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Abstract

complexity.

Background: RNA-seq is now widely used to quantitatively assess gene expression, expression differences and
isoform switching, and promises to deliver results for the entire transcriptome. However, whether the transcriptional
state of a gene can be captured accurately depends critically on library preparation, read alignment, expression
estimation and the tests for differential expression and isoform switching. There are comparisons available for the
individual steps but there is not yet a systematic investigation which specific genes are impacted by biases
throughout the entire analysis workflow. It is especially unclear whether for a given gene, with current methods
and protocols, expression changes and isoform switches can be detected.

Results: For the human genes, we report their detectability under various conditions using different approaches.
Overall, we find that the input material has the biggest influence and may, depending on the protocol and RNA
degradation, exhibit already strong length-dependent over- and underrepresentation of transcripts. The alignment
step aligns for 50% of the isoforms up to 99% of the reads correctly; only in the presence of transcript modifications
mainly short isoforms will have a low alignment rate. In our dataset, we found that, depending on the aligner and
the input material used, the expression estimation of up to 93% of the genes being accurate within a factor of two;
with the deviations being due to ambiguous alignments. Detection of differential expression using a negative-
binomial count model works reliably for our simulated data but is dependent on the count accuracy. Interestingly,
using the fold-change instead of the p-value as a score for differential expression yields the same performance in
the situation of three replicates and the true change being two-fold. Isoform switching is harder to detect and for
at least 109 genes the isoform differences evade detection independent of the method used.

Conclusions: RNA-seq is a reliable tool but the repetitive nature of the human genome makes the origin of the
reads ambiguous and limits the detectability for certain genes. RNA-seq does not equally well represent isoforms
independent of their size which may range from ~200nt to ~100'000nt. Researchers are advised to verify that their
target genes do not have extreme properties with respect to repeated regions, GC content, and isoform length and

Background

RNA-seq has by now in most places replaced microarrays
for the analysis of the human transcriptome. Initially, it
has been praised as a method that measures expression in
an unbiased fashion, free of background-signal and does
not require sophisticated preprocessing [1]. Without the
dependency on specifically designed microarray probes,
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there is the expectation that in a given RNA-seq experi-
ment the complete transcriptional state of the biological
input can be captured. With the only limitation given by
the sequencing depth, where for a given sequencing depth,
low abundance transcripts may not be represented in the
final set of reads.

The common data analysis workflows for RNA-seq
consist of the steps listed in Table 1. The input material
is sequenced and in the subsequent data processing the
reads are aligned, the expression is estimated, differential
expression is assessed and isoform switching is detected.
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Table 1 Workflow steps towards quantitative RNA-seq together with example applications

Input material Unbiased random transcript fragments

(hom. coverage)

Coverage bias (inhom. coverage)

Variable transcript start + poly-A
(mod. TSS + polyA)

Alignment Global; Transcriptome + Genome [tophat]

Read count (include multi-reads)
[GenomicRanges: countOverlaps]

Abundance

Differential expression Significance using a negative binomial

count model [edgeRexactTest]

Isoform switching Differential isoform fractions [cuffdiff]

Local; Transcriptome + Genome [STAR]

Read count(ignore multi-reads [HTSeq]

Differential splicing modules [DiffSplice]

Global; Transcriptome only [RSEM]

Isoform abundance model
(resolve multi-reads [RSEM]

Log-ratio effect size

Differential exons [DEXSeq]

We analyze the impact of the different types of input material and the subsequent data analysis steps on the results of quantitative RNA-seq. For each step we in-
vestigate approaches that we consider as representative for a given analysis strategy.

There is a wide collection of tools available for each of
these steps (for a list see e.g. [2-4]).

We investigate here to which extend these tools live
up to the promise of providing accurate quantitative re-
sults. To this end, we report overall performances as
well as per gene performances. We report the relative
impact of library representation biases and the subse-
quent analysis steps on the final quantitative result, in
terms of expression, expression differences and isoform
switching. We tackle the question whether these results
are comprehensive or whether they are limited in
principle due to sequencing errors and sequence ambi-
guity which can not be overcome within the limits of the
current technological constraints. Special attention goes
here to the sequence ambiguity, which is due to se-
quence homology in the genomes of many species.

We perform our analysis on human RNA-seq data and
in each step we apply tools that can be considered as
representatives of a major analysis paradigm. The choice
of the methods is subjective and does not imply superior
performance compared to competing methods. For a de-
tailed comparison of competing methods we refer to the
comparison papers mentioned below.

For the alignment of RNA-seq reads there are now
many different aligners available and Fonseca et al. [4]
provide an overview and characterize the aligners ac-
cording to their features. The two major paradigms for
RNA-seq reads are

e Alignment to transcriptome: As a representative of
this approach we consider RSEM [5]
e pliced alignment to genome making use of transcript
annotation. Here we consider
o tophat [6]: aligns to transcriptome sequence
database and genome; tophat considers only full-
length untrimmed alignments
o STAR [7]: aligns to genome sequence complemented
by a database of splice junction sequences; STAR
considers also local alignments

Where the first is limited to known isoforms, and the
latter has the capability to discover new isoforms.

We classify expression estimation approaches into

e Opverlap counting: Count the reads that overlap a
given genomic feature and directly use this as a
quantitative estimate of the expression level of the
feature; examples are the htseq-count [8] and the
countOverlaps method in the Bioconductor package
GenomicRanges [9,10]

e Isoform abundance: Model the read generation from
the isoforms and estimate the isoform abundance
based on the observed reads. The RSEM expression
estimation follows this approach.

The overlap counting approach has the advantage that it
can generate a gene level expression estimate without the
need for knowing which specific isoforms are expressed.
On the downside they are bound to confuse isoform
switching with differential expression [11]. Further, in the
absence of a read generating model (see e.g. [12], they can-
not make use of additional information for resolving am-
biguously aligned reads to the same degree as for example
RSEM does. Ambiguity occurs if a read aligns to multiple
genomic positions or if for a given genomic position mul-
tiple overlapping features are defined. The count methods
deal with ambiguity by either assigning the read to all
compatible features (multiple counts), discarding the read
(no count), assigning a fractional count that is reciprocal
to the multiplicity. If overlapping isoforms at a given gene
locus are prevalent throughout the genome, as it is true
for the human genome, the counting approaches can only
deliver reasonable expression estimates at the gene locus
level, not at the isoform level. The isoform abundance ap-
proaches explicitly deal with these multi-reads within a
statistical model; a comprehensive overview of the models
is given by Pachter et al. [12].

For differential expression, the use of negative binomial
models that reflect the counting nature of the expression
estimates is widely in use and an extensive performance
comparison is available [13]. We apply as a representative
the edgeR [14] package and additionally use the simple
log-ratio as an effect-size estimator for the expression
change.
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For the investigation whether there is a change in the
relative abundances of the different isoforms that may
be generated from a given gene there is again a variety
of methods. In our comparison we do not discriminate
between the different molecular mechanisms like alter-
native splicing, alternative transcription start sites, etc.
that may be the cause of an observed isoform switch.
Existing approaches either look at entire isoforms, like
cuffdiff2 [11], or at specific expression events, like DEX-
Seq (exon usage) [15] and DiffSplice (junction and exon
usage) [16]; a very good overview is given in Alamancos
et al. [3]. Again the approaches range from making full
use of the annotated isoforms to complete de novo de-
tection of splicing events simply based on local read and
junction coverage.

With the methods being available and in use, it is un-
clear how accurate an entire workflow actually is. While
Fonseca et al. [4] report the number of reads aligned for
each aligner, they do not assess which genes are affected.
Soneson et al. [13] compare the performance of the hy-
pothesis test for differential expression under the as-
sumption that the counts may have noise due to
biological and technical variation. But they do not con-
sider any systematic bias that might affect the counts of
specific genes caused by wrong read alignments. In con-
trast to such horizontal comparison papers, this paper
reports the performance of entire data analysis work-
flows and provides how well individual genes and iso-
forms can be quantified and how well differences can be
assessed.

Results and discussion

Our analysis discusses the options listed in Table 1. In
order to measure the accuracy of RNA-seq, we use sim-
ulated data generated with the Flux Simulator [17]
where we can control the 5'-to-3" bias of the transcript
coverage, variations in transcription starts and variable
poly-A tails. We use all RefSeq isoforms present in the
UCSC hgl9 genome annotation and simulate the data
such that each isoform has same baseline transcript
abundance. This is different from the biological situation
but ensures that we obtain reads from every annotated
isoform. For every sample we generate 10 Mio single-
end reads of length 101 bp using the default error profile
that the Flux Simulator provides. In the following we
discuss the individual steps.

Input material

How well transcripts are represented in the fragment li-
brary to be sequenced may already constrain how accurate
genes and isoforms can be quantified in the later steps.
The number of reads generated from a given isoform de-
pends on the isoform length, the presence of potential 5'-
to-3’ biases, the presence of a poly-A tail and the presence
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of variations of transcription start relative to the annotated
transcription start site. To overcome the dependence of
the read counts on the isoform length, FPKM was intro-
duced as expression measure [18]. FPKM builds on the as-
sumption that the number of reads that are generated
from an isoform is proportional to the isoform abundance
as well as the isoform length. Additionally it normalizes
for sequencing depth. A closer analysis (see e.g. [5,12])
shows that this model oversimplifies the situation since
the isoform length has to be replaced by an effective
length that considers the length distribution of the frag-
mented RNA. In our simulation we find that the relative
abundance of each isoform in the starting material agrees
well with the FPKM of the sequenced reads. However, if
we allow for coverage bias introduced in the library prep-
aration, then only 54% of all isoforms have an FPKM that
is within a factor of two of the nominal value implied by
the relative abundance and length of the isoform. Short
isoforms are massively overrepresented while long iso-
forms are underrepresented. A less dramatic deviation oc-
curs if the transcribed sequences are modeled to have
variable transcription start sites and a poly-A tail. In this
situation, 1343 isoforms are overrepresented by more than
a factor of two. The length dependency of the FPKM bias
induced by coverage bias and transcript modifications is
visualized in Figure 1. The sharp peak of overrepresented
isoforms is due to the fragmentation that generates frag-
ments of an approximate length of 200 bp. In Figure 2a,
we show the density distribution of the bias factors in-
duced by library properties for the RefSeq genes.

We further check in real data for the presence of a tran-
script length effect and investigate GC bias. We use the
microarray and HiSeq RNA-seq (Accession GSE37704)
from Trapnell et al. [11]. Both datasets have been gen-
erated using the same samples. In Figure 3a, we show a
smooth scatter plot comparing the microarray signals
and the RNA-seq FPKM values. The highlighted short
isoforms show that the RNA-seq data underestimates
their expression relative to the microarray. If we look
at isoforms that are well detected by the microarray
(signal intensity >50) and low abundant in the RNA-
seq (FPKM <0.01) we find that the short isoforms
(length <350 nt) are overrepresented (significance in
Fisher’s Exact test is 3.9e-05 with an odds ratio of 3.8).
Figure 3b shows the same data but now highlighting
isoforms with extreme GC content. Here, the data al-
lows no conclusions since the microarray signals also
do have a dependency on GC content. However, the
presence of a GC-bias has been shown by Hansen et al.
[19] revealing that isoforms with extreme GC content
are underrepresented.

The representation biases of the isoforms together
with isoform characteristics and more statistics can be
found in Additional file 1.
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Figure 1 FPKM bias induced by coverage bias and transcript modifications. The points represent RefSeq isoforms and the plot shows the
length dependency of the FPKM of the sequenced reads for input material where each isoform has the same abundance and where the isoforms
exhibit coverage bias or transcript modifications, respectively. The nominal FPKM implied by the isoform abundance and the nominal isoform
length is indicated as horizontal line. The fragmentation step in the library preparation generates fragments of an approximate length of 200 nt

and causes the sharp peak of highly overestimated FPKM for isoforms having approximately this length.

Alignment

We consider an alignment as correct if the alignment
coordinates fall within the range of the read-generating
isoform. This is sufficient for the read to be counted to-
wards the expression of the isoform. This definition im-
plies that we tolerate if the aligner clips the read ends.
We show later that read-end clipping may affect the de-
tection of isoform switching. The medians of the per-
isoform alignment rate for different methods and inputs
are listed in Table 2. The highest alignment rate (with
half the genes having an alignment rate of 99% or more)
is achieved if the reads are simulated according to the
reference transcripts. Alignment rates drop if the simula-
tion allows for variable read starts and adds poly-A tails.
Since short isoforms have proportionally more reads that
include the transcript ends, they suffer most from these
transcript modifications. Figure 4 shows the length de-
pendency of the alignment rates. The difference in the

alignment rates between tophat and STAR roots in the
fact that STAR allows more mismatches and supports
local alignments. The full table of alignment rates for
the individual isoforms is available as Additional file 1.
In this comparison we allowed STAR to report up to 30
valid alignments per read. This is different from the de-
fault (10). The choice was based on a preliminary study
(data not shown) where we found that STAR would pro-
duce a low mapping rate for a few large gene families.

Abundance estimation

We first look at gene level expression estimates, which
can be derived either by a counting or an isoform abun-
dance approach where the isoform abundances are
summed up to yield the gene abundance. As Table 3
shows, the RSEM approach yields a good expression es-
timate for more than 92% of the genes while the count-
ing approaches only yield an accurate result for 87 to
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Figure 2 Biases of the observed FPKM displayed as density distributions. We visualize the effect of the library (a), alignment (b), and
counting biases (c) on the observed FPKM. The log2-ratios were constrained to the range [-2, 2] and the density distributions were generated
using a band-width of 0.05. The library composition has the biggest impact and causes over- as well as underrepresentation. The aligners do not
align all reads correctly but achieve a very high rate for the majority of the genes. If the transcripts exhibit variable transcription start sites and
poly-A tails the alignment rate for the short isoforms drops (see the Additional file 1 for the per isoform mapping rates).
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Figure 3 Length and GC Bias in microarray and RNA-seq data. The smooth scatterplots compare the expression scores of a single sample
measured by RNA-seq and microarray. In 3a we highlight additionally the short isoforms and find that RNA-seq tends to underestimate expression
of short isoforms. In 3b we highlight isoforms with extreme GC content. The plot suggests that microarray and sequencing underestimate expres-
sion of low GC isoforms, while the high GC isoforms are overestimated by microarray and underestimated by RNA-seq.
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89% of the genes. The impact of over-/under-counting is
visualized in Figure 5. In the case of human genome 3-
4% of the genes are strongly affected. Figure 5 also
shows that RSEM’s posterior estimation is able to cor-
rect some of the reads that are initially incorrectly
assigned. For reference we report all gene level scores in
Additional file 2.

We show the density distributions of the count biases
in Figure 2c. The comparison with the library represen-
tation and the read alignment biases shows that the
counting biases affect the fewest genes.

Additionally, we verify how well RSEM can reproduce
the isoform abundances. We find that RSEM does not
correctly produce zero counts in the case where a gene
has multiple isoforms but only one isoform is expressed.
This observation is also reported by Mezlini et al. [20].
It is caused by the fact that RSEM tends to bias the ex-
pression estimates of the individual isoforms towards the
mean value of the corresponding gene locus.

Differential expression

We further generate samples that exhibit differential ex-
pression and analyze the ability to assess the differen-
tially expressed genes. To this end, we generate different
conditions with three replicates each. The conditions

Table 2 Median value of the per-isoform mapping rate

Alignment Hom. Inhom. Mod. TSS +
method coverage coverage polyA
RSEM 0.990 0.990 0.898

STAR 0.943 0.943 0.858
tophat 0814 0814 0.737

Using the alignment methods implemented by STAR, tophat, and RSEM, and
different types of input material, we compute for each isoform the mapping
rate and report the median value for all isoforms.

have 10% of the genes upregulated by a factor of two
and 10% of the genes downregulated by a factor of two
relative to the baseline condition. We simulate biological
noise by adding a log-normal noise to the expression
fractions of the replicate samples that are used by Flux
as input. In total, we simulate 11 different conditions,
and test subsequently for differential expression between
pairs of conditions. Based on the set of all comparisons,
we assess the receiver-operator-characteristic (ROC) for
the different test-methods and expression estimates.
Table 4 shows the Area-under-the-curve (AUC) values
for the exactTest, log-ratio, and t-test applied to differ-
ent expression estimates. We get AUC above 0.91 when
using the exactTest independent of the expression esti-
mate. Interestingly, using the effect-size, i.e. the mean
log-ratio as score for differential expression, the AUC
performance is even a minute amount higher, again in-
dependent of the expression estimate used. Additionally
we have included the t-test applied to the log-expression
scores. The assumptions of the t-test are not compatible
with the count data and the t-test does not make use of
the mean-variance relationship that can be found in
counting data. We show it here to demonstrate the
benefit obtained by using an appropriate count model
(as in edgeR). Figure 6 shows the ROC graphs when
assessing differential expression using exactTest and
using different expression estimates as input. We find
that if one uses HTSeq counts as input, the maximum
achievable sensitivity is lower than for the other
methods. This is due to the fact that for overlapping
gene symbols HTSeq does not count the reads and for
those genes differential expression cannot be positive.
For each combination of counting and testing method,
we have computed the per-gene AUC values and report
them in Additional file 2. We consider a gene as not
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detectable by a given method if its AUC value is below
0.1. Table 5 shows that the number of genes not detect-
able by an individual method ranges from 0 to 506
where the highest number of undetectable genes is ob-
served when using HTSeq counts. In principle, all genes
for which reads have been produced, can be detected as
differentially expressed if the countOverlaps approach or
the RSEM posterior counts are used.

The comparison demonstrates the power and benefit
of the counting model but also shows that if only few
replicates—in our case three—are available, the effect-size
is a valuable score for differential expression. Corre-
sponding findings were also reported for microarray data
[21]. In a related work on comparing hypothesis test
based differential expression of counting data, Robles
et al. [22] have shown that with 6 replicates there is a re-
markable improvement of the power. This power comes
mostly from the improved precision on the variance esti-
mate. For RSEM, the distributions of the read counts do
not follow strictly a Poisson or negative-binomial model,
since the assignment of multi-alignments leads to

Table 3 Fraction of genes where the expression count
bias is less than a factor of two

Alignment and count Hom. Inhom. Mod. TSS +
method coverage coverage polyA
STAR-countOverlaps 0.892 0.892 0.892
tophat-countOverlaps 0.893 0.893 0.893
STAR-htseq 0.877 0.877 0.877
tophat-htseq 0.883 0.883 0.883
RSEM-count 0.929 0.929 0.929
RSEM-posteriorCount 0.930 0.930 0.930

For each gene we estimate expression in terms of read count and report the
fraction of genes for which the estimate is less than a factor of two different
from the number of correctly aligned reads. We consider the alignments
produced by STAR and tophat in combination with subsequent counting of
the overlapping reads using HTSeq and the countOverlaps method. The RSEM
software performs alignment and expression counting. Here we list the results
for the reported counts as well as the results for the posterior estimates of
the counts.

fractional read counts and the posterior estimation adds
additional noise to the estimate. However, we find that
the Poisson approximation is reasonable and leads to ac-
curate results.

We additionally evaluate to which extent isoform
switching without expression change affects the assess-
ment of the differential expression estimate. We use
again conditions with three replicates where only the
isoform changes but not the number of transcripts
expressed from a given locus. Figure 7 shows that such
isoform changes lead to an increased false positive rate
(FPR). Isoform switching can lead to significant change
in the isoform length and consequently a change in the
read count, which is then reported as expression change.
The only way to circumvent this is to resort to expres-
sion measures that are normalized for isoform length,
like FPKM or transcripts per million transcripts se-
quenced (TPM).

Isoform switching

Finally, we measure the performance of the detection of
isoform switching. To this end we use simulated data
with three replicates and conditions where either all iso-
forms of a gene symbol are expressed at the same level
or where only one isoform is expressed. We compare
the three methods cuffdiff (isoform model based), DEX-
Seq (based on counts of non-overlapping exon-like seg-
ments), and DiffSplice (based on read counts for
junctions and exons) in combination with the align-
ments generated by STAR and cufflinks. We show the
ROC curves based on 7347 Genes with multiple iso-
forms in Figure 8. In Table 6 we report the number of
genes for which the per-gene AUC is below 0.1. Overall,
the DEXSeq approach has the best performance,
followed by DiftSplice and cuffdiff. The remarkable fea-
ture is that DEXSeq and cuftdiff work equally well with
tophat and STAR alignments, whereas DiffSplice has
good performance with tophat but very bad performance
with STAR alignments. A closer investigation shows that
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Figure 5 Comparison of reported expression counts with the number of reads sequenced. The biases are dominated by the way the reads
with multiple alignments are taken into account. Multiple counting leads to overestimation while ignoring multi-reads leads to underestimation.
The most accurate results are achieved by the posterior estimates of RSEM.

tophat, despite having less alignments in general, has
more intron spanning alignments than STAR. Specific-
ally tophat has 24.1% of the alignments spanning one in-
tron, and 2.3% of the reads spanning two introns, while
STAR has 22.7% and 1.8% respectively. This is explained
by the fact that STAR can choose a trimmed alignment
instead of a full-length spliced alignment, and applies
this if only a short fraction of a read reaches into the
next exon.

Conclusions

We have investigated the entire data analysis workflow
starting from the input material to the biologically inter-
pretable quantitative results. We find that library con-
tent is crucial and biases in the input material do
strongly impact subsequent analysis results. To achieve
highly accurate mappings for each gene it is essential
that the alignment also tolerates variable transcription
start sites and poly-A tails. While RSEM models poly-A
tails, the aligners tophat and STAR do not. However the
latter do cope with variable transcription start sites since
they consider transcriptome alignments as well as

Table 4 Area under the curve for the differential
expression

Alignment and count method Exact test Log ratio T-test-log
STAR-countOverlaps 0917 09191 0.8845
tophat-countOverlaps 09162 09183 0.8837
STAR-htseq 09119 0916 0.8797
tophat-htseq 09109 09151 0.8784
RSEM-TPM 0.9264 09342 0.8964
RSEM-posteriorTPM 0.9273 09355 0.897
RSEM-count 0.9295 0.9328 0.8959
RSEM-posteriorCount 0.9303 0.9338 0.8965

The table shows the overall AUC value for the detection of differential
expression. The samples were designed such that each gene was differentially
expressed in multiple comparisons. Using different types of input we apply 3
testing scores: exactTest (edgeR package), log-ratio (as an example for effect-
size estimation), t-test on the log-expression scores (as a baseline in order to
contrast the benefit of using a count-model).

genome alignments. We further find that overall map-
ping rates are not sufficiently informative since an
aligner may systematically fail to align reads for a given
gene. With respect to expression estimation, it is essen-
tial to resolve the ambiguous reads. Only by considering
the ambiguous alignments an accurate expression esti-
mation is possible for repeated regions or overlapping
gene symbols. Differential expression using the count
model is powerful but crucially depends on the accuracy
of the counts. With as few as 3 replicates the negative
binomial test, in our dataset, does not outperform the
average effect-size as an indicator of differential expres-
sion. Since the read counts that are required as input for

exactTest
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Figure 6 Receiver-operator-characteristics for the detection of
differential expression based on p-values computed with
edgeR'’s exactTest. The Area-under-the-curve (AUC) depends on
the type of preprocessing. Highest AUC is achieved with RSEM
counts reported by RSEM. Other methods score slightly lower with
htseg-based counts reaching a plateau that is below 1.0 due to the
fact that htseq would not report counts for overlapping

gene symbols.
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Table 5 Number of genes where differential expression
was not detectable

Number of genes
not detectable

Alignment, count, and test method

STAR-countOverlaps exactTest 0
tophat-countOverlaps exactTest 0
STAR-htseq exactTest 492
tophat-htseq exactTest 506
RSEM-TPM exactTest 21
RSEM-posteriorTPM exactTest 0
RSEM-count exactTest 19
RSEM-posteriorCount exactTest 0

the counting tests are not normalized for transcript length
they can lead to misinterpretation of isoform switching as
differential expression. Detection of isoform switching
does not reach the same accuracy as the detection of dif-
ferential expression. This is due to the high similarity of
isoforms and, depending on the gene locus, the potentially
small number of aligned reads that do discriminate be-
tween the isoforms.

While RNA-seq can give an accurate estimation of
gene expression as well as expression differences for the
majority of genes, it may miss genes with extreme proper-
ties with respect to sequence length, GC content, and
homologous regions. The detection of isoform switching
may require significantly higher coverage to get satisfactory

exactTest

1T

1e-01

1e-03

e=== STAR-countOverlaps—-gene
tophat-countOverlaps—gene
STAR-htseg-gene
tophat-htseq-gene
RSEM-TPM-gene

== RSEM-posteriorTPM-gene

e RSEM-count-gene

— == RSEM-posteriorCount-gene

T T T
1e-05 1e-03 1e-01

FPR unspliced

Figure 7 Isoform switching increases the False Positive Rate
(FPR) of differential expression. If at a gene locus the expressed
isoform changes, this leads to an increase in the false positive
detection of differential expression based on gene-level counts. For
set of significance thresholds we plot the FPRs in the absence and
presence of isoform switching. False Positive Detection can only be
avoided if expression counts are normalized for isoform length as is

FPR spliced genes

1e-05
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Figure 8 Receiver-operator-characteristics for the detection if
isoform switching. The performance strongly depends on the
alignments and the testing algorithm. In our comparison DEXSeq
performs best. DiffSplice only performs well with tophat alignments
but not with STAR alignments. The curves do not cover the full
range of specificities because algorithms like DEXSeq and cuffdiff
only run a test for a given gene locus if the locus satisfies additional
constraints on read coverage. If a test was not run, it was considered
as no splicing detected.

the Transcripts-per-Million (TPM) score returned by RSEM.

results. We refer to the additional files for detailed infor-
mation on how well the transcriptional state of each gene
and isoform can be assessed quantitatively.

For future analysis, it will be relevant to consider also
single nucleotide polymorphisms in an analysis. Also, it
will be interesting to investigate to which extend the re-
sults are applicable to other species. The current study
assumes that all potential isoforms are known, however
in practice the annotated isoforms will not represent
the complete transcriptome and additional isoforms
that are expressed may have adverse effects and lead to
misinterpretations.

Table 6 Number of genes where alternative was not
detectable

Alignment and isoform switching

Number of genes

method not detectable
tophat-cuffdiff 4448
tophat-diffsplice 366
tophat-dexseq 109
STAR-cuffdiff 4447
STAR-diffsplice 617
STAR-dexseq m

The number for cuffdiff is very high because cuffdiff has (with default options)
a minimum requirement of 10 reads for a gene locus in order to run the test
for isoform switching.



Rehrauer et al. BMC Bioinformatics 2013, 14:370
http://www.biomedcentral.com/1471-2105/14/370

Methods

Simulated datasets

We used simulated data sets with a baseline expression
where each isoform has the same transcript abundance.
We consider as transcripts the Refseq transcripts in the
hg19 build available from the UCSC Genome Browser
web-site. For the differential expression we divide the
genes in 10 chunks und choose always 1 chunk for two-
fold upregulation and 1 chunk for two-fold downregula-
tion. In total we use 11 conditions with 3 replicates each
and each replicate having 10 Mio reads. We create 3 iso-
form switching datasets from the initial 11 conditions by
shifting the entire expression on a gene locus into the
first, second and third annotated isoform, respectively.
For the methods below, if not mentioned differently, de-
fault options were used.

Read simulation with flux

For simulation we use the Flux read simulator v1.2. We
simulate coverage bias by setting the fragmentation sub-
strate to DNA. We choose the default options for the
transcript modification to obtain transcripts with variable
read starts and poly-A tail. We set both options to NaN
and the fragmentation substrate to RNA to produce tran-
scripts that follow exactly the annotated transcripts. We
choose as read length 101 bp and use the default error dis-
tribution provided by Flux.

Read alignment

For read alignment, we use tophat v2.0.6 and provided
tophat with the RefSeq transcript coordinates as a GTF file
so that tophat would also align the reads to the known
transcripts. Additionally, we used STAR v2.3.0e with the
options“—outSAMstrandField intronMotif —outFilterMatch
Nmin 20-outFilterMismatchNmax 5 —outFilterMismatch
NoverLmax 0.05—outFilterMultimapNmax 30" that add
additional strand information for spliced alignments, limit
the number of mismatches to 5 and that increase the
number multimapping for reads to 30. We use RSEM
v1.2.3 for read alignment to the transcriptome and use
RSEM also to compute expression estimates.

Expression estimation

We compute expression with HTSeq v0.5.3p9 using the
script HTS.scripts.count, as well as by using the countOver-
laps method in the Bioconductor package GenomicRanges
v1.10.7 and the expression output generated by RSEM.

Differential expression

We compute differential expression with the exactTest
method in the Bioconductor package edgeR v3.0.6, and
the t-test in the package genefilter v1.40.0. Additionally
we compute the log-ratio as an effect size. We did not
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apply any normalization with respect to sequencing
depth, since all samples had the same sequencing depth.

Isoform switching

For the detection of isoform switching we use the Bio-
conductor package DEXSeq v1.4.0 which also provides a
python scripts to generate the read counts for the
pseudo-exons that are needed as input for the hypoth-
esis test. The other two methods are cufflinks v2.1.1
(with the option for multi-read correction) and DiffS-
plice v0.1.1. We used all genes that were commonly de-
tectable by DEXSeq and cuffdiff. This excludes genes
where the same gene symbol is associated with more
than one genomic locus because DEXSeq can not handle
such situations. These genes have been removed and the
GTF File from UCSC has been preprocessed with DEX-
Seq’s python script dexseq_prepare_annotation.py. DiffS-
plice does not make use of the gene annotation at all but
reports alternatively spliced modules (ASM) independ-
ent of the annotation. In order to get comparable results
we matched the ASM to the overlapping gene symbols.

Additional files

Additional file 1: Summary table that holds the statistics per
isoform. Detailed numeric results for each transcript ID (i.e. isoform) with
respect to bias factors and mapping rates.

Additional file 2: Summary table that holds the statistics per gene
symbol. Detailed numeric results for each gene symbol with respect to
reads sequenced, bias factors, mapping rates, and Area-under-the-curve
(AUQ) values.
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