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Abstract

Background: Character matrices with extensive missing data are frequently used in phylogenomics with potentially
detrimental effects on the accuracy and robustness of tree inference. Therefore, many investigators select taxa and
genes with high data coverage. Drawbacks of these selections are their exclusive reliance on data coverage without
consideration of actual signal in the data which might, thus, not deliver optimal data matrices in terms of potential
phylogenetic signal. In order to circumvent this problem, we have developed a heuristics implemented in a software
called mare which (1) assesses information content of genes in supermatrices using a measure of potential signal
combined with data coverage and (2) reduces supermatrices with a simple hill climbing procedure to submatrices
with high total information content. We conducted simulation studies using matrices of 50 taxa x 50 genes with
heterogeneous phylogenetic signal among genes and data coverage between 10-30%.

Results: With matrices of 50 taxa x 50 genes with heterogeneous phylogenetic signal among genes and data
coverage between 10-30% Maximum Likelihood (ML) tree reconstructions failed to recover correct trees. A selection
of a data subset with the herein proposed approach increased the chance to recover correct partial trees more than
10-fold. The selection of data subsets with the herein proposed simple hill climbing procedure performed well either
considering the information content or just a simple presence/absence information of genes. We also applied our
approach on an empirical data set, addressing questions of vertebrate systematics. With this empirical dataset
selecting a data subset with high information content and supporting a tree with high average boostrap support was
most successful if information content of genes was considered.

Conclusions: Our analyses of simulated and empirical data demonstrate that sparse supermatrices can be reduced
on a formal basis outperforming the usually used simple selections of taxa and genes with high data coverage.

Background

In most phylogenomic studies supermatrices of concate-
nated presumably orthologous genes are used for tree
inference [1-18]. Due to the failure of consistently identi-
fying orthologous genes among taxa [2] and/or due to gen-
eral sparse sequence data availability these supermatrices
frequently display a low data coverage, down to 8% [2].
Simulation studies showed that in these instances chances
of recovering a correct and robust tree can drastically
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decrease [1,19]. Additionally, Wiens [20,21], Philippe [22],
Sanderson [1,19,23], Driskell [2], Hartmann [24] and col-
leagues showed that low gene data coverage of single taxa
can already impede the success of tree reconstructions. In
contrast, other simulation studies demonstrated that sin-
gle taxa with low gene data coverage can help breaking
up long branches and thus improve tree reconstructions
[20,21,25-28]. These mentioned analyses of empirical and
simulated data demonstrate that confounding effects of
low gene data coverage on tree inference can hardly be
generalized [1,3,11,29-36].

Despite these unresolved issues many investigators
select sets of taxa with high gene data coverage assum-
ing that the high gene data coverage will improve the
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robustness of tree inferences [3,4,9,11,16,17]. However,
these threshold criteria are arbitrary and do not take into
account potential phylogenetic signal of the data. Those
approaches might not lead to the desired increase of tree
robustness. For example, tree robustness will not increase,
if high gene data coverage is achieved by selecting highly
conservative orthologous genes with low phylogenetic sig-
nal. Alternatively, a robust tree might result if taxa with
low gene data coverage but highly informative genes have
been selected, Driskell et al. [2] e.g. report an example
of plausible tree reconstructions based on a superma-
trix with a gene data coverage of just 8-16%. Both cases
illustrate that gene data coverage and phylogenetic res-
olution are not necessarily correlated. Consequently, the
practice of selecting data based solely on data coverage
is potentially problematic. Therefore, we have developed
an approach which focuses on the analyses of selected
optimal data subsets (SOS) which have high data cov-
erage and phylogenetic signal. Crucial for this approach
is the assessment of potential signal of genes and the
development of a heuristics to select such an SOS.

Different quartet mapping approaches have been used
to assess potential signal within genes [37,38]. Among
these, geometry mapping is demonstrably the most con-
servative estimator [37] and the application to genes
of supermatrices is straightforward. Consequently, we
have chosen the geometry mapping approach [37-40] to
assess potential signal of genes in the development of our
heuristics.

In order to select an optimal set of taxa and genes,
Sanderson and colleagues [23] suggested selecting sets of
full data coverage (maximal bicliques [41,42]). However,
the identification of the maximal (maximum) biclique is a
NP-complete problem [42,43] and, thus, there is no guar-
antee to find the maximal (maximum) biclique. Addition-
ally, Sanderson et al. [23] found that selections of maximal
bicliques resulted in very small subsets of size < 15
taxa and < 10 genes. Sanderson’s approach is, thus, not
suitable to reconstruct phylogenetic relationships of
many taxa. A possible solution might be the selection
of quasi-bicliques [44,45], which potentially combine a
much larger set of taxa and genes accepting a predefined
level of missing data. This promising direction however
has the drawback that it is not time-efficient.

Alternatively Hartmann et al. [24] and Cheng et al
[46] introduced two approaches directly applicable to
sequence data. The first approach of Hartmann et al.
[24] is a masking technique (REAP) which masks multi-
ple sequence alignments according to predefined thresh-
olds of gap frequencies of sites. The approach of Cheng
et al. [46] is a statistical correction for missing data
(SIA). A comparison of these two approaches demon-
strated that REAP performed better, a result which
is compatible with the results of Sanderson’s biclique
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approach. However, both, alignment masking (REAP) and
the biclique approach optimize data only with respect to
data coverage and without considering potential signal
among genes.

Here, we introduce a simple hill climbing algorithm to
select optimal data subsets (SOS) which are assembled by
considering data coverage and potential signal of genes.
We start with the assumption that any taxon and gene
can potentially contribute to the total signal of the matrix.
However, taxa or genes with incomplete data coverage
and low signal can potentially also contribute noise or
cause biases to the total signal of the supermatrix. There-
fore, we successively mask taxa and genes of low signal
and/or data coverage generating a submatrix of higher
data coverage and signal. With this approach we delib-
erately discard taxa and genes because of their low data
coverage and/or potential low signal. The proposed hill
climbing algorithm delivers an optimal solution of this
trade-off. Using simulated and empirical data, we compare
the performance of the herein proposed approach with an
often applied approach of simply selecting data subsets
using predefined thresholds of data coverage only.

Methods

The approach can be separated into two parts: (1) the
determination of information content of genes, taxa and
the concatenated supermatrix and (2) the selection of an
optimal subset (SOS) of taxa and genes.

Information content of genes, taxa and matrices
Before we define the information content of genes, taxa
and matrices used in our approach, we have to introduce
the concepts of data coverage representation matrices.

A concatenated supermatrix of N taxa and n gene
nucleotide/amino acid sequence alignments can be repre-
sented as a matrix B with entries b;;

B:bj=(1]0),Y(taxa:i:1...N,genes:j:1...n)
(1)

with b; = (1) for a present and b;; = (0) for an absent
gene nucleotide/amino acid sequence j for a taxon i. We
call this matrix B the data coverage representation matrix.

We define the information content of a gene j, g;, as the
relative data coverage of this gene, defined as

N
N p
qj=%,Vtaxa:i:1...N. (2)

Likewise, the information content of a taxon i, p; is
defined as

n
_ Lj=1 b

pi= ,Vgenes:j:1...n. (3)
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We define the information content, P, of a matrix B as

N N
i=1 Z;l:u??i _ 21 Z;':1qj
N xn o N xn

with 0 < P(B), pi,qj < 1. To determine the potential signal
of genes we use geometry mapping [37] extended to the
amino acid level. Nieselt-Struwe et al. [37] showed that for
a given quartet of sequences, relative support for each of
the three possible topologies s1, 53, s3 can be computed as

si = 68;/(81 + 82 + 83) (5)

with §; support for tree T;, 0 < s; < land ) ;5; = L.
Support values §; can be computed with any optimality
criterion. Relative support values can be interpreted as
baricentric coordinates of a bipartite simplex graph S with
vectors s = (s1,$2,53):

P(B) = (4)

3
S= Zsiei|sl +53+53=1,0<s1,82,53<1; (6)
i=1
with e; as unit vectors. Within S, areas T1, T, T3 at ver-
tices can be defined for resolved quartets, 712, T13, 12,3
for partly resolved quartets, and T, for star-like, unre-
solved topologies of quartets [37, see Figure 1]. For all
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possible quartets k; of a gene j, k; = (]Z ) with N the num-
ber of taxa, all vectors s;,, = (s1,82,83), (Vm : 1...k) can
be calculated, and the frequency of vectors in areas 77, T5,
and T3 determine potential signal, #; of a gene j [37].

o Ti+Tr+ T3
T T+ To+ T3+ Tip + Ti3 + Toz + T

7)

We relaxed the definition of signal by calculating the
frequency of vectors in areas T1, Ta, T3, T1,2, T1,3, T2,3.

; T1+To+ T3+ T3+ T3+ T2

j— 8
T T 4+ To+ T34 Tio + T13 + Toz + T ®)

Our approach will, thus, be a more optimistic estimator of
potential signal. Signal f, will be 0 < t} < 1 (examples of
simulated data, Figure 1).

Geometry mapping is a conservative estimator of t},
however, within a narrow range of short internal and long
terminal branch lengths, geometry mapping opts for the
wrong tree, a classical case of long branch attraction [37].

2
T1 2 T T2 3
T1 T1 3 T3

t=0.24

Figure 1 Simplex graphs of three different partitions of simulated data. The area of ¢, corresponds to the inner triangle in light blue, the area
of ¢, to the surrounding region. Attractors of topologies Ty, T», T3 are found in the corner sections of the outer triangle in dark blue.

t=0.94
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This phenomenon might inflate the estimation of #; under
certain circumstances.

Nieselt-Struwe and colleagues [37] showed that for any
alphabet of characters of finite length, e.g. nucleotides or
amino acids, an enumeration of character states among
four sequences can be used to calculate support for all
three possible topologies. They further showed that a
weight matrix M, defining dissimilarity measures between
characters, can equivalently be used to calculate distances
between sequences. Therefore, we used BLOSUMG62, the
amino acid substitution matrix introduced by Henikoff
[47], to calculate distances between sequences in corre-
spondence to equation (8) in Nieselt-Struwe et al. [37].

We use f} of each gene j to update entries of matrix B.
For each gene j, entries of matrix B = (b;) are scaled
with the corresponding #; values. We call this matrix a
weighted data coverage representation matrix B*, in short,
a weighted matrix B*, in the following:

B b =(0 < byt < 1), ©)
V(taxa:i:1...N,genes:j:1...n)

Substituting by for by results in weighted forms of
equations 1 and 2. The information content of a gene j, g,
represents in its weighted form a product of relative data
coverage and potential signal of genes.

Selection of an optimal subset (SOS) of taxa and genes

We consider a subset(=submatrix) of taxa and genes opti-
mal, if it has a high information content, P(B) and contains
as many taxa and genes as possible. If we discard genes
or taxa with low g; or p; respectively, we will increase P
of the matrix, but will loose information on the excluded
taxa and genes. A simple optimization can be performed,
searching for the highest possible P while excluding as few
taxa/genes as possible.

First, a data coverage representation matrix B is gen-
erated from the concatenated supermatrix of multiple
gene nucleotide/amino acid sequences corresponding to
equation (1). Secondly, for each gene j, < 20,000 quartets
are randomly drawn without duplication and #; is calcu-
lated. For each gene j, entries of B = (b;) are scaled
with the corresponding f, values, generating a weighted
matrix B* corresponding to equation (6). Thirdly, we use
a simple hill climbing procedure to select an optimal sub-
set (SOS) of taxa and genes. Elimination of taxa or genes
starts with dropping either a taxon or gene with the low-
est information content p; or gj, generating a new matrix
B with P'(B). In case of ties between g; and p;, genes will
be excluded. Since taxa or genes with lowest information
content will be dropped, P'(B’) > P(B) (it is trivial to show
that this will always be the case). After each elimination
step, information content of taxa (p;) and genes (g;) are
recalculated. Every gene represented by less than 4 taxa
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is automatically dropped from the matrix. Gene overlap
between taxa is monitored to a minimum of three taxa and
two genes. If the matrix B’ does not fulfill this criterion,
the next best B’ in terms of P’ is selected.

Continuous elimination of taxa or genes with low p; or
g; will generate a ‘trivial’ SOS containing few taxa and one
gene. Therefore, we define an optimality function f(P)

@) =1—|n—P>IP)jif p <1 (10)

with « as a scaling factor (default set to « = 3) and A as
the size ratio between reduced B and original matrix B

Np X ng

by (11)

o NB X np ’
During the process of elimination of taxa and/or genes, P’
will continually increase, and A will continually decrease.
f(P") will reach a maximum of 1. With a scaling factor @ =
2, the maximum will be at the intersection of P’ and A,
with & = 3 it will be reached later, favoring an SOS with
a higher P (Figures 2 and 3). If f(P’) = 1 the process of
elimination stops.

The outlined procedure is a simple hill climbing heuris-
tics without guarantee of finding a globally optimal solu-
tion due to the interaction of p; and g;. The approach
can be applied either to B or B*. It should be pointed out
that removal of taxa will have an influence on the calcu-
lation of f, which is not recalculated during the process
of matrix reduction. This simplification greatly speeds up
the heuristics. An iterative recalculation of f/ can poten-
tially improve the selection of an informative dataset and
will be further studied.

Calculation time for this heuristics grows with the num-
ber of taxa (N) and genes (#). Therefore, it is time efficient,
O(N + n)?. The algorithm reduces matrices in a deter-
ministic way which makes matrix reduction reproducible.

1
f@) = p 1P
0.8 1 fo) = p2(1-p)
fo) = pPdP)
0.6 -
fp) = p*0P
0.4 | f@=p"0P
0.2 1
0
0 0.2 0.4 0.6 0.8 1
Figure 2 Optimality function and its effects.
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Figure 3 Influence of different & values on the identification of reduction optima in simulated data matrices. The dark bold descending line
corresponds to A, size reduction; the grey bold ascending line to the increase in total informativeness.

However, different equally optimal solutions will not be
found under identical parameter settings.

By varying the scaling parameter «, however, an SOS of
high P (o > 3), versus an SOS of more taxa and genes with
lower P (@ < 3) can be found.

Simulated data

Our simulations were not set up with the intention of fully
exploring the performance of matrix reductions depend-
ing on super matrix characteristics, but were set up in
order to illustrate the potential of the method in four dif-
ferent cases, resembling observed situations of empirical
data.

Simulated data with random distribution of missing data
For two different sets of genes, differing in relative evolu-
tionary rates among genes (Figure 4), we simulated 100 (50

taxa x 50 genes) supermatrices each, composed of genes
with 400 amino acids (aa), concatenated for each taxon
to 20,000 aa length using Seq-Gen [48] and the BLO-
SUMBG62 matrix. For these simulations, we used a topology
derived from empirical data with realistic distribution of
branch lengths (Figure 5A). Evolutionary rates of genes
varied from 0.001 to 15.00 relative rate differences, to
mimic different signal strength (Figures 4 and 6). Within
each gene, site rates were homogeneous. In order to gen-
erate supermartices with missing data, we removed amino
acid sequences of taxa using a Binomial distribution with
a probability of retaining data entries for each taxon and
gene of 0.7 (average data coverage of 0.29, Table 1). This
set up generated supermatrices with randomly distributed
missing data, closely resembling the observed data cover-
age of published concatenated supermatrices of Dunn and
colleagues [4].

8 - low among gene heterogeneity 8 high among gene heterogeneity

S Q
12} [}
Q ()
C c
[ [
o Q4 o Q4
kS kS
> >
o o
c v | c v |
[} [}
3 =]
o o
e e
- Q4 - Q-

w [To|

o J 1 [ [ [ 1 o J

LIL1 L I - T A T — I
00 02 04 06 08 10 00 02 04 06 08 10
frequency of resolved quartets frequency of resolved quartets

Figure 4 Histograms of heterogeneity of signal among genes of simulated data. On the left, set 1, the histogram of simulated data shows
relative low heterogeneity of signal among genes, on the right, set 2, the histogram shows relative high heterogeneity of signal among genes, with
a higher percentage of genes of low potential information content.




Misof et al. BMC Bioinformatics 2013, 14:348
http://www.biomedcentral.com/1471-2105/14/348

Page 6 of 13

0.1

e———

—

tree B.

Figure 5 Topologies with branch lengths used for data simulation. Different branch lengths between tree A and B are labeled in light grey in

e

Simulated data with power-law and non-random distribution
of missing data

For two different sets of genes, differing in relative evolu-
tionary rates among genes (Figure 4), we further simulated
100 (50 taxa x 50 genes) supermatrices each, composed
of genes with 400 aa, concatenated for each taxon to
20,000 aa length. We used again the topology derived
from empirical data with realistic distribution of branch
lengths (Figure 5B). We changed seven branch lengths
to introduce potential long branch attraction (Figure 5B).
In order to generate supermartices with missing data,
we followed a proposal of Li and colleagues [49]. These

authors showed that the distribution of missing data in
many empirical supermatrices is best described by apply-
ing a power law function of the probability of having data.
Following their observation, we assigned to each taxon
and gene a probability of having data randomly drawn
from f(x) = (1/10x71/2) — 0.1, for x randomly selected
with equal probability from, 0 < x < oo. Additionally,
we constrained data assignment to having at least one
gene for each taxon. Following this approach, we con-
catenated supermatrices with a distribution of missing
data approximately similar to observed empirically super-
matrices (Misof, unpubl.) (average data coverage 0.13,

ol 1, RE e e

T

Figure 6 Examples of presence/absence B and edge-weighted B* data used in simulations. Matrices of data availability in the upper panels,
transformed edge-weighted matrices in the lower panels. All matrices are sorted. (A,B) 20% data availability, relative (A) low and (B) high
heterogeneity of potential signal, missing data Gaussian distributed. (C,D) 10% data availability, relative (C) low and (D) high heterogeneity of
potential signal, missing data following a power-law non-random distribution.




Misof et al. BVIC Bioinformatics 2013, 14:348 Page 7 of 13

http://www.biomedcentral.com/1471-2105/14/348

Table 1 Summary of simulation results

Simulation Saturation tic* taxa Genes dqgs-value dos f
(min/max) (correctt)

Gaussian Set1

Unreduced 0.29 0.15 50 50 0.003 (0.99/1.0) 0.01

mare with B* 0.69 0.62 9 6 0.0 (0.73/1.0) 0.67

mare with B 0.74 0.74 7 9 0.0 (0.6/1.0) 047

Gaussian Set2

Unreduced 029 0.1 50 50 0.003 (0.98/0.99) 0

mare with B* 0.67 0.61 10 5 0 (0.6/1.0) 0.51

mare with B 0.73 0.73 7 9 0 0.2/1) 042

Power-law non-random Set1

Unreduced 0.13 0.06 50 50 0.17 (0.48/0.99) 0

mare with B* 0.46 0.38 25 12 0.02 (0.81/1.0) 0.15

mare with B 0.51 0.51 15 24 0.02 (0.48/1.0) 0.16

Power-law non-random Set2

Unreduced 0.13 0.05 50 50 0.15 (0.43/0.99) 0

mare with B* 045 038 24.5 10 0.06 (0.64/1.0) 0.09

mare with B 0.53 053 23 16 0.01 0.47/1.0) 0.12

Gene threshold Set1

With B* 0.72 0.50 34 2 0.05 (0.00/0.42) 0.06

Gene threshold Set2

With B 0.64 0.28 44 3 0.03 (0.00/0.59) 0.03

Gene/taxa threshold Set1

With B* 0.59 0.37 21 4 0.05 (0.00/0.46) 0.12

Gene/taxa threshold Set2

With B 0.66 030 215 4 0.01 (0.00/0.45) 0.25

All values are medians of 100 simulations.

* total information content (tic) of un-weighted matrices is allways higher due to the fact that all genes are coded as present/absent (1/0).

T f(correct) refers to the frequency of correct trees per 100 simulations.

Table 1). Finally, we raised the probability of data coverage
for four predefined taxa, mimicking the often seen high
coverage of a few taxa for which genomes are available.

Selecting subsets from simulated data and tree
reconstructions
Selecting subsets with the hill climbing algorithm
SOS’s were selected using the mare software (mare:
matrix reduction) which implements the herein described
novel approach. For each supermatrix, trees were recon-
structed 1) using the original supermatrix (data cover-
age 0.3), 2) an SOS of B and 3) an SOS of B*. Trees
were reconstructed with RAxML 7.0.0 [50,51]. The BLO-
SUMBS62 amino acid substitution matrix with I" distributed
among site rate heterogeneity was used to account for
different substitution rates among genes.

To compare reconstructed trees with the correct trees
used in data simulations, we used standardized quartet
distances between shared taxa [24,52-55]. QDistances

(dop) were standardized in relation to all quartets of
shared taxa. We recorded dgp’s of trees inferred from the
unreduced matrix and of the two SOS’s derived from B
and B*.

Selecting subsets with predefined thresholds of data coverage
From supermatrices with power-law and non-random dis-
tribution of missing data we selected subsets in two dif-
ferent ways: (1) we selected all genes with data coverage
above or equal to 0.4 and (2) we selected all taxa with
data coverage above or equal to 0.04 and all genes with
data coverage above or equal to 0.4 (adapted to the new
number of taxa). We recorded dp’s of trees inferred from
unreduced matrices and from subsets.

Selecting subsets from empirical data and tree
reconstructions

We studied the performance of using the hill climbing
algorithm with matrices B and B* using the published
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empirical metazoan data set of Driskell et al. [2] com-
prising 1,131 putative orthologous genes for 70 taxa
(Metazoa, Fungi + outgroup). Additionally, we selected
data subsets of the Driskell supermatrix applying prede-
fined thresholds of gene - and taxa coverage (Table 2).
All ML analyses using RAXML v7.2.6 or 7.2.8 were exe-
cuted with rapid bootstrapping (PROTCAT) and best
tree search (PROTGAMMA) in one step (-f a, 500 or
1,000 BS replicates) and the empirical substitution matrix
WAG [56]. A posteriori bootstop tests were performed to
test for a sufficient number of bootstrap replicates [57].
All analyses were conducted using RAXML HYBRID and
PTHREADS versions on HPC Linux clusters, 8 nodes
with 8 or 12 cores each, at the Regionales Rechenzentrum
Koéln (RRZK) using Cologne High Efficient Operating
Platform for Science (CHEOPS). Further, we compared
the effects of data reduction on tree robustness with the
resolution score as introduced by Holland and colleagues
[58]. This resolution score, RS, calculated as the sum of
bootstrap support values > 50 divided by the number of

Table 2 Comparison of matrix reductions with empirical
data using mare and simple predefined thresholds

Data Reduction Numberof  Resolution
taxa score
Original Unreduced 70 91.0896
Without 6 Unreduced 64 82.1475
genome taxa
mare -t 1.67 48 87.3778
mare with B* Default 12 99.5556
-t3 13 100
-t4 20 94
-t6 22 95.8421
-t7 26 96.1739
All taxa constraint 69 87.3485
mare with B Default 13 99.5
-t3 15 99.8333
-t4 21 95.0556
-t16 66 88.5238
-t7 67 88.4375
All taxa constraint 69 85.803
Simple thresholds ~ Genes 04, taxa 0.4 22 92.5263
of coverage
Taxa 0.66, genes 0.66 26 822174
Genes 04 59 90.1071
Genes 0.66 57 80.8704
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taxa N — 3, represents a measure of average bootstrap
support and, thus, robustness of trees.

Results

Performance with simulated data

Tree reconstructions based on unreduced supermatri-
ces with a Gaussian distribution of missing data did not
yield correct trees except for one case in set 1 (columns
(org) for setl and set2, Gaussian distribution of miss-
ing data in Figure 7A,B, Table 1). The variability of dqp
values was low (columns (org) for setl and set2, Gaus-
sian distribution of missing data in Figure 7A, Table 1).
Tree reconstructions based on all SOSs (unweighted and
weighted reductions of setl and set2) of these super-
matrices performed much better (columns (w), (uw) for
setl and set2, Gaussian distribution of missing data in
Figure 7A,B, Table 1). Compared with trees derived from
unreduced supermatrices, SOSs supported more often
correct trees, but had a higher frequencies of wrong
quartets (columns (w), (uw) for setl and set2, Gaussian
distribution of missing data in Figure 7A,B, Table 1).
However, there was no clear difference of mean dgp
values between trees based on SOSs derived from B (uw)
or B* (w) (columns (w), (uw) for setl and set2, Gaussian
distribution of missing data in Figure 7A, Table 1). Trees
based on SOSs of B* (w) had a much lower amplitude of
dop values (columns (w), (uw) for setl and set2, Gaussian
distribution of missing data in Figure 7A, Table 1). SOSs
derived from B* contained on average more taxa (Table 1).

Tree reconstructions based on the unreduced matrix
with power-law non-random distribution of missing data
did not recover correct trees for set 1 and set 2. In both
cases variability of dop values was high (columns (w), (uw)
for setl and set2, power-law non-random distribution
of missing data in Figure 7A,B, Table 1). Tree recon-
structions based on all SOSs (unweighted and weighted
reductions of set 1 and set2) clearly outperformed recon-
structions based on the unreduced matrices (columns
(org), (w), (uw) for setl and set2, power-law non-random
distribution of missing data in Figure 7A,B, Table 1). The
absolute number of correct trees was again higher for all
SOSs (unweighted and weighted reductions of set 1 and
set2) compared with the number of correct trees inferred
from the unreduced matrices. In cases of low relative rate
differences among genes, set 1, SOSs derived from B (uw)
performed worse compared to SOSs derived from B* (w),
in cases of high relative rate differences among genes, set
2, the opposite was observed (columns (org), (w), (uw)
for setl and set2, power-law non-random distribution of
missing data in Figure 7B, Table 1).

Data subsets derived from matrices with power-law
non-random distribution of missing data using predefined
thresholds of gene coverage supported trees with lower
mean dgp values (columns (ca), (cb) in Figure 7A) in
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comparison with mean dgp values of trees inferred from
SOSs selected with our approach (column (w), (uw) for set
1 and set 2 of the power-law data in Figure 7A, Table 1).
The mean dgp values were higher and the amplitude of
dop was large (columns (ca), (cb) in Figure 7A). Data
subsets from matrices with power-law non-random distri-
bution of missing data using combined thresholds of data
coverage for genes and taxa did support trees with mean
dop values (columns (cc), (cd) in Figure 7A) comparable
with mean dgp values of trees inferred from SOSs of set
1 and set 2 selected with our approach (column (w), (uw)
for set 1 and set 2 of the power-law data in Figure 7A,
Table 1). The amplitude of dgp values however was large
(columns (cc), (cd) in Figure 7A). Applying only thresholds
for gene data coverage yielded a lower absolute number of
correct trees (columns (ca), (cb) in Figure 7B) compared
with our approach, but the absolute number of correct
trees was comparable or even higher if combined thresh-
olds of taxa and genes were used (columns (cc), (cd) in
Figure 7, Table 1).

In summary, reduction of supermatrices often increased
the chance to find a correct tree, but not consistently.
SOSs derived from B* did not always support correct
trees more often compared with SOSs derived from B, but
had a much smaller amplitude of dgp values. Data sub-
sets derived from predefined thresholds supported fewer
correct trees if only applied to genes but supported com-
parable numbers of correct trees if used with combined
thresholds of data coverage for taxa and genes.

Performance with empirical data
We applied our approach to the published metazoan data
set of Driskell et al. [2] comprising 1,131 genes for 70
taxa (Metazoa, Fungi + outgroup). The data coverage was
low (0.0836), the matrix information content was low
(P = 0.0657). Most genes are represented only by few
taxa (e.g. Homo sapiens, Mus musculus, Rattus norvegicus,
Bos taurus, Sus scofra). We excluded six taxa of which the
complete genome was available from the original matrix
showing the highest coverage (Homo sapiens, Mus muscu-
lus, Rattus norwegicus, Sus scofra, Bos taurus, and Gallus
gallus) and selected an SOS from these data. With this
procedure we removed the most extreme heterogeneity of
data coverage among taxa prior to the selection of an SOS.
Selecting an SOS resulted in a data subset of 48 taxa and
45 genes with a data coverage of 0.316 and P = 0.223.
Thus, a SOS was found with a 10.24% loss of taxa and a
9.08-fold increase in data coverage and a 16.043-fold gain
in P. However, all outgroup taxa including slime molds,
fungi and nematodes had been excluded. We compared
tree reconstructions based on 1) the original unreduced
supermatrix with 64 taxa (1000 bs replicates, 469,480 aa)
and 2) the SOS of 48 taxa and 45 genes (1,000 bs repli-
cates, 11,198 aa). An a posteriori bootstop test (default
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MR-based bootstopping criterion, WRF average of 100
random splits) revealed that 1,000 BS were by far sufficient
for both analyzed data sets.

Tree reconstructions with the 64-taxa set resulted in
trees with polyphyletic Tetrapoda, Actinopterygii, mono-
phyletic Marsupialia + Monotrema, and largely unre-
solved basal splits within Theria (Figure 8A).

The tree based on the SOS was more congruent to gen-
eral taxonomic views. The topology showed moderately
supported monophyletic Tetrapoda, and resolution within
Ungulates and Carnivora (Figure 8). However, for exam-
ple Actinopterygii remained paraphyletic and relation-
ships of Marsupialia and Monotrema were not resolved.
The resolution score RS increased from 82.148% (unre-
duced supermatrix including 64 taxa and 1,1131 genes)
to 87.38% (SOS). We also compared reductions of the
original Driskell supermatrix using different parameter
settings in our approach and simple thresholds of data
masking (Table 2). Applying predefined thresholds of gene
and taxa coverage never resulted in matrices with compa-
rable resolution scores and comparable number of taxa.
Our approach outperformed the application of simple
thresholds.

Discussion

We show that supermatrices of simulated amino acid
sequence data with low data coverage and relative rate
differences among genes can support biased tree infer-
ence or low robustness of trees. It can be suspected that
these effects will even be stronger for empirical data.
These conclusions corroborate results of Hartmann [24],
in many aspects Philippe [22] and Wiens and colleagues
[28]. Effective techniques to reduce these potential biases
in tree inference are therefore clearly needed.

Masking supermatrices and deleting rogue taxa after
tree reconstructions could be suitable measures as has
been applied by Dunn and colleagues [4]. In their anal-
ysis these authors selected taxa and genes according to
predefined cutoff values of data coverage. The applica-
tion of cutoff values considers only the extent of missing
data which might favor the selection of the most con-
served genes readily identified among all taxa in the data.
Additionally, Dunn et al. [4] deleted rogue taxa after tree
reconstruction based on an idea introduced by Thorley
and colleagues [59,60]. The major drawback of their
approach is that robustly misplaced taxa will not be iden-
tified. In this respect, a formal approach to masking of
supermatrices as proposed here could be an alternative
worth to consider.

We propose to select a subset of taxa and genes with
a maximal information content. In doing so, it is neces-
sary to first assess potential signal of genes, for which
we use extended geometry mapping (eGM) [37-40]. We
opted for geometry mapping, because it tends to be more
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conservative in discriminating between resolved and star-
like trees in contrast to likelihood mapping [61]. Addition-
ally, eGM is easily applied to nucleotide and amino acid
sequence data without the need of tree reconstructions.
It is, thus, a technically convenient but, admittedly, coarse
way of estimating potential signal.

Secondly, it is necessary to select optimal subsets of
supermatrices based on the information content of taxa
and genes. The information content of taxa and genes is
calculated as the ratio of potential signal and data cover-
age. By introducing this optimality criterion we can select
taxa and genes which contribute most signal in tree recon-
structions. We select a data subset in a stepwise function
penalizing size reduction of the supermatrix and favor-
ing higher matrix information content, monitoring but
ignoring optimization of connectivity in the matrix. Our
approach is time efficient but will not be effective in dis-
covering a globally optimal subset in terms of taxa/gene
overlap (‘connectivity’) and information content. This is in
contrast to the approach of Yan [44] in which the quasi-
biclique with the highest level of connectivity (‘largest
grove’) is searched for.

Improved heuristics considering information content
and connectivity in our approach are certainly conceiv-
able. However, the distribution of missing data follow-
ing a power-law distribution in empirical data suggests
that simple hill climbing procedures will be effective in
identifying a good (optimal) subset of taxa and genes
in terms of matrix information content. The flexibility

of our approach offers even the chance to use different
parameter settings of the optimality function to identify
alternative SOSs.

We observed high amplitudes of dgp values of trees
based on SOSs in our simulations. These amplitudes were
even higher in SOS’s based on simple data coverage rep-
resentations. We interpret this occasional high error rate
as a possible phenomenon of insufficient taxon sampling
in SOSs which might pronounce long branch attraction
(LBA), or, alternatively, that connectivity in SOSs was
not sufficient to potentially support just one tree [62].
This interpretation highlights a problem of all methods of
data reduction. Every reduction process, at least partially,
counteracts efforts to reduce biases in tree reconstruc-
tions due to insufficient taxon or gene sampling. The anal-
yses of Wiens and colleagues [20,21,28] showed that LBA
effects can disappear, if data exhibiting LBA are recoded
as missing. This implies that an identification of LBA
taxa before concatenation and reduction of data would be
important. However, we do not have a grip yet on a reli-
able identification of biases in tree reconstructions which
could guide a preselection of taxa. An immediate, how-
ever unsatisfying, solution is probably the reconstruction
of trees with and without suspect taxa.

Our simulations showed that in the presence of hetero-
geneous signal among genes the new heuristics increased
the chance of finding a correct tree. It is, thus, an alter-
native to the computationally much more demanding
quasi-biclique approach [44,45]. SOSs derived from B or
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B* matrices did not differ extensively in their success rate
of correct tree reconstructions with simulated data, with
small advantages for the B in cases of power-law non-
random distribution of missing data. However, the anal-
yses of the empirical data imply that tree reconstructions
based on SOSs derived from B* will result in improved
tree robustness.

Conclusions

Our analyses of simulated and empirical data demonstrate
that sparse supermatrices can be reduced on a formal
basis outperforming the usually used simple selections of
taxa and genes with high data coverage. The approach
prresented here is will be of general inportance in phy-
logenomic studies based on large concatenated super-
alignments with incomplete data coverage. It clearly offers
an alternative to threshold based data selection.
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