-related
settings for DS1 in Table 1). The models are: linear, LM; linear with arcsine
transformation, LMas ; generalized linear, GLM; GLM with log-transformation,
GLMlog .
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increase with an increase in the correlation (again note
that here a correlation of -1 is optimal). The log-GLMs,
however, resulted in a higher correspondence between
error ratio and Kendall correlation than the other types of
models.

Discussion
Bootstrapping and jackknifing GBDP
With only minor differences between bootstrapping and
jackknifing, the use of different algorithms had an obvi-
ous impact on the CIs of the resulting distances. The full
implementation of the “coverage” algorithm allowed its
application in connection with distance formulae d4 to d9
(so far it was restricted to d0 to d3). Its CVs and, accord-
ingly, its CIs and those of the resulting DDH estimates,
were two orders of magnitude smaller than the ones
resulting from the “greedy” and “greedy-with-trimming”
algorithms (Figure 4 and Additional file 6, picture 9).
The CIs of the DDH values estimated with the “cover-
age” algorithm showed a typical quality of proportion
data ([37], p. 515), i.e., very high as well as very low dis-
tances between two genomes cause a reduced amount of
variation between the resampled distances.
That the “greedy” and “greedy-with-trimming” algo-

rithm yielded substantially higher CVs and CIs, as well
as an increase of CVs and CIs with decreasing distance
(and, thus, increasing DDH similarity) is most likely
caused by the fact that here sets of HSPs, not genome
positions are resampled. The observed Methanococcus
genome pair confirms this, as its comparison yielded
few very long HSPs with a high impact on the resulting
distance values during resampling (Additional file 6, pic-
ture 10). Indeed, we observed the overall tendency that
more similar genomes not only result in more HSPs but
also in HSPs with much less equally distributed lengths.
Hence, for “greedy” and “greedy-with-trimming”, the
resampling of HSPs probably leads to an overestimation
of the uncertainty in distance estimation and thus cannot
be recommended over the resampling in conjunction
with the “coverage” algorithm, which by construction is
not depending on HSPs during the resampling phase.
The relative sizes of the CIs also implies that those from
“coverage” bootstrapping or jackknifing are by an order of
magnitude smaller than the CIs from the DDH prediction
via models, and that those from “greedy” and “greedy-
with-trimming” resampling are by an order of magnitude
higher than the model-based CIs.
For practical purposes this indicates that in conjunc-

tion with “coverage”, bootstrapping and jackknifing GBDP
can safely be omitted because the uncertainty it indicates
is always substantially lower than the one indicated by
the CIs of the model. This result is as expected, because
genome sequencing results in a large number of charac-
ters – actually, the largest possible number of characters

that can be sampled from an organisms –, and, if appropri-
ately calculated, the uncertainty of intergenomic distances
should be much lower than the one of wet-lab DDH
experiments. Experimental errors in determining DDH in
the wet lab, however, are likely to be responsible for the
uncertainties in fitting the models for predicting DDH in
silico.

Models for DDH prediction
All previous studies [6-8] were based on simple linear
regressions models (LMs) and did not consider data trans-
formations. We observed that error ratios in DDH pre-
diction, provided by LMs, are generally higher than those
of the generalized linear models (GLMs). In addition to
mere statistical parameters (such as overfitting, overdis-
persion, the AIC or R2), the size of the error ratio in
predicting whether DDH values are above or below 70% is
of particular interest. As expected, it was revealed that the
smaller the correlation between DDH and intergenomic
distance, the higher the error ratio (see Additional file 6,
picture 12).
Moreover, the GLMs combined with the log-trans-

formed explanatory variable yielded a higher consis-
tency between the correlation coefficients and the
prediction success at the 70% boundary, and the better
correlating GBDP methods had, on average, a lower error
ratio if combined with these log-GLMs instead of any
of the other models. Additionally, GLMs, if applied as
shown, guarantee that even DDH predictions based on
extreme distance (or similarity) values are between 0% and
100%. For obvious reasons, models for species delimita-
tion should be as exact as possible and, thus, LMs here
at least be considered as problematic. The overdispersion
detected when diagnosing GLMs was presumably due to
distinct pairs of strains sharing identical intergenomic dis-
tance values but at the same time showing distinct DDH
values. This effect is called “unmodeled heterogeneity”
and could also result from clustering of the DDH mea-
surements ([48], p. 52–61), as observed in our data set. A
switch to a “complementary log-log”-link function, as sug-
gested in ([37], p. 594), didn’t further improve the model
(data not shown).
The enlarged data set provided a globally increased

significance of the inferred results. The comparison of
selected GBDP methods applied to either the old [8] or
the new data set, however, revealed only minor differences
in the parameters estimated by the statistical models we
tested.
Both theoretical and empirical results thus favor GLMs

over standard linear-regression models for obtaining in-
silico DDH replacement methods. Its improved DDH pre-
diction capabilities offer GBDP as a quick and now even
more reliable alternative to the DDH wet-lab technique,
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thus moving further forward within the transition process
to a genome-based taxonomic gold standard.

The recommended GBDPmethod
In principle, multiple optimality criteria could be applied
for selecting a GBDP variant that works best in DDH
prediction, depending on the users’ priorities. The newly
completed “coverage” algorithm, however, can unani-
mously be recommended, because it yielded the best
correlations for both formula d6 (in general, and partic-
ularly combined with BLAST+ using a word length of
46 and no e-value filtering) and formula d4 (in general,
and particularly combined with BLAST+ using a word
length of 38 and no e-value filtering). When dealing with
incomplete genomes it is highly recommended to use for-
mula d4, as it is independent of sequence length, and thus
not directly affected by the removal of HSPs due to the
removal of parts of the genome [8] (see also Additional file
3). Here, formula d4 resulted in worse Kendall correlations
but better Pearson correlations and error ratios at the 70%
boundary than d6, as observed earlier [8].
Regarding local-alignment programs, only BLAT per-

formed better than BLAST+ combined with optimized
settings, and only slightly so. BLAST+ ’s optimal initial
word length setting of 38 or 46 allows for comparatively
quick genome-genome comparisons, because the interge-
nomic search space is significantly reduced compared to
the default value of 11, resulting in a lower execution time.
A higher initial word length results in a lowered sensitiv-
ity of the local-alignment program, which had a positive
effect on the correlation outcome, as previously reported
[8]. This is in agreement with the fact that BLAT, which
is a considerably less sensitive alternative to BLAST, over-
all performed best [8]. All in all, we conclude that the
default setting for the novel GBDP implementation should
be BLAST+ combined with d4 and the accordingly opti-
mized settings regarding word length and e-value filtering,
and that the corresponding log-GLM model should be
used for predicting DDH including CIs. Moreover, the sit-
uations in which a user might instead favor BLAT over
BLAST+ and/or d6 over d4 are straightforward to identify.
All these recommendations can now be directly utilized
via our updated web service (GGDC 2.0) at http://ggdc.
dsmz.de.

Beyond pairwise distances
Since the dawn of computer-based approaches to phy-
logenetics, researchers were trying to devise solutions
for assessing statistical support of the inferred phylo-
genies [49-52]. Apparently, branches lacking sufficient
support should not be overestimated regarding the expla-
nation and visualization of evolutionary events. Particu-
larly bootstrapping and jackknifing [53] are widely-used
solutions for this kind of question and can be applied

to both aligned molecular sequences (multiple sequence
alignments) and matrices of phenotypic characters. Here,
resampling is applied to the characters, usually present as
columns of a matrix whose rows represent the organisms,
phylogenetic inference is applied to the resampled matrix,
and finally a majority-rule consensus tree is calculated
from the trees from all replicates [51]. If distance meth-
ods for phylogenetic inference such as neighbour-joining
[53] are used in such a scenario, within each replicate a
distance matrix is computed from a character matrix that
has been resampled at once.
In contrast, distance methods that avoid the construc-

tion of a character matrix would need to apply boots-
trapping or jackknifing to each pairwise comparison
independently. For instance, [54] developed a method
that relies on pairwise sequence alignment only; here,
maximum-likelihood distances are inferred, and boot-
strapped independently, from the alignments of all pairs
of sequences. To highlight the conceptual difference, the
procedure was called “pseudo-bootstrapping”, and it was
demonstrated to be conservative compared to bootstrap
analysis of multiple sequence alignments [54].
Apparently, GBDP’s new bootstrapping and jackknifing

facilities would also yield such a pseudo-bootstrapping
approach if it was applied to phylogenetic problems. In
particular, sequence comparison is conducted indepen-
dently for all genome pairs involved, and the sets of HSPs
or the coverage vectors – on which each pairwise com-
parison is based – never form a common character matrix
[12,13]. Bootstrapping and/or jackknifing would just add
the individual resampling of these independently con-
structed sets of HSPs or coverage vectors. An advantage
to phylogenomics provided by GBDP-bootstrapping over
supermatrix approaches (which concatenate alignments
of individual orthologous genes; see [4] for an overview of
phylogenomic methods in the context of microbial taxon-
omy) is that the calculation of bootstrapped or jackknifed
distances could be done incrementally, and only the phylo-
genetic inference from all formed distance matrices would
need to be done after each update of the set of organisms
of interest.
For this reason, GBDP with resampling could be a faster

and resource-saving alternative to more compute-intense
phylogenomics methods, particularly because GBDP can
as well be applied to sequences from proteomes [13].
Besides, it easily copes with various phylogenetic prob-
lems such as paralogous genes [12], low-complexity
regions [13] and unbalanced genome/proteome sizes [8].
However, whereas this study already presented evidence
that “coverage” should be preferred over “greedy” and
“greedy-with-trimming” if coupled with bootstrapping
or jackknifing, it is a partially open question whether,
and under which conditions, resampling proteome-based
GBDP [13] should be preferred over analyzing nucleotide

http://ggdc.dsmz.de
http://ggdc.dsmz.de


Meier-Kolthoff et al. BMC Bioinformatics 2013, 14:60 Page 13 of 14
http://www.biomedcentral.com/1471-2105/14/60

sequences this way [12]. Even though it is likely that
the deeper branches of the phylogeny can only be
resolved based on amino acid sequences GBDP [13], in-
depth comparisons of the performance of GBDP- boot-
strapping/jackknifing with more common phylogenomics
methods, as well as similar methods that are also based on
resampling HSPs [55], are still needed.
Nevertheless, that a single method can be applied to

both genome-based species delimitation and phyloge-
nomic inferences at other taxonomic levels, and that it
can be coupled with the assessment of statistical signif-
icance at one level, already strongly indicates that GBDP
is an important tool in the transition process to genome-
based gold standards at all taxonomic levels. A tighter
coupling between phylogenetic inference and the assign-
ment of taxonomic ranks might also help to overcome
what we regard as the most severe theoretical limitation
of the DDH 70% rule: that a taxon defined as all organ-
isms whose similarity to a type organism is above a certain
threshold is never guaranteed to form a monophyletic
group [53]. The practical limitations of the wet lab-based
DDH, however, already seem to have been overcome.

Conclusions
This update on the GBDP method is an important
enhancement, not only because existing features of the
software have been improved but particularly because
novel features have been added. Whereas GBDP was
already shown to yield better correlation results in DDH
prediction than ANI [6] in an earlier correlation study [8],
we can also confirm this with respect to the JSpecies
[7] implementation. Since taxonomists generally consider
these approaches as potential “next generation” replace-
ments for the traditional and currently still dominating
wet-lab method [3,4], up to now these approaches could
not be used to determine the CI of intergenomic dis-
tance measures, thus rendering the latest installment of
the GBDP method to be the first one supporting that fea-
ture. This is crucial because numeric estimations from
empirical data (such as wet-lab DDH values) always yield
a certain degree of uncertainty, and it is thus common-
place in statistics to provide measures of variation and
confidence.
By introducing (i) bootstrapping and jackknifing to the

GBDP approach, (ii) better performing DDH prediction
models and the CIs they provide, and, (iii) direct calcu-
lation of the probability that an intergenomic distance
yielded a DDH larger than 70%, the here presented meth-
ods provide an attractive alternative to the wet-lab DDH
for current taxonomic techniques. The addition of novel
distance functions (by completing the implementation of
the “coverage” distances) was also beneficial here, particu-
larly in conjunction with the novel resampling techniques
and with respect to the resulting correlations with DDH.
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Germany.

Acknowledgements
Cordial thanks are addressed to Marek Dynowski and Werner Dilling, both
Zentrum für Datenverarbeitung, University of Tübingen, for granting access
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