
Roberts et al. BMC Bioinformatics 2013, 14:358
http://www.biomedcentral.com/1471-2105/14/358

METHODOLOGY ARTICLE Open Access

Fragment assignment in the cloud with
eXpress-D
Adam Roberts1, Harvey Feng1 and Lior Pachter1,2*

Abstract

Background: Probabilistic assignment of ambiguously mapped fragments produced by high-throughput
sequencing experiments has been demonstrated to greatly improve accuracy in the analysis of RNA-Seq and
ChIP-Seq, and is an essential step in many other sequence census experiments. A maximum likelihood method using
the expectation-maximization (EM) algorithm for optimization is commonly used to solve this problem. However,
batch EM-based approaches do not scale well with the size of sequencing datasets, which have been increasing
dramatically over the past few years. Thus, current approaches to fragment assignment rely on heuristics or
approximations for tractability.

Results: We present an implementation of a distributed EM solution to the fragment assignment problem using
Spark, a data analytics framework that can scale by leveraging compute clusters within datacenters–“the cloud”. We
demonstrate that our implementation easily scales to billions of sequenced fragments, while providing the exact
maximum likelihood assignment of ambiguous fragments. The accuracy of the method is shown to be an
improvement over the most widely used tools available and can be run in a constant amount of time when cluster
resources are scaled linearly with the amount of input data.

Conclusions: The cloud offers one solution for the difficulties faced in the analysis of massive high-thoughput
sequencing data, which continue to grow rapidly. Researchers in bioinformatics must follow developments in
distributed systems–such as new frameworks like Spark–for ways to port existing methods to the cloud and help
them scale to the datasets of the future. Our software, eXpress-D, is freely available at: http://github.com/adarob/
express-d.

Background
Modern sequencing experiments usually involve the
shearing of DNA or cDNA into relatively short fragments
for processing on a high-throughput sequencing device,
such as the Illumina HiSeq. In the analysis of the resulting
data, one of the first steps is to align the reads represent-
ing these partially-sequenced fragments to a set of target
sequences. This procedure identifies locations within the
target sequences from which each fragment may have
originated using a threshold onmismatches and insertions
or deletions (indels), thus reducing the focus of down-
stream analysis to only highly probable loci. Numerous

*Correspondence: lpachter@math.berkeley.edu
1Department of Computer Science, 387 Soda Hall, UC Berkeley, Berkeley, CA
94720, USA
2Departments of Mathematics and Molecular & Cell Biology, 970 Evans Hall,
UC Berkeley, Berkeley, CA 94720, USA

read mappers exist to solve this problem with various fea-
tures and performance characteristics, the most popular
of which are based on the Burrows-Wheeler transform
[1,2].
A common problem in downstream analysis of the

resultant alignment data is that fragments often map
ambiguously to multiple target sequences. For example,
in the case of RNA-Seq, a given fragment might align to
multiple isoforms of a gene as well as to multiple genes
within a gene family. This ambiguity makes it difficult
to measure the abundance of transcripts, especially those
with few unique regions. A similar problem occurs with
ChIP-Seq data, where fragments align to many regions
of the genome, complicating the problem of peak find-
ing for determining binding sites [3]. Another example is
in metagenomics, where researchers wish to detect the
presence and relative abundance of various closely related
species of microorganisms in a pooled sample of DNA [4].

© 2013 Roberts et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://github.com/adarob/express-d
http://github.com/adarob/express-d


Roberts et al. BMC Bioinformatics 2013, 14:358 Page 2 of 9
http://www.biomedcentral.com/1471-2105/14/358

Previous approaches
The earliest solution for this problem was to ignore any
fragments that align ambiguously. However, such tech-
niques discard large amounts of useful information and
can lead to significant biases in the analysis. For exam-
ple, we observe over 25% of fragments being ambiguous
in recent RNA-Seq experiments in the human transcrip-
tome.
Mortazavi et al. [5] provided a better solution the prob-

lem, later named the rescue method by [6], through
which ambiguous fragments are assigned proportionally
to their potential origins based on the initial gene abun-
dances computed from unique fragment counts. This
idea, based on the oft-valid assumption that genes that
generate more unique fragments are likely to also gener-
ate more ambiguous fragments, was extended by both Li
et al. [6] and Trapnell et al. [7] after noting that rescue
was equivalent to a single iteration of the expectation-
maximization (EM) algorithm for a simple model of
RNA-Seq. In the full version of the algorithm, reads are
probabilistically assigned in an expectation (E) step based
on the current abundance (and possibly other experimen-
tally related) parameter estimates. These estimates are
then updated in a maximization (M) step to those that
maximize the likelihood given the assignments, which in
this case is proportional to the number of assigned frag-
ments per target. These steps are repeatedly alternated
and are guaranteed to improve the likelihood at each iter-
ation. Since the likelihood function in this simple model
is concave, the estimates will eventually converge to the
maximum likelihood solution.
Several probabilistic models have since been intro-

duced, building off still earlier models [8] to include
parameters for features such as fragment length, indel

and substitution errors, and sequence-specific biases [9].
Furthermore, various methods have been proposed for
optimizing the likelihood of a given model. The EM solu-
tion has been the most successful to date, but has failed to
scale with the rapid growth in the size of typical sequenc-
ing datasets [10]. The large number of iterations required
for convergence of the EM algorithm means that details
of the alignments must be stored in memory for fast
access, since reading them from disk thousands of times
would be intractable. In response to the large memory
requirements, heuristics and approximations have been
introduced to reduce the footprint of these methods.
The developers of RSEM [11] have been conservative

in their attempts to scale. By ignoring fragments that
align ambiguously to a large number of transcriptomic
locations (200 by default), the memory requirements
are somewhat reduced, along with the number of itera-
tions. Using what is essentially the full batch EM algo-
rithm allows RSEM to retain high accuracy when ignoring
deficiencies in bias modeling ([10] and Figure 1A) but
makes scaling a challenge.
eXpress [10] follows a model very similar to RSEM,

but side-steps the scaling issue by using an alterna-
tive optimization procedure–the online EM algorithm–
that only requires a small, constant amount of memory.
The online–or streaming–EM algorithm approximates
the batch algorithm used in RSEM without the need to
consider any of the alignments more than once. There-
fore, the alignments of each fragment can be read from
disk once, processed, and then discarded from memory.
This leads to huge reductions in the memory and time
requirements of the method, but causes it to be somewhat
less accurate than RSEM when eXpress’s bias modeling
is disabled ([10] and Figure 1A).

0.85

0.80

0.75A
cc

ur
ac

y 
(S

pe
ar

m
an

 R
)

1 M 10 M 100 M
Number of Fragments

0.90

1.00

0.70

0.95

10 M 100 M 1 B
Number of Fragments

eXpress-D

RSEM

eXpress

1 B 1 M

BA saiB noitatnemgarFmrofinU

Figure 1 Accuracy Comparison for Synthetic Data. Accuracy of eXpress, eXpress-D, RSEM, and Cufflinks at multiple sequencing
depths in a simulation of a billion fragments (read pairs) generated with (B) and without (A) sequence-specific bias. Expanded from Figure 2 in [10]
and produced using the same synthetic datasets. Each algorithm was presented the same multisized subsets of 1 billion simulated fragments and
the Spearman ranked correlation coefficient was calculated between the resulting estimates and ground-truth abundance values used in the
simulation. The stars represent where each of the software packages crashed or were halted due to the test machine’s memory constraint (512 GB
for all but eXpress-D).



Roberts et al. BMC Bioinformatics 2013, 14:358 Page 3 of 9
http://www.biomedcentral.com/1471-2105/14/358

Another approach to reducing the memory footprint is
to exploit the structure of the likelihood function. [12]
introduces the ambiguity graph for a set of transcripts, or
other target sequences. In this graph, each target is rep-
resented as a node and edges are added between pairs
of nodes when an ambiguous fragment aligns to both.
Targets in different components of this graph are inde-
pendent of each other, providing a decomposition of the
likelihood function. Thus, the fragments and targets mak-
ing up separate components can be optimized serially,
reducing the memory requirements to the size of the
largest component. While this component often makes up
a significant fraction of the data, graph partitioning tech-
niques can be used to further reduce the block sizes with
little effect on accuracy. However, this method has not
been implemented as part of a batch EM solution to date.
Cufflinks [7] approximates the above procedure by

partitioning the fragments and targets based on their
genomic positions. Since ambiguous alignments in RNA-
Seq are commonly due to equivalent mappings to multiple
isoforms, Cufflinks determines the maximum likeli-
hood assignment of fragments for each non-overlapping
genomic locus using the EM algorithm. Fragments that
are not unique to a single locus are initially assigned uni-
formly to the ambiguous loci, but can be better assigned
in a second iteration of Cufflinks using a method sim-
ilar to rescue. This method essentially assumes that the
components of the ambiguity graph strictly correspond to
genomic loci, which is, in fact, rarely the case [5]. In [10],
we provide evidence that this assumption is the source
of Cufflinks lower accuracy on simulated data when
compared to RSEM and eXpress.

To the cloud
While these solutions have all used algorithms and heuris-
tics to deal with bounded computer memory resources,
another approach is to handle the increasing size of
datasets by scaling up the compute resources. It is
currently infeasible for every small lab to purchase
machines with enough RAM to fully analyze today’s
datasets using the batch EM algorithm. However, large
clusters of compute nodes are now available for relatively
low cost with pay-by-use cloud platform services, such as
Amazon’s Elastic Compute Cloud (EC2) [13]. Developing
software to take advantage of the distributed resources
on clusters of commodity machines is nontrivial, as issues
such as failure recovery and communication must be dealt
with [14].
MapReduce is an abstraction that allows developers to

access the power of large distributed commodity clusters
without having to explicitly handle details such as data
partitioning, work scheduling, and software and hardware
failures. The MapReduce programming model involves
a series of calls to primitive map and reduce methods,

with reordering and grouping allowed between. MapRe-
duce was originally conceived by Google [15] in con-
junction with the Google File System (GFS) [16], a fault
tolerant, distributed file system–the “disk” that MapRe-
duce utilizes. Both inspired open-source counterparts
that compose the core Apache Hadoop project: Hadoop
MapReduce and the Hadoop Distributed File System
(HDFS) [17].
Myrna [18] applies Hadoop MapReduce to the analysis

of RNA-Seq data, using Hadoop to count the unique align-
ments in an experiment. The map phase iterates through
the alignments, emitting a tuple identifying the transcript
that each fragment is aligned to. In the reduce phase,
the unique alignments for each transcript are accumu-
lated to produce the total counts. Since the fragments can
be processed independently in the map phase, Hadoop
can distribute the fragments randomly to multiple nodes.
In the reduce phase, Hadoop can be set to automati-
cally assign tuples for each transcript to the same node,
allowing the accumulations to occur in an independent,
distributed manner.
This method could be also extended to handle ambigu-

ous mappings by implementing the EM algorithm using
many iterations ofMapReduce. Themap phase would cor-
respond to the E-step, in which a tuple is emitted for each
alignment specifying the target and the probability that it
is origin of the fragment based on the likelihood model
and a set of global parameter estimates. The reduce phase
would correspond to the M-step, in which the proba-
bilistic assignments would be accumulated and the values
normalized to produce the updated maximum likelihood
parameters estimates for use in the subsequent iteration.
However, the problem with implementing the EM algo-

rithm using Hadoop MapReduce is that the system is
not tailored for data reuse. In Hadoop, the dataset being
scanned is re-read from disk before every map step,
and the results of intermediate computations are writ-
ten to temporary files after the map. In our application,
EM would be implemented as a map task. This means
that the alignments would have to be loaded from disk
before the E-step and a partial set of probabilistic assign-
ments written to disk after the M-step. Then, on a single
node executing a reduce task, partial sets of probabilis-
tic assignments would be fetched from the temporary
files on map nodes and loaded into memory for ren-
dezvous and normalization. An on-disk file containing
likelihood parameters would also be updated during this
reduce step. Thus, numerous disk operations done in
Hadoop’s map and reduce tasks would create a significant
bottleneck.
The approach we take instead is to use Apache Spark, an

open-source framework that provides in-memory, fault-
tolerant cluster computing by implementing resilient dis-
tributed datasets (RDDs) [19]. Spark is an alternative



Roberts et al. BMC Bioinformatics 2013, 14:358 Page 4 of 9
http://www.biomedcentral.com/1471-2105/14/358

compute engine to Hadoop that implements the MapRe-
duce abstraction by allowing users to apply map and
reduce functions over RDDs. In conjunction with the a
distributed file system–such as GFS, HDFS, or Amazon’s
S3–Spark handles all issues of fault tolerance and par-
titioning across the cluster nodes. Unlike MapReduce,
however, once a subset of the data is read from the filesys-
tem into memory, it can be made to persist in the RAM of
the compute nodes, allowing an application to efficiently
scan it throughout many iterations.
Furthermore, Spark provides two types of shared vari-

ables based on common use cases that are well-suited for
the workflow of the EM implementation: broadcast vari-
ables and accumulable variables. A broadcast variable is
a read-only piece of data that is distributed to all worker
nodes. An accumulable variable references an append-
only data structure that is updated by each worker node’s
local process and then fully combined by the process
running on the master node. Broadcasted and append-
only data structures both persist in-memory. eXpress-D
utilizes these shared variables to distribute and update
parameters and accumulate probabilistic assignments.
The following section contains more detail on the imple-
mentation.
When given enough RAM, consecutive map executions,

broadcasts, and accumulations can avoid disk spilling,
which makes Spark particularly appropriate for the EM
algorithm [20]. By implementing the EM algorithm for
ambiguous fragment assignment using Spark, in con-
junction with Amazon S3 for persistent storage, we can
easily scale the method to very large datasets by combin-
ing the resources of multiple compute nodes, providing
in-memory storage of alignment data while also taking
advantage of large-scale parallel computations.

Method
Model
Our implementation maximizes the likelihood of the gen-
erative model presented in [10].

Preprocessing with eXpress

By default, the distributed file system partitions a dataset
stored as text using line breaks to delineate discrete units
of processing. In our case, a discrete unit is the collec-
tion of alignments of a single fragment for the alignment
file, and the name and sequence of a single target for the
target file. Since the commonly used formats for align-
ments and targets (SAM and FASTA, respectively) do not
conform to this standard, we must pre-process the files
to produce inputs that can be partitioned by the file sys-
tem. At the same time, we wish to make our input files as
small as possible to reduce the time required for network
transfers.

To achieve these goals, we modified eXpress–which
has already been optimized for parsing the standard SAM
and FASTA files–to produce input files compatible with
our method. The format of these new files are newline-
delimited, serialized Protocol Buffers, which are encoded
in base64 to ensure no newline characters appear in the
serialization itself. The Protocol Buffer specification is
shown in Table 1 for both alignments and targets.We have
avoided including any unnecessary or redundant informa-
tion and compressed nucleotide sequences to byte arrays,
requiring approximately 2 bits per nucleotide. The result-
ing files are significantly smaller than the original binary
SAM (BAM) and FASTA files.
Once the input files are loaded into HDFS or S3 on the

cluster, our application can be run on Spark to begin frag-
ment assignment. Figure 2 outlines the procedure, which
is described in more detail in the following subsections.

Preprocessing on Spark
The input files are parsed by Spark and loaded into the
memory of the slave nodes as RDDs. The per-alignment
indices for accessing the relevant elements of the error and
bias Markov chain parameter matrices are then precom-
puted and stored in a transformed RDD. Each partition
of the transformed RDD is approximately 700 megabytes
and stores about 1 million fragments.

Processing without bias correction
The algorithm for processing without bias correction is
depicted at the top of Figure 2. The current target abun-
dance, error substitution Markov chain, and fragment
length distribution estimates (all initially set to be uni-
form) are broadcast to the slave nodes storing align-
ment RDDs. Given these distributions, the fragments on
each slave are probabilistically assigned to the aligned
targets using the likelihood function from [10]. The
appropriate categories of the latent distributions are
incremented by the posterior probabilities of the assign-
ments at each slave node to produce new empiri-
cal distributions. These counts are then accumulated
by the master node and Laplace smoothing is applied
before they are normalized. The updated parameter
estimates are then broadcast to the slave nodes and
the procedure is repeated until convergence is detected
(see below).

Processing with bias correction
Previous work demonstrates that significant improve-
ments in accuracy can be attained by modeling sequence-
specific bias [9,11]. We have included a bias correction
mode (enabled by default) to take advantage of these
improvements, as illustrated at the bottom of Figure 2.
The primary algorithm remains the same as outlined
above with the addition of Markov chain parameters



Roberts et al. BMC Bioinformatics 2013, 14:358 Page 5 of 9
http://www.biomedcentral.com/1471-2105/14/358

Table 1 Protocol Buffer specifications

Field Type Description

Fragment

name string Unique query name of fragment in SAM file

paired bool Boolean specifying if both ends were sequenced

alignments FragmentAlignments Collection of alignments for fragment

FragmentAlignment

target_id uint32 ID of target aligned to (index in SAM header)

read_l ReadAlignment Alignment information for 5’ (left) read, if exists

read_r ReadAlignment Alignment information for 3’ (right) read, if exists

ReadAlignment

first bool Boolean specifying if this end was sequenced first

left_pos unit32 0-based left endpoint of alignment to reference

right_pos unit32 0-based right endpoint of alignment to reference

mismatch_indices byteArray Positions in read that differ from reference

mismatch_nucs byteArray Nucleotides in read at mismatches, 2 bits/nuc

Target

name string Unique name of target sequence

id uint32 Index of target in SAM header

length uint32 Number of nucleotides in target sequence

seq byteArray Nucleotides of target sequence, 2 bits/nuc

eXpress pre-processes the input data (SAM/BAM and FASTA file) and converts it to a format that is compatible with the distributed file system’s partitioning scheme.
The information for each target and fragment are put into a space-efficient Protocol Buffer–retaining only the information necessary for optimization–, which is then
serialized and encoded in base64. Each target or fragment takes up exactly one line in the file created for input into eXpress-D.

modeling the sub-sequences surrounding the 5’ and 3’
fragment ends. Estimates of these parameters are broad-
cast to the slaves, used in the likelihood calculation, and
updated empirically, similar to the other hidden param-
eters. Instead of probabilities, the bias parameters are
ratios of the observed to expected frequencies of these
sub-sequences and are used as weights in the likeli-
hood function. The observed frequencies are accumulated
empirically along with the other parameters as described
above, but the expected frequencies must be computed by
sliding windows along the target sequences and counting
the occurrences of various sub-sequences weighted by the
current target abundance and fragment length parameter
estimates. To make these repeated updates efficient, we
broadcast the current model parameter estimates to the
slave nodes storing target RDDs and have them compute
local frequencies based on sliding windows over the RDDs
in memory. The frequencies are then accumulated by the
master node, allowing the bias weights to be updated
before the next iteration.

Freezing of auxiliary parameters
We define the auxiliary parameters to be all parameters
of the model except for the target abundance parame-
ters, which are the main parameters of interest. There are

two reasons for freezing the auxiliary parameters after a
suitable number of iterations:

1. The auxiliary parameters can be estimated accurately
much earlier than the target abundance parameters
since they are fewer in number. Otherwise the
algorithm will be wasting a significant amount of
time unnecessarily updating their distributions at
later iterations.

2. The model is only convex given fixed auxiliary
parameters. Since we repeat the EM steps until
convergence is reached, we want a guarantee that
processing will not continue indefinitely. Given fixed
auxiliary parameters, the likelihood function is
log-linear, and the EM algorithm is guaranteed to
converge to the maximum likelihood solution.

We therefore have chosen to use the following auxiliary
parameter update scheme: The parameters are updated at
every iteration for the first 20 and are then only updated
every 100 iterations until 1000 iterations are reached, at
which point they are frozen.

Numerical stability
To avoid underflow, all probabilities distributions are
logged before being used in likelihood computations,



Roberts et al. BMC Bioinformatics 2013, 14:358 Page 6 of 9
http://www.biomedcentral.com/1471-2105/14/358

A

C T

C
G
T

A G

Fragment 
Lengths

Target 
Abundances

Sequencing 
Error

Sequence
 Bias

Alignment 
RDD

Target 
RDD

Partition target and alignment 
protobufs to slave nodes

Broadcast current parameter 
estimates to alignment slaves

Compute probabilistic fragment
assignments on alignment slaves

Accumulate assignments on master
to update estimates

Broadcast new estimates to
 target slaves

Compute expected sequence bias given
new estimates on target slaves

Accumulate expected sequence bias on
master to update bias parameters 

A

B

G
C
T
A

G
C
A
T

C
T
A
G

C

A
G
T

C
T
A
G

C
T
A
G

C
T
G
A

C
A
T
G

T
A
G

C
T
A
G

C

Figure 2Method overview. The top portion (A) shows the procedure for running the distributed batch EM algorithm with Spark, ignoring
sequence-specific bias. First, blocks of partitioned alignments (yellow) and targets (magenta) are distributed to the slave nodes, stored in memory as
RDDs, and cached. An initial set of parameter estimates (green with black symbols) are broadcast to the slaves with alignments. The alignments on
each slave are probabilistically assigned and new parameter estimates are partially accumulated (green with white symbols) on each node. These
are then sent back to the master to be fully combined and re-broadcast for the next round. When sequence-specific bias is enabled, additional
processing (B) takes place between some rounds. The parameter estimates are sent to the slaves with targets and the expected sequence bias
given the current abundance estimates are accumulated and normalized on the master node to produce updated weights [9]. Auxiliary parameters
(error, bias, and fragment lengths) are fixed after 1000 rounds, and the estimation procedure stops when convergence of the abundance
parameters is reached.

which has the extra benefit of allowing the use of
faster additions instead of multiplications. The assign-
ment probabilities are exponentiated before incrementing
the empirical distributions, since there is no concern of
numerical instability in the update step.

Convergence detection
We halt the algorithm when convergence of the target
sampling probabilities is detected in a manner similar to
[6]. The parameters are considered to have converged
when all targets with a sampling probability of at least



Roberts et al. BMC Bioinformatics 2013, 14:358 Page 7 of 9
http://www.biomedcentral.com/1471-2105/14/358

10−7 have a relative change of no more than 10−2 between
two consecutive iterations.

Results and discussion
Test data
In order to test the performance of eXpress-D in
terms of both speed in accuracy and in comparison with
previous methods, we chose to use the two synthetic
datasets from [10]. Both datasets contain a billion frag-
ments that were simulated according to the generative
model described in [10], one including sequence-specific
bias and one without. Alignment was done with Bowtie
v0.12.7 and TopHat v2.0.0 (using Map2GTF), allowing
for three mismatches in both cases.

Method comparisons
We compared performance of eXpress-D with RSEM,
Cufflinks, and eXpress using the results generated
in [10]. In that analysis RSEM v1.1.11, Cufflinks v1.4.0
(with -u), and eXpress v1.2.0 were used. We have pro-
vided scripts for repeating this analysis in conjunction
with the data published with [10] Additional file 1.

Cluster and experiment setup
For running experiments, we used Amazon EC2 clus-
ters comprising m3.2xlarge instances, each of which has
8 virtual CPUs and 30 GB of memory [21]. A virtual
CPU is rated at 3.25 EC2 Compute Units (ECU), which
is roughly equivalent to a 1.0–1.2 GHz 2007 Xeon pro-
cessor [22]. Even though 30 GB may seem excessive, we
found that it was necessary to avoid full, costly garbage
collection runs by the Java Virtual Machine (JVM) that
Scala runs on, which could delay each iteration by tens of
seconds.
A cluster was launched for subsets of various sizes of

each test dataset. Starting from 3 slave nodes used for 50
million and fewer fragments, the number of slave nodes
used increases proportionally with the dataset size, until
we reach 60 slave nodes used for 1 billion fragments.
Each set of fragments is broken down to partitions of
approximately 1 million fragments, the size of which is
128 MB when stored on disk and 700 MB when stored in
memory as Java objects. The partitions are stored using
Amazon’s S3 persistent store, and for eXpress-D execu-
tions is cached on a slave assigned by the Spark scheduler.
To measure how runtimes scale with increasing dataset
sizes and cluster resources, we executed eXpress-D
four times on each cluster for every dataset and report
the average of those runs on that cluster. Furthermore,
runs over datasets simulated with and without bias were
done sequentially on the same cluster. We also used only
trials where no Spark processes were interrupted due
to disconnected instances, or other machine component
failures.

Performance comparisons
Figure 1 reveals that eXpress-D outperforms all other
methods compared for data simulated both with and
without bias. This is unsurprising since it combines the
exact generative model with the full batch EM algorithm
for optimization, while the other methods make vari-
ous approximations in one or the other. eXpress and
Cufflinks use a complete model including bias, but
eXpress optimizes with the online EM algorithm and
Cufflinks assumes independence between genomic
loci. RSEM optimizes with the batch EM algorithm but
does not model sequence-specific bias. These approxi-
mations are made to help the algorithms process large
datasets on a single machine, but by taking advantage of
the cloud, eXpress-D does not need to sacrifice accu-
racy to scale.
In terms of speed and resource use, Figure 3 shows that

eXpress-D can provide constant runtime if the num-
ber of nodes are increased linearly with the size of the
input datasets. We found that with one CPU core per 1
million fragments, eXpress-D could execute 100 itera-
tions in approximately 30 minutes without bias correction
and 40 minutes with bias correction. There is also a con-
stant 30 minute total overhead for learning the bias model
during the first 20 iterations. Each run requires approx-
imately 500 iterations to converge, meaning that only 4
hours would be required to process a billion fragments
using 60 slave nodes (480 cores). This is only twice is long
as is taken by the online EM algorithm of eXpress.

50 M 100 M 500 M 1 B

Without Bias
With Bias

Number of Fragments

R
un

tim
e 

fo
r 

10
0 

Ite
ra

tio
ns

 (
M

in
ut

es
) 

0
10

20
30

40

Figure 3 Runtimes. Average time required for 100 iterations on EC2
for different amounts of input data running on data simulated with
(purple) and without (teal) sequence-specific bias. In the latter case,
the timing is for iterations after the first 20, which require a constant
30 minutes to learn the bias model. The cluster size is scaled as 3 slave
nodes (6 cores) for each 50 million fragments. The results show that
eXpress-D running on Spark maintains constant runtime when
resources are scaled linearly with the amount of the data.



Roberts et al. BMC Bioinformatics 2013, 14:358 Page 8 of 9
http://www.biomedcentral.com/1471-2105/14/358

Although it is impossible to directly compare timings
across different machines, we note that we previously
found RSEM to be unable to complete the processing of
more than 200 million fragments on a typical desktop
server with 24 GB of RAM or 800 million fragments on
a server with 512 GB of RAM [10], which is more than
is available to many labs. Also, we show in Table 2 that
eXpress, Cufflinks, and RSEM scaled with slopes that
range from 1.8 minutes per million fragments (mpmf) to
27 mpmf on datasets that were successfully processed in
[10]. Since eXpress-D runs in the cloud, it is not limited
by the resources on a single machine and can easily scale
to a billion reads with essentially no change in the time
required.

Conclusion
The distributed implementation of eXpress-D allows us
to combine the full model of eXpress with the batch
EM algorithm of RSEM to provide the best results in the
least amount of time for large datasets. A simple exten-
sion to eXpress-D that also parallelizes the read align-
ment and pre-processing steps–similar to what is done
in Myrna and Crowssbow [23]–would greatly improve
performance and move the full analysis pipeline to the
cloud.
As more genomic data moves to the cloud for storage,

tools that are able to take advantage of distributed envi-
ronments and frameworks–such as Spark–will become
more widely used and help remove the barriers to large-
scale integrative analysis of high-throughput sequencing
projects.

Availability and usage
eXpress-D and Spark are open source software that
can be downloaded from their respective websites, http://
github.com/adarob/express-d and http://spark.incubator.
apache.org/. For ease of use, the eXpress-D source code
includes a copy of a Spark script that allow users to
launch, setup and manage EC2 clusters running Spark
and HDFS. The script can be used to launch all nodes in
the cluster using a customized Amazon Machine Image

Table 2 Slope of timing and resource curves

Method Runtime slope (mpmf) Resource slope (cpmf)

eXpress-D 0.05 0.12

eXpress 1.8 0

Cufflinks 6 0

RSEM 27 0

We computed the mean slope between the runtime samples from Figure 3 from
of this manuscript and Figure 2(b) of [10] to compare the scaling of the four
methods in units of minutes per million fragments (mpmf). While eXpress,
Cufflinks, and RSEMwere all run on the samemachine fixed at 8 cores and
24 GB RAM, the resources of eXpress-Dwere increased at a rate of 0.12 cores
per million fragments (cpmf), allowing it scale in approximately constant time.

(AMI)–a type of templated operating system [24]–that
is preloaded with eXpress-D source and binaries. Tar-
get and fragment datasets can then be loaded into HDFS
or S3 for distributed execution. The eXpress-D wiki
page includes more detail about using the script to launch
clusters, as well as notes on cluster configuration and
tuning.

Additional file

Additional file 1: This script contains procedures for repeating our
analyses in comparing RSEM, Cufflinks, and eXpress. To
reproduce our results, use in conjunction with the synthetic data available
at bio.math.berkeley.edu/eXpress/simdata.

Competing interests
The authors declare that they have no competing interest.

Authors’ contributions
AR developed the method. AR and HF implemented the method and
analyzed the results. AR, HF, and LP wrote the manuscript. All authors read and
approved the final manuscript.

Acknowledgements
We thank Matei Zaharia, Kristal Curtis, and Reynold Xin for discussions on the
feasibility of the Spark implementation. Adam Roberts was supported by an
NSF graduate research fellowship. Lior Pachter was partially supported by NIH
HG006129.

Received: 13 September 2013 Accepted: 18 November 2013
Published: 7 December 2013

References
1. Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and

memory-efficient alignment of short DNA sequences to the human
genome. Genome Biol 2009, 10(3):R25.

2. Li H, Durbin R: Fast and accurate short read alignment with
Burrows–Wheeler transform. Bioinformatics 2009, 25(14):1754–1760.

3. Chung D, Kuan PF, Li B, Sanalkumar R, Liang K, Bresnick EH, Dewey C,
Keleş S: Discovering transcription factor binding sites in highly
repetitive regions of genomes with multi-read analysis of ChIP-Seq
data. PLoS Comput Biol 2011, 7(7):e1002111.

4. Meinicke P, Aßhauer KP, Lingner T:Mixture models for analysis of the
taxonomic composition of metagenomes. Bioinformatics 2011,
27(12):1618–1624.

5. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B:Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nature Methods
2008, 5(7):621–628.

6. Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN: RNA-Seq gene
expression estimation with read mapping uncertainty. Bioinformatics
2010, 26(4):493–500.

7. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ,
Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification
by RNA-Seq reveals unannotated transcripts and isoform switching
during cell differentiation. Nature Biotechnol 2010, 28(5):511–515.

8. Xing Y, Yu T, Wu YN, Roy M, Kim J, Lee C: An expectation-maximization
algorithm for probabilistic reconstructions of full-length isoforms
from splice graphs. Nucleic Acids Res 2006, 34(10):3150–3160.

9. Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L: Improving
RNA-Seq expression estimates by correcting for fragment bias.
Genome Biol 2011, 12(3):R22.

10. Roberts A, Pachter L: Streaming fragment assignment for real-time
analysis of sequencing experiments. Nature Methods 2013, 1:71–73.

11. Li B, Dewey C: RSEM: accurate transcript quantification from
RNA-Seq data with or without a reference genome.
BMC Bioinformatics 2011, 12:323.

http://github.com/adarob/express-d
http://github.com/adarob/express-d
http://spark.incubator.apache.org/
http://spark.incubator.apache.org/
http://www.biomedcentral.com/content/supplementary/1471-2105-14-358-S1.ZIP
bio.math.berkeley.edu/eXpress/simdata


Roberts et al. BMC Bioinformatics 2013, 14:358 Page 9 of 9
http://www.biomedcentral.com/1471-2105/14/358

12. Roberts A, Schaeffer L, Pachter L: Updating RNA-Seq analyses after
re-annotation. Bioinformatics 2013, 29:1631–1637.

13. Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2.
14. Hoelzle U, Barroso LA: The Datacenter as a Computer: An Introduction to the

Design of Warehouse-Scale Machines, 1st edition: Morgan and Claypool
Publishers; 2009.

15. Dean J, Ghemawat S:MapReduce: simplified data processing on large
clusters. In Proceedings of the 6th conference on Symposium on Operating
Systems Design & Implementation - Volume 6, OSDI’04. Berkeley: USENIX
Association; 2004:10–10.

16. Ghemawat S, Gobioff H, Leung ST: The Google file system. In
Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles. SOSP ’03. New York: ACM; 2003:29–43.

17. Shvachko K, Kuang H, Radia S, Chansler R: The Hadoop distributed file
system. InMass Storage Systems and Technologies (MSST), 2010 IEEE 26th
Symposium on: IEEE; 2010:1–10.

18. Langmead B, Hansen KD, Leek JT: Cloud-scale RNA-sequencing
differential expression analysis with Myrna. Genome Biol 2010,
11(8):R83.

19. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, Franklin M,
Shenker S, Stoica I: Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implementation:
USENIX Association; 2012:2–2.

20. Hunter T, Moldovan T, Zaharia M, Merzgui S, Ma J, Franklin MJ, Abbeel P,
Bayen AM: Scaling the mobile millennium system in the cloud. In
Proceedings of the 2nd ACMSymposiumonCloud Computing: ACM; 2011:28.

21. Amazon EC2 Instances. http://aws.amazon.com/ec2/instance-types/.
22. Amazon EC2 FAQs. http://aws.amazon.com/ec2/faqs/#

What_is_an_EC2_Compute_Unit_and_why_did_you_introduce_it.
23. Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL: Searching for SNPs

with cloud computing. Genome Biol 2009, 10(11):R134.
24. AmazonMachine Images. https://aws.amazon.com/amis.

doi:10.1186/1471-2105-14-358
Cite this article as: Roberts et al.: Fragment assignment in the cloud with
eXpress-D. BMC Bioinformatics 2013 14:358.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://aws.amazon.com/ec2
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/faqs/#What_is_an_EC2_Compute_Unit_and_why_did_you_introduce_it
http://aws.amazon.com/ec2/faqs/#What_is_an_EC2_Compute_Unit_and_why_did_you_introduce_it
https://aws.amazon.com/amis

	Abstract
	Background
	Results
	Conclusions

	Background
	Previous approaches
	To the cloud

	Method
	Model
	Preprocessing with eXpress
	Preprocessing on Spark
	Processing without bias correction
	Processing with bias correction
	Freezing of auxiliary parameters
	Numerical stability
	Convergence detection

	Results and discussion
	Test data
	Method comparisons
	Cluster and experiment setup
	Performance comparisons

	Conclusion
	Availability and usage

	Additional file
	Additional file 1

	Competing interests
	Authors' contributions
	Acknowledgements
	References

