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Abstract

Background: A number of different statistics are used for detecting natural selection using DNA sequencing data,
including statistics that are summaries of the frequency spectrum, such as Tajima’s D. These statistics are now often
being applied in the analysis of Next Generation Sequencing (NGS) data. However, estimates of frequency spectra
from NGS data are strongly affected by low sequencing coverage; the inherent technology dependent variation in
sequencing depth causes systematic differences in the value of the statistic among genomic regions.

Results: We have developed an approach that accommodates the uncertainty of the data when calculating site
frequency based neutrality test statistics. A salient feature of this approach is that it implicitly solves the problems of
varying sequencing depth, missing data and avoids the need to infer variable sites for the analysis and thereby
avoids ascertainment problems introduced by a SNP discovery process.

Conclusion: Using an empirical Bayes approach for fast computations, we show that this method produces results
for low-coverage NGS data comparable to those achieved when the genotypes are known without uncertainty. We
also validate the method in an analysis of data from the 1000 genomes project. The method is implemented in a
fast framework which enables researchers to perform these neutrality tests on a genome-wide scale.

Keywords: Next-generation sequencing, Darwinian selection, Neutrality tests
Background
In the past decade there has been considerable interest
in detecting natural selection in humans and other or-
ganisms [1-4] from DNA sequence data. An often used
approach for detecting selection is to use a neutrality
test statistic based on allele frequencies, with Tajima’s D
being the most famous. Such frequency based tests have
been used to identify a number of genes, that have
undergone selection: lactase [5], ABO blood group [6],
the HLA immune complex [7], and the calcium pathway
trpv6 [8].
In recent years Next-Generation Sequencing (NGS) has

revolutionized the field of genetics in general and popula-
tion genetics in particular. The underlying technology
behind these different high-throughput sequencers are dif-
ferent [9,10], but common is the unprecedented level of
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data produced, allowing population geneticists access to
full genome data for large population samples at an afford-
able price.
Applying the neutrality tests directly to the genotypes

obtained from SNP chips can lead to biased results be-
cause of the way the SNPs were selected. Even though
work has been done to correct for this [11], corrections
are not possible without knowledge of the selection cri-
teria used to ascertain SNPs for the specific chip. NGS
data do not suffer from such ascertainment biases. How-
ever, with low and medium depth (<20×), genotype calling
from NGS data can lead to other biases [12]. The biases
will depend on the method used for genotype calling.
Early genotype calling methods were based on simple cri-
teria, such as calling a heterozygous site, if the proportion
of non-reference alleles is between 20% and 80% [13,14].
Most commonly used genotype callers today are probabil-
istic, i.e. they are based on genotype likelihoods (GLs)
[15]. A GL is the probability of the observed sequencing
data given a genotype. GLs are obtained from the raw
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NGS read data, typically using information such as pos-
ition in the read, quality score, and possibly type of muta-
tion [16,17]. A standard approach for data analysis is to
call genotypes, and then estimate neutrality statistics. Most
genotype callers are relatively conservative and only call a
site to be heterozygous if there is substantial evidence that
it actually is heterozygous. Such methods will tend to
underestimate the allele frequency of the minor allele. Less
conservative methods will tend to produce too many rare
variants. In either case, an unbiased estimate of the allele
frequency cannot be obtained for all classes of allele fre-
quencies [1,18,19]. In some studies, an attempt to alleviate
this problem has made by only calling a genotype when
there is substantial statistical evidence supporting the
genotype call. Such approaches will generate a consider-
able amount of missing data which leads to biases if not
adequately dealt with [20]. The effect of these errors on
downstream analyses can be severe. For most data pro-
duced, the strongest bias has been an excess of singletons
(derived alleles segregating in a single copy in the sample).
If just a single individual in a sample is miscalled to be
heterozygous in a monomorphic site, the site will appear
as polymorphic singleton site. The effects of genotype call-
ing for downstream population genetic analyses have been
extensively illustrated using simulations by [12]. Other ap-
proaches have been suggested: Achaz, 2008 [21] proposed
modified statistics that excludes the singletons to address
the problem of high error rate in sequencing data. Liu
et al., 2010 [22] does not use the quality scores but uses an
error rate for each nucleotide for all samples and [23]
which uses a fixed error rate. This is contrasted by the
methods of [19,24] that can use quality scores for SNP dis-
covery and incorporating the quality scores into the par-
ameter estimation directly.
We will here show, using both simulated and real hu-

man data that, that Tajima’s D calculated using geno-
types called from NGS data can lead to severely biased
results. The level of bias depends on the sequencing
depths and error rates, but disturbingly it also depends
on whether or not the data set is neutral or not. This in
effect leads to lower power to detect selection.
We argue, that the solution to this problem is to avoid

genotype calling, but instead incorporate uncertainty in
the genotypes through direct analyses of the genotype
likelihood (GL). This approach also solves the issue of
missing data, and the problem of inferring which sites
are variable. We propose two methods for estimating
the neutrality tests statistics from low depth NGS data.
In both methods the estimates are based on GLs instead
of called genotypes. The first approach is based on
obtaining a Maximum Likelihood (ML) estimate of the
sample allele frequency spectrum. This approach takes
all the uncertainty of the NGS data into account, and
provides estimates of the neutrality tests statistics from
the estimated sample frequency spectrum. However, it is
too slow for genome-wide window based scans. The sec-
ond approach is computationally feasible for entire ge-
nomes of any magnitude. It uses an empirical Bayes
approach, that also uses an ML estimate of the site fre-
quency spectrum. This estimate is used as a prior for
calculating site specific posterior probabilities for the
sample frequency spectrum. We show, using both simu-
lated and real low depth NGS data, that the test statistics
estimated using the empirical Bayes approach are at
most weakly biased and provide a computationally at-
tractive alternative to genotype calling methods.
Methods
Estimators of θ and neutrality tests
In a set of n aligned DNA sequences, the frequency
spectrum (SFS) is defined as the vector η = (ηk)k = 0,…,n

where ηk is the number of sites with k derived alleles. A
derived allele is a new mutation and the ancestral allele
is the nucleotide occurring in the site before mutation.
Notice that these population genetic models assume an
infinite sites model, and there is therefore an unambigu-
ous definition of ancestral and derived. In real data,
outgroup information is used to estimate which allele is
ancestral and which allele is derived. Using this notation,
the number of segregating, i.e. polymorphic, sites is then
given by S ¼ ∑n−1

i¼1ηi . The most commonly applied es-
timators of θ=4 Nμ, (N is the effective population size
and μ the mutation rate) are linear functions of the
frequency spectrum. These estimators take the general

form: θ̂ ¼
Xn
i¼0

αiηi , where αi are different vectors of

weights used in constructing the estimators. Some of
the common estimators include:

� θ̂w ¼ a‐11
Xn−1
i¼1

ηi; with a1 ¼
Xn−1
i¼1

i: [25]

� θ̂π ¼ n
2

� �−1Xn−1
i¼1

i n−ið Þηi: [26]

� θ̂FL ¼ η1: [27]

� θ̂H ¼ n
2

� �−1Xn−1
i¼1

i2ηi: [28]

For more background on these estimators, see for ex-
ample [29]. In brief, notice that the estimators differ in
how they weight polymorphisms with different allele fre-

quencies. The θ̂w , and θ̂π estimators are symmetric in
that they assign equal weight to ancestral and derived al-

leles of the same frequency. However, θ̂π assigns more
weight to alleles segregating at intermediate frequencies

while θ̂w weights all categories equal. In contrast, θ̂FL
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only assigns positive weight to derived singletons and

θ̂H assigns more weight to derived alleles of high fre-
quency. The first two estimators can be calculated with-
out knowledge of the ancestral by using the folded SFS,
η� ¼ η�k

� �
k¼0;…;n=2; η

�
k ¼ ηk þ ηn−k , assuming n is even.

The latter two estimators require knowledge regarding
ancestral states, i.e. they use the unfolded SFS (η).
None of these estimators are maximum likelihood esti-

mators (except in the trivial case of n = 2). However, they
are commonly used to construct tests statistics used to
test if a predicted SFS fits an observed SFS. In a standard
neutral model E[ηi] = θ/i [26]. Selection, as well as other
violations of the model assumptions such as population
structure or population growth, will cause deviations
from this expectation [30]. The SFS based neutrality
tests capture this effect by the use of test statistics that
are constructed as the standardized difference between
two different θ estimators. They have the general form:

T ¼ θ1‐θ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var θ1‐θ2ð Þp ;

where the variance usually is the variance expected
under a standard neutral model without recombination.

For example, Tajima’s D is given by setting θ̂1 ¼ θ̂π and

θ̂2 ¼ θ̂w . Tajima’s D is often used for detecting selective
sweeps, i.e. the effect of an advantageous mutation going
to fixation in the population. After fixation, of an advan-
tageous allele, there is an excess of rare alleles in the
population. This will cause Tajima’s D to become nega-

tive as the expectation of θ̂π will be smaller than the ex-

pectation of θ̂w , when the SFS contains relatively more
rare alleles than expected under a standard neutral
model.

Genotype likelihoods
The standard method for representing uncertainty in
NGS data is in terms of Genotype Likelihoods (GLs). All
methods discussed in this paper are based on such GLs.
We, therefore, first introduce the GL calculations before
describing the methods used for calculating neutrality
statistics. The GL for an individual in a particular site is
defined as the probability of the observed read data (D)
in the site given the genotype type (G) of the individual
in that site:

L G ¼ A1;A2f g DÞ∝Pr D G ¼ A1;A2f gÞ ;jðjð
A1;A2∈ A;C;G;Tf g:

The GL can be calculated by assuming independence of
the reads covering a position. Some methods take into ac-
count the position within the read and does recalibration
which take into account cycle dependencies [17]. The
implementation in [17] however assumes that all reads
have the same length. The widely used SAMtools uses a
model derived from the Maq program [15,31]. These GL
methods are all single sample based in contrast to the
method of [32], which estimates type specific errors for
multi samples jointly. In this paper we base our simula-
tions on a simplified method of [16].

Model
Full maximum likelihood
Several recent papers have suggested methods for esti-
mating the SFS from NGS data [31,33-35]. One ap-
proach that we will explore for calculating neutrality
statistics (T) for a region, is to estimate the SFS, η =
(ηk)k = 0,…,n, using one of these methods, in this case the
maximum likelihood method by [35] (η̂ML), and then cal-
culate T using estimated values of η instead of the (un-
known) true values. As (η̂ML) has previously been shown
to perform well under simple conditions, we would ex-
pect this approach for calculating the frequency
spectrum to perform well under similar conditions. We
note that the uncertainty regarding genotypes and the
effect of sequencing and mapping errors are incor-
porated in this approach through the calculation of GLs
as described in the section above, but we will otherwise
refer readers to [35] for information regarding algorithmic
details. Neutrality tests are normally performed using slid-
ing windows in a genome. Maximum likelihood estima-
tion of the SFS for all windows may be computationally
challenging. For this reason we also explore other ap-
proaches below.

Empirical Bayes
In a second approach we instead calculate the posterior
probability of the allele frequencies for each site, and
combine them into a joint estimate of the SFS as in [33],
i.e. for each site we calculate:

Pr x ¼ jjDð Þ ¼ Pr Djx ¼ jð ÞPr x ¼ jð ÞX2n
i¼0

Pr D x ¼ iÞPr x ¼ ið Þ;jð

where x is the sample allele frequency in that site, and n
being the number of diploid samples. Pr(D | x = j) can be
calculated fast using a dynamic programming algorithm
described in detail in references [33,35], and we refer
readers to these publications for details. The jth category
of the SFS, is then estimated by summing Pr(D | x = j) over
all sites in the region. The prior, Pr(x = i) can be defined,
for example from a ML estimate of the SFS from the en-
tire genome, or from a reasonable subset of the genome.
The computational advantage of this approach is that we
avoid optimization of all windows of the genome. We con-
sider this an empirical Bayes approach as the prior is
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estimated from the data. Another advantage of this ap-
proach is that the estimates of θ calculated are actual pos-
terior expectations of θ. This is true because all are linear
functions of the ηi ’s, i.e.

E θ̂jD
� �

¼
Xn
i¼0

αiE ηi D�:j	

Calling genotypes
To assess the performance of our method we will com-
pare with a more simple method that estimates the SFS
by calling genotypes for each individual using the same
genotype likelihood calculations as used to estimate the
SFS in the previous approaches. We evaluate two com-
monly used GL-based calling procedures, that both as-
sume that the major and minor allele are defined:

GmLike ¼ argmax
g∈f 0;1;2g

Pr DjG ¼ gð Þf g;

Ghwe ¼ argmax
g∈ 0;1;2f g

2
g

� �
f̂ g 1−f̂
� �2−g

Pr DjG ¼ gð Þ

 �

:

Notice that we here, for notational convenience, code
genotypes as elements of {0, 1, 2} instead of pairs of nu-
cleotides that each are elements of {A, C, T, G}. The first
method chooses the genotype with the highest GL. The
second procedure (a type of maximum a posteriori prob-
ability estimate) calls genotypes by first estimating the
sample allele frequency f from a larger group of individ-
uals, and then uses this estimate of f as a prior on the 3
genotypes using the assumption of Hardy-Weinberg
equilibrium (HWE).
Simply calling all genotypes would result in too many

false heterozygotes due to the sequencing errors, re-
sulting in too many variable sites and an inflation of the
singleton category of the SFS. Therefore, we also need to
select an inclusion criterion for the sites we deem vari-
able, i.e. sites in which we allow the existence of hete-
rozygotes (SNP calling). To do so we first perform a
likelihood ratio test of the null hypothesis H0: f = 0, com-
bining the data from all individuals [32]. We do so as-
suming that all sites are di-allelic, and use the approach
described in the supplementary of [36] to identify the
two most likely alleles for a given site. Throughout we
use the maximum likelihood estimator of f by [32].

Simulations
To assess the performance of our estimators we simulate
genomic data under a standard neutral model and under
models that deviate from the neutral model using msms
[37]. We set the population size, mutation rate and the
recombination rate to realistic values for humans, N =
10, 000, μ = 2.35 ⋅ 10− 8, r = 10− 8 [38,39] and use an infin-
ite sites model. As msms only prints out variable sites
with binary coding, we insert invariable sites in the
sequences and convert from binary coding to nucleo-
tides by sampling randomly with equal probability from
all four nucleotides. We then collapse the simulated hap-
lotypes into genotypes. For the non-neutral scenarios we
simulate strong positive selection under an additive
model with a selection coefficient of 0.1.
To simulate NGS data based on the msms genotypes,

we use a model similar to the model assumed for GL
calculations in GATK [40]. The simplified GATK model
uses only base quality information and calculates the GL
for a single site as:

Pr DjG ¼ A1;A2f gð Þ ¼
YM
i¼1

Pr bijG ¼ A1;A2f gð Þ

¼
YM
i¼1

1
2
p bijA1ð Þ þ 1

2
p bijA2ð Þ

� �
;

p bjAð Þ ¼
e
3

b≠A

1−e b ¼ A:

(

where M is the sequencing depth, bi the observed base
in read i, e is the probability of error and G = {A1,A2}. In
our simulations, we assume an equal error rate for all
bases and for all sites. The sequencing depth is sampled
from a Poisson distribution with mean equal to the spe-
cified mean depth. The simulations then proceed by first
simulating G using msms and then simulating D in ac-
cordance with the formula given above. The latter stage
is achieved by sampling M nucleotides from G, and then
introducing errors independently in each of them with
probability e. For each site GLs are then calculated
according to the GATK model given above.
It should be clarified that we do not actually simulate

reads, but sample bases for every site independently.
Hence there is a dependency in sequencing depth be-
tween adjacent sites in real data that we do not model.

HapMap 2 and 1000genomes
For evaluating the performance of the estimators on real
data we used 15 unrelated CEU samples from HapMap
phase 2 data [41], sequenced by the 1000 genomes project
[42] using Illumina sequencing. Based on the mapped
reads we used ANGSD http://www.popgen.dk/angsd to
align the 15 mapped samples and calculate the genotype
likelihoods using the GATK error model. Ancestral states
for all sites were obtained from the multiz46way dataset
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/multiz46
way/ available from the UCSC browser.

Results
The effect of genotype calling for low or medium
coverage data
In order to evaluate the performance of the estimators we
simulated multiple genomic regions both without selection

http://www.popgen.dk/angsd
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/multiz46way/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/multiz46way/
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and with strong positive selection. We first attempted to
identify an optimal p-value cutoff to use in the likelihood
ratio tests applied in the genotype calling methods. Figure 1
depicts the distribution of the difference between the esti-
mated and known value of Tajima’s D for 10 different p-
value cutoffs, along with the results using our EB approach.
Each box represents the estimate from 100 1 MB regions.
We simulated two neutral scenarios (25 and 40 samples)
and one scenario with strong positive selection (25 sam-
ples) and we used a mean depth of 2 and 4 with an error
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Figure 1 The effect of genotype calling for low or medium coverage
Tajima’s D statistic for three different scenarios with 10 different p-value cu
Subfigure ‘a)’ is based on genotypes called using the frequency as prior, G
maximum likelihood approach, GC-mLike. We have included the EB metho
that no single best cutoff can be chosen across the three different scenario
rate of 0.5% and 0.1%. For the scenario with selection
we used an error rate of 0.5%, but sampled the mean se-
quencing depth between the different samples from a
Poisson distribution with mean of 4. For the same three
scenarios we also estimated Fu and Li’s D and F statistics
[27] (Additional file 1: Figure S1 and Additional file 2:
Figure S2). We see that it is not possible to choose a single
p-value cutoff that is unbiased for all the examined sce-
narios (Figure 1, Additional file 1: Figure S1 and Additional
file 2: Figure S2). Any particular cut-off for genotype calling
alue cutoff

EB1e−04 5e−05 1e−05 5e−06 1e−06

alue cutoff

EB1e−04 5e−05 1e−05 5e−06 1e−06

data using Tajima’s D. The difference between estimated and known
toffs. Each box is estimated on the basis of 100 1 MB regions.
C-hwe, and Subfigure ‘b)’ is based on genotypes called using a
d for the 3 different scenarios in the right side of the figures. Notice
s for the genotype calling based methods.
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will result in biases in the estimate of Tajima’s D that will
depend on the true value of Tajima’s D, error rates, and se-
quencing depth. These results suggest that, for low or
medium coverage data, using called genotypes is in general
problematic no matter what cutoff is used and will give rise
to biased results that are context dependent.
The effect of SNP calling criteria when calling genotypes
To further examine to what extent the bias varies
according to the p-value cutoff used in the LRT test for
inferring variable sites, we summarized the distribution
of estimated and known values in boxplots (Figure 2).
This was done for both genotype calling methods and
for three different critical values (10-6, 10-3, 5 × 10-3).
There are some obvious biases due to SNP calling. Less
conservative SNP calling will cause an excess of (false)
low frequency variants, and therefore an underestima-
tion of Tajima’s D, and more conservative SNP calling
will cause a deficiency of rare alleles and, thereby, over-
estimate Tajima’s D. Also notice that for both genotype
calling methods, the p-value threshold of 10-3 has less
variance in the selection datasets compared to the neu-
tral datasets, whereas the opposite trend is true with the
more relaxed threshold of 5 × 10-3 (Figure 2).
In the following sections, we therefore compare our

methods to results using several different cutoffs for ge-
notype calling.
Figure 2 The effect of SNP calling criteria on the variance when callin
Tajima’s D and the known Tajima’s D. These plots are based on a scenario
p-values used for the LRT test. Left figure is the selection dataset and right
same variance in both plots. We observe that the 10-3 cutoff has less varian
We see the opposite correlation with regards to the 5 × 10-5 cutoff.
Estimating Tajima’s D using ML estimates of the SFS
We next simulated two neutral scenarios consisting of
25 samples and simulated 100 simulations of 1 MB re-
gions for each. For the first neutral scenario we simu-
lated fairly high sequencing depth and assumed a high
error rate (8×, 1%). For the second neutral scenario we
simulated a lower depth and lower error rates (2×,
0.5%). We inferred Tajima’s D values from the simulated
haplotypes, which we will here denote as the true values.
Values of Tajima’s D were then estimated from the si-
mulated sequencing data using our full ML approach
and from genotypes called from the sequencing data
(Figure 3). For called genotypes we only included sites
that were likely to be polymorphic with a p-value less
than 10-6. In both scenarios our approach gives very
similar results to the estimates from the true haplotypes
while the approaches based on genotype calling shows
large biases as expected from the results presented in
the previous section. Not surprisingly, we observe the
least accurate results for the low depth scenario, but
even at 8X coverage there are substantial biases.

The effect of sample size and sequencing depth
The effect of sequencing depth and error rate is further ex-
amined in Figure 4. Here we show the distribution of the
differences between the true and the estimated Tajima’s D
values. As above, for each scenario we perform 100 simula-
tions of 1 MB regions. The first 4 sets of simulations are
g genotypes. Comparison of the difference between our estimated
with depth 2× and error rate 0.5% and show the difference of different
figure is the neutral dataset. Notice that the 10-6 cutoff has quite the
ce on the selection dataset, but more variance in the neutral dataset.
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Figure 3 Estimating Tajima’s D using ML estimates of the SFS. These two plots are based on neutral sets of scenario, each plotted data point is
an estimate of Tajima’s D for a 1 Mb region. Subfigure ‘a)’ is high depth (8×), with an error rate of 1.0% and using a p-value of 10-6 and subfigure
‘b)’ is low depth (2×) with an error rate of 0.5%. For our full ML method in the high depth scenario all values fall in the vicinity of the y = x line,
but shows higher variance for the low depth as expected. Notice that for the stringent cutoff both genotype calling methods overestimates.

Figure 4 The effect of sample size and sequencing depth. Boxplot of our estimated values minus the known value. The green/orange boxes
indicate our full maximum likelihood method, whereas the other boxes are the genotype calling methods. We have generated 10 scenarios with
and without selection, therefore each box represents different scenarios each with 100 data points estimated on the basis of the 100 × 1 Mb
datasets. For these analysis we used a p-value of 10-6. Notice that the full ML method is mostly unbiased, but the variance is affected by the error
rate and sequencing depth as expected. The genotype calling shows large biases that depend on sequencing depth, error rate and whether or
not the region is under selection or not.
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conducted with sample sizes of n = 40, and the last set of 6
simulations are conducted with sample sizes of n = 25. As
can be seen, large error rates and sequencing depth affects
the variance of the estimate for the full maximum likeli-
hood method but the estimates remain approximately un-
biased. In contrast, the genotype calling (GC) approaches
show large biases that depend on sequencing depths and
error rates. Similar results are observed for both sample
sizes. The mean simulated value (across the 100 repeti-
tions) for three of the estimators of θ are shown in Table 1.
The full likelihood method is mostly unbiased whereas the
GC based methods are biased to a degree that depends on
whether the region is under selection or not.

Application to data simulated with a selective sweep
In typical applications to genome-wide data, Tajima’s D
will usually be calculated separately for multiple smaller
regions, often in a sliding window. We therefore separated
the 1 MB regions into 20 subregions each of 50 kb. We
used both the full maximum likelihood method for each
subregion and applied the empirical Bayes (EB) method.
The full maximum likelihood estimate from the whole
1 Mb region was used as a prior for the EB method. All of
the methods show a decrease in Tajima’s D values around
the site under selection (Figure 5). However, the threshold
for inferring polymorphic sites has a strong influence on
the performance of the GC methods. Note that because
the full likelihood and the EB method do not introduce a
bias in the estimate of Tajima’s D, they do not have to be
standardized using a neutral data set if the underlying
demographic model is known.
In Figure 6 we illustrate the distribution of the differ-

ence between the estimated Tajima’s D and the true
value for every window for the ML estimator and the EB
estimator. We note that the variance is larger for the full
ML approach than the EB approach. This is further ex-
amined in Additional file 3: Figure S3 where we have
plotted the difference in Mean Squared Error (MSE) for
Table 1 Mean estimate of theta estimators for 100x1MB
regions for 25 samples

Selection No selection

Method θw θπ θFL θw θπ θFL
Known 649.8 567.1 745.1 930.0 923.5 939.0

ML 648.6 567.9 734.7 932.4 923.7 968.3

GC-hwe 10-6 341.7 372.1 72.2 541.3 640.3 99.9

GC-mLike 10-6 341.7 497.1 32.9 541.3 768.7 44.8

GC-hwe 10-3 556.1 434.7 583.5 784.8 712.4 680.6

GC-mLike 10-3 556.1 598.9 360.4 784.8 897.9 410.1

GC-hwe 10-5 1011.0 594.8 653.7 1244.4 874.1 752.8

GC-mLike 10-5 1011.0 831.8 420.4 1244.4 1131.6 471.8

The genotype likelihoods are simulated with an error rate of 0.5% and an
average depth of 2 ×.
the same 20 subregions with the ML method and the EB
method. We notice that the MSE for the EB method
is smaller.
Effect of the prior
For the EB method, the prior can have an impact on the
estimates of Tajima’s D. In Figure 7 we explore the effect
of the prior on the estimated values. We use three differ-
ent priors. 1) a prior estimated on a neutral data set of
100 MB, 2) a prior estimated for a 100 MB region under
selection 3) a prior based on both types of regions in
equal proportion. As can be seen in Figure 7 when ap-
plying the neutral prior to the neutral datasets or the se-
lection prior on the selection dataset the estimates are
approximately unbiased. However, applying the “wrong
prior” tends to either underestimate or overestimate the
selection signal. Perhaps a bit surprisingly, using the
neutral prior on the selection datasets tends to overesti-
mate the signal, while using the selection prior on the
neutral datasets tends to underestimate it. This is ex-
plained by the fact that a region of selection will have
less variability than a neutral region. A prior trained on
a neutral dataset will therefore have a higher level of
variability than the true level of variability in a region of
selection. Applying a neutral prior will therefore allow
more variability, and due to sequencing errors these sites
will mostly be singletons. This excess of singletons will

have the largest impact on θ̂w, and we will therefore
underestimate Tajima’s D. The opposite argument ex-
plains why the selection prior will overestimate Tajima’s
D when applied to a neutral dataset.
We observe the same trend for other neutrality tests

statistics that can be seen in Additional file 4: Figure S4
and Additional file 5: Figure S5. However, the other in-
vestigated neutrality test statistics, Fu & Li’s D and F, are
not estimated with the same accuracy as Tajima’s D. For
both selection and neutral data sets, we seem to under-
estimate the statistics with the EB approach and neutral
prior (Additional file 4: Figure S4 and Additional file 5:
Figure S5). From figure (S4,S5) we also see that we have
problems estimating the true value in the region of the
targeted locus using the 50 kb ML approach. The differ-
ence is perhaps caused by the fact that Fu & Li’s statis-
tics are based on a single category of the frequency
spectrum, whereas Tajima’s D is based on all categories.
Power to detect a selective sweep
Often the goal of the investigator is not to estimate the
neutrality test statistics in an unbiased manner but in-
stead the goal is to identify regions with extreme values.
To investigate our ability to discriminate between re-
gions with selection and neutral regions, we show re-
ceiver operating characteristic (ROC) for the different



Figure 5 Difference between our estimators under a selective sweep. Mean value for our estimated Tajima’s D, for every 50 kb windows for
100 1 MB region for 25 samples. For the most progressive LRT cutoff some windows did not have data. This plot is based on a depth of 2× and
an error rate of 0.5%. Figure a) is using the raw Tajima’s D estimate for the genotype calling methods. In Figure b) we have standardized the
genotype calling methods relative to the estimates from a dataset of 100 1 MB neutrally evolving regions.

Figure 6 Difference between the full ML and the EB method under a selective sweep. Difference between estimated Tajima’s D and known
Tajima’s D, left plot ‘a)’ is using the ML for every 50 kb region, right figure ‘b)’ is using the EB approach with a 1 Mb estimated SFS as prior for all
50 kb regions. The targeted site for selection is in the middle and we see that the local 50 kb ML has some very positive outliers in this region.
This is contrasted by the EB method where we have some negative outliers. However we can see that the median for the EB method in the
middle region is shifted to a positive value, whereas the median for the 50 kb ML is overall relatively close to zero. Also notice the difference of
scaling in the y-axis.
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Figure 7 Effect of different priors for the EB method using the Tajima’s D test statistic. Boxplots for the difference between our estimate
of Tajima’s D and the known value, the orange box is the neutral genome-wide prior. These plots are based on a depth of 2× and an error rate
of 0.5%.
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approaches. These are shown in Additional file 6: Figure
S6, for different depth, error rates and number of indi-
viduals. When the depth is high, all methods perform al-
most as well as when the genotypes are known without
error. But when the depth decreases or the error rates
increases, only the full maximum likelihood approach
and the EB approach have similar power as the known
genotypes.
As expected, the simulations show that our methods

have improved power to discriminate between regions
evolving neutrally and under positive selection as more
samples are added (Additional file 6: Figure S6). The
genotype calling methods perform worse when the error
rate is increased and the depth is decreased, especially at
low depth with a low p-value cutoff, while the ML
method for all scenarios performs almost as well as
if the true genotypes where known (Additional file 7:
Figure S7).

Variable depth and variable error rates from NGS data
So far, we have used a simple simulation model assum-
ing sequencing depths follow a Poisson distribution and
a fixed error rate. To examine the robustness of our
conclusions to these assumptions, we made an add-
itional set of simulations using the observed distribution
of quality scores and sequencing depths tabulated from
BAM files from the 1000 Genomes project (Additional
file 8: Figure S8). As before we simulate 100 1 MB re-
gions with and without selection for 25 individuals, and
apply our two genotype calling methods and the EB
method to the simulated data (Additional file 9: Figure S9).
For the genotype calling approaches we only included
sites that were likely to be polymorphic with a
p-value <10-6. We observe results that are highly com-
patible with the previous results. The EB method is
approximately unbiased in both scenarios and have simi-
larly small mean squared error (6e-4, 5e-4). In contrast,
the genotype calling methods are biased in both sce-
narios, and we notice again that the bias depends on
whether or not the data is simulated under a neutral or
under a selection model. We observe that the MSE for
the genotype calling methods are orders of magnitude lar-
ger than the EB method, and that the MSE for the GC-
mLike model is more than twice as high under the selec-
tion scenario as under the neutral scenario, whereas we
observe the opposite trend for GC-hwe method.

Application to real data
We also applied our methods on real NGS data from the
15 CEU individuals from the 1000 Genomes Project (see
method section for details). Bersaglieri et al., 2004 [5]
found a strong signal of positive selection surrounding
the LCT region of chromosome 2 (position 136 Mb).
We estimated Tajima’s D values in a sliding window
across this chromosome, using a prior estimated from a
50 MB region on chromosome 2 (Figure 8). To compare
with earlier published results we used the Tajima track
[43] from the UCSC genome browser [44], which depicts
estimated values of Tajima’s D from 24 individuals of
European descent from the Perlegen genotyping dataset
[45]. For our EB method we performed sliding windows
analysis with different window sizes (50 kb, 100 kb and



Figure 8 Applications to real data. Genomic scans using a sliding window approach of 10 kb. The UCSC Tajima track was downloaded from
the UCSC genome browser, and was shifted relatively to LCT gene on the hg19 human assembly. The vertical red line indicates window centers
where the EB method (100 kb window) has a Tajima’s D below−1.8. Figure a) is using our EB method with varying window sizes. Figure b) is our
EB method together with the genotype calling methods. We tried with varying p-value cutoffs for the genotype calling methods, and are using a
window size of 100 kb.
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500 kb) all using a fixed step size of 10 kb. We also com-
pared the results for the naïve genotype calling methods
using 2 different SNP inclusion cutoff criteria’s (10-6, 10-3).
Notice that the overall estimate of Tajima’s D is very posi-
tive for the SNP data, most likely due to ascertainment
biases [11]. Also notice that the lowest observed value of
Tajima’s D is the LCT region for the EB approach while
there are multiple regions with low Tajima’s D values for
the GC approaches and the SNP chip data.

Discussion
We have developed two methods to perform the neutral-
ity tests on NGS data that take the uncertainty of the ge-
notypes into account. Both methods perform better than
using called genotypes and in most instances they are
approximately unbiased. The full ML method is compu-
tationally slow when applied in sliding windows at a
genome-wide scale, which is why we also present a fast
empirical Bayes method with a prior that is estimated
from the data itself, for example the entire genome, or a
reasonable subset of the genome. This makes the
method computationally feasible for full genomic data of
any magnitude and any windows size.
There is not a single obvious way to identify SNP sites

and call genotypes from NGS data. Here we have tried
different approaches with different cutoffs. Regardless of
method and chosen cutoff they all show a large bias in
some or all simulated scenarios. This is evident from
the raw theta estimates (Table 1), and the actual test
statistics (Figure 1). The level of bias varies between the
different scenarios, not only for different depths and
error rates, but it also depends on whether or not the
data set is neutral or affected by selection (Figure 2).
The results from this study suggest/confirms it is not
unproblematic to perform neutrality tests on genotypes
called from low or medium coverage NGS data.
In contrast, both the ML and the EB approach give

fairly accurate estimates for all the examined measures.
When applying a neutral genome-wide prior for our
analysis, we observed only small deviations from the true
values of Tajima’s D even for very low depth data. When
applying the EB approach we did observe a small bias in
the regions under selection when the prior was esti-
mated from regions without selection (see Figure 7).
However, the bias is always much smaller than the bias
of the GC approach. Even though the EB approach can
give small biases it can still have an advantage over the
full ML approach. When estimating the neutrality test
statistics for small windows, we often obtained a few ex-
treme outliers with positive values of Tajima’s D for the
ML approach (see Figure 6). Since the EB method uses
the entire 1 Mb region as prior we do not see a similar
problem with extreme positive outliers and the variance
of the estimates is smaller overall. If the goal is to iden-
tify regions under selection the smaller variance of the
EB approach will give fewer regions with extreme values.
This is because regions with little data will increase the
variance for the full ML approach while they will give
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results closer to the prior for the EB approach. This
problem could also be circumvented by using a sliding
window approach with window sizes determined by
using a fixed number of SNPs.
We applied the EB method to data from 15 individuals

from the 1000 genomes project, and observed trends simi-
lar to previous published results for the LCT region in
Europeans. For SNP chip data from the same region, we
observed a large over-representation of positive Tajima’s D
values, presumably due to ascertainment biases introduced
by the SNP-discovery and selection process from the SNP-
chip itself. Similar positive values were not observed using
the EB method based on the NGS data. For both the GC
and EB methods, we observe negative values around the
LCT gene, however the estimates are not very extreme for
the GC approach. The EB approach is the only approach
for which LCT has the most extreme Tajima’s D value.
The main advantage of the approaches presented here,

is that they, in expectation, have at most a very weak de-
pendence on sequencing depth. This facilitates the use
of genome-wide scans on genomes with varying sequen-
cing depth without introducing biases. The computa-
tional framework suggested here, based on the EB
approach, provides a robust and computationally fast
method for scanning a genome for regions with outlying
or extreme frequency spectrum. Such a method should
be of great use in years to come when analyzing popula-
tion genomic data from a variety of different species.

Conclusion
In this paper we show through simulations that estimating
neutrality test statistics using called genotypes can lead to
highly biased result. The bias is dependent not only on se-
quencing depth and error rate but interestingly the bias
also depends on whether or not the region is under selec-
tion or not. We have developed an empirical Bayes method
that can calculate the test statistic fast and efficiently. This
method circumvents the problem of SNP discovery, geno-
type calling and missing data, which is a fundamental prob-
lem of NGS data. This is done by working with genotype
likelihoods, which contains all relevant information about
the uncertainty of the data. Using this approach leads to
approximately unbiased estimates in most instances.

Availability
All methods discussed in this paper are freely available
as part of the Analyses of Next generation Sequencing
Data (ANGSD) package (http://www.popgen.dk/angsd).

Additional files

Additional file 1: Figure S1. The effect of genotype calling for low or
medium coverage data using Fu & Li’s D. The difference between
estimated and known Fu&Li’s D statistic for three different scenarios with
10 different p-value cutoffs. Each box is estimated on the basis of 100
1 MB regions. The top figure is based on genotypes called using the
frequency as prior, and the bottom figure is based on genotypes called
using a maximum likelihood approach. Notice that no single best cutoff
can be chosen across the three different scenarios.

Additional file 2: Figure S2. The effect of genotype calling for low or
medium coverage data using Fu & Li’s F. The difference between
estimated and known Fu&Li’s F statistic for three different scenarios with
10 different p-value cutoffs. Each box is estimated on the basis of 100
1 MB regions. The top figure is based on genotypes called using the
frequency as prior, and the bottom figure is based on genotypes called
using a maximum likelihood approach. Notice that no single best cutoff
can be chosen across the three different scenarios.

Additional file 3: Figure S3. Difference in Mean Squared Error (MSE)
between the full ML and the EB method under a selective sweep. MSE of
the estimated Tajima’s D (relative to the known expected Tajima’s D) is
calculated for every 50 kb sub region of the full 1 MB region. The figure
is based on 100 1 MB regions. For the EB method we used a prior
estimated from the entire 1 MB region on every 50 kb subregion.

Additional file 4: Figure S4. Effect of different priors for the EB
method using the Fu & Li’s D. Left and center plot are boxplots for the
difference between our estimate of Fu & Li D statistics and the true value,
these are based on 100 × 1 Mb regions. Right plot is a 50 kb window
plot using the 50 kb ML method along with the EB with neutral and
mixed prior. Neutral prior is from a genome-wide prior based on a
100 Mb region, Neu + Sel prior is based on a 200 Mb prior based on
100 Mb selection and 100 Mb neutral.

Additional file 5: Figure S5. Effect of different priors for the EB
method using the Fu & Li’s F. Left and center plot are boxplots for the
difference between our estimate of Fu & Li F statistics and the true value.
Right plot is a 50 kb window plot using the 50 kb method along with
the neutral and mixed prior. Neutral prior is from a genome-wide prior
based on a 100 Mb region, Neu + Sel prior is based on a 200 Mb prior
based on 100 Mb selection and 100 Mb neutral.

Additional file 6: Figure S6. Power to detect a selective sweep. ROC
curve for scenarios, each plot is based on Tajima’s D estimate for 100 ×
1 Mb regions with selection and 100 1 MB regions without selection. For
each scenario we have our EB method along with our two genotype
calling methods (all GC methods is using p-value of 10-6). Row1 is 25
individuals row2 is 40 individuals. Column1 is 8× 1% error rate, Column2-
4 is all 4×, but with varying error rates 1%,0.5% and 0.1%.

Additional file 7: Figure S7. ROC curve for low coverage dataset. ROC
curve for a 2×0.5% error rate. The LRT criteria is 10-6. This plot is based on
200 1 Mb regions with selection, and 200 1 Mb neutral regions.

Additional file 8: Figure S8. Distribution of quality scores and
sequencing depth for a BAM file. The left panel shows the quality score
distribution and right panel shows the depth distribution, tabulated for
chr1 from a BAM file from the 1000 Genomes Project. The mean quality
score value was approximately 28 which corresponds to an average error
rate of 0.15%. The data covered approximately 87% of the genome, had
an average sequencing depth of 4.8, and contained 8,908 sites with a
sequencing depth above 100. The right panel only shows the first 30
observations.

Additional file 9: Figure S9. Using observed qscore and depth
distributions. Boxplots of the difference between the estimate of Tajima’s
D and the known value for 100 1 MB regions with our EB method and
the two genotype calling methods. The quality score and depth
distributions used for the genotype likelihood calculations are based on
the results depicted in Figure S8. For the genotype calling methods we
used a cut-off for the p-value of the LRT test of 10-6.
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