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Abstract

Background: Time course data from microarrays and high-throughput sequencing experiments require simple,
computationally efficient and powerful statistical models to extract meaningful biological signal, and for tasks such as
data fusion and clustering. Existing methodologies fail to capture either the temporal or replicated nature of the
experiments, and often impose constraints on the data collection process, such as regularly spaced samples, or similar
sampling schema across replications.

Results: We propose hierarchical Gaussian processes as a general model of gene expression time-series, with
application to a variety of problems. In particular, we illustrate the method’s capacity for missing data imputation, data
fusion and clustering.The method can impute data which is missing both systematically and at random: in a hold-out
test on real data, performance is significantly better than commonly used imputation methods. The method'’s ability
to model inter- and intra-cluster variance leads to more biologically meaningful clusters. The approach removes the
necessity for evenly spaced samples, an advantage illustrated on a developmental Drosophila dataset with irregular

replications.

Hensman/.

Conclusion: The hierarchical Gaussian process model provides an excellent statistical basis for several
gene-expression time-series tasks. It has only a few additional parameters over a regular GP, has negligible additional
complexity, is easily implemented and can be integrated into several existing algorithms. Our experiments were
implemented in python, and are available from the authors’ website: http://staffwww.dcs.shef.ac.uk/people/J.

Background
Gene expression time course experiments have been used
to investigate fundamental biological processes which are
often dynamic in nature. For example, the cell cycle [1],
cell signalling [2], circadian rhythms [3] and developmen-
tal processes [4] have been studied extensively using gene
expression time-series data.

Many computational approaches to time-series analysis
are not always well suited to gene expression data, where
missing measurements are common and time points may
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not be spaced regularly. In many conventional time-
series models such as state-space models [5,6] there is no
straightforward manner to deal with missing data, and
time points must occur at regular intervals. Whilst gene
expression experiments can be sampled regularly, such
designs may not be optimal from a statistical or cost
perspective. A method for modelling arbitrarily sampled
time points may elicit more information from fewer sam-
ples, where time points are selected to capture pertinent
temporal features.

Furthermore, existing time-series models do not neces-
sarily capture the structure of gene expression data. Many
gene expression time-series are performed with multiple
biological replicates: the crude method of simply aver-
aging the replicates may be discarding interesting infor-
mation. It is also unclear what to do when the replicates
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are not sampled at the same times. There is a need for a
temporal model which deals with the replicate structure.

Our proposed model is based upon two important ideas:
Gaussian process (GP) regression allows for parsimo-
nious temporal inference, whilst a hierarchical structure
accounts for (temporally structured) covariance between
biological replicates. Additional layers can be added to
the hierarchy to model more structure in the data. For
example, in a data fusion application, a layer of hier-
archy can be used to account for differences between
gene expression measurement platforms; or in a clus-
tering application, a hierarchical layer can be added
to account for temporal covariance of genes within
a cluster.

GPs have been successfully applied to the analysis of
gene expression time series by several authors [7-9]. There
is little doubt that they provide a coherent and princi-
pled framework for regression: for an introduction see
[10]. Our contribution is to propose hierarchical Gaussian
processes to deal with structure in the data. We pro-
vide an introduction to the idea, deriving a novel covari-
ance function which accounts for structure. The idea is
simple to implement yet highly effective as we demon-
strate on several problems. A hierarchical GP model
could easily be integrated with existing GP-based appli-
cations, allowing them to properly account for replicate
structure.

In a further contribution, we manipulate the marginal
likelihood expression for the hierarchical GP model for
the case where each part of the structure is sampled at the
same time, leading to an expression with reduced compu-
tational complexity. This situation is most likely to occur
during clustering of genes, which must all be measured
simultaneously using high throughput methods.

Short time series are prevalent in gene-expression data
sets [11]. Our GP-based model is well suited to short time-
series, and the behaviour of GPs can be set to mimic
that of other temporal models (such as autoregressors)
through the covariance function [10], though in this work
we use a simple form for the covariance which assures
smoothness of the underlying dynamics.

Unlike other time-series based approaches, GPs are
not restricted to data which has been sampled at evenly
spaced time points. The model therefore removes any
restriction on temporal sampling — it can be totally irreg-
ular and differ between replicates. This also allows our
method to deal with both randomly and systematically
missing data. We show how the model can be used for
data fusion where the temporal sampling differs between
experiments.

Related work
Hierarchical models are an important idea in Bayesian
statistics [12], allowing information to be exchanged
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between related groups of data. The idea is that by per-
forming inference on the structure as a whole, rather
than on each part of the structure independently, infer-
ence is improved. GPs have been successfully used in
models of gene expression time-series before; for exam-
ple for inferring transcriptional regulation [8], and to
identify differential expression in time-series [7,13]. A
key contribution of this work is to combine hierarchical
structures with GPs to provide a parsimonious and ele-
gant method for dealing with replicated gene expression
time-series.

An alternative to our method was proposed by [14]. In
this model, uncertainty is assumed in the time of data
collection, and the time-shift in each replicate is esti-
mated. In our model, the times are assumed correct whilst
the shift is assumed to occur in the expression. Our
model has significant computational advantages, since
we can marginalise the shifts in expression analytically
under the GP framework, whilst the method proposed
in [14] required optimisation of a large number of vari-
ables (one for each observation). Further, our model is
easily included in more complex GP-based models, such
as the clustering application which we shall demonstrate.
The estimation of time-shifts would be difficult to incor-
porate into a clustering method, especially considering
the very large numbers of parameters which require
optimising.

Clustering expression data while modelling within-
cluster variance is one of the primary applications of
our model. Previously, [15] proposed a random effects
model to account for variance between observations of
genes and also within clusters of genes. Further, [16]
and [17] explored clustering methods with hierarchical
structures to model replicate variance. In these models,
replicate variance was modelled as multivariate Gaussian
around some gene-specific mean, and the gene’s expres-
sion was considered multivariate Gaussian around a
cluster-specific mean. This paper presents a similar but
more powerful idea: we use a hierarchy of GPs to model
gene-specific and replicate-specific temporal covariance.
We demonstrate that the introduction of a GP prior makes
inference of clusters more viable by reducing the num-
ber of parameters required to model the data within a
cluster, and we also provide a method for dramatically
reducing the computational cost of evaluating clusters
under our model. Previous methods for clustering tem-
poral data (e.g. [18]) have not used the replicate structure
in the model.

Methods

Background: Gaussian processes

Gaussian processes (GPs) have been used extensively in a
variety of regression problems, and have been applied to
gene expression time-series by several authors [7-9]. We
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briefly introduce GP regression and introduce some nota-
tion: for an in-depth introduction one may consult [10].

To perform regression using GPs, we adopt a Bayesian
approach. Starting with a prior directly over functions, we
update the distribution in light of observed data, mov-
ing to a posterior distribution. Using standard results
for Gaussian distributions, regression involves only some
simple linear algebra. The GP prior is fully specified by
two functions, a mean function m(t) and a covariance
function k(¢,t'), and is denoted

f® ~GP (m@), kt,t)). 1)

For practicality, a zero-mean function is often assumed;
throughout this work, the squared-exponential covariance
function will be used: k(t,t') = a exp{—y (t — t')?}.

Our choice of covariance functions represents a prior
belief that the underlying functions are smooth. Other
covariance functions could be selected using a model-
selection procedure [10]. The parameters of the covari-
ance function (referred to as hyper-parameters) control
the amplitude («) and relative length-scale (y) of the func-
tions (see Figure 1 for an illustration). The form of the
covariance function captures a very simple assumption
about the function: that function points which are close
to each other (¢ — ¢’ is small) are highly correlated, whilst
points which are distant( ¢ — ¢ is large) are less correlated.

Regression can be performed by using the marginal and
conditional properties of multivariate Gaussian distribu-
tions. Supposing we have observations f of a function at
times t, and wish to predict the values of that function at
times t,, which we denote f,: the joint probability of f and

f, is given by
Kie Ky,
0’ I:I<t.(,t I(t,,,t,, ’ (2)

(L)) = (]

where the covariance matrix K¢t has elements derived
from the covariance function k(z, t'), such that the (i, j)th
element of K¢ is given by k(t[i] , t[j] ). Consistency of the
GP means that it is not necessary to consider the values
of the function where we do not have data: these val-
ues are trivially marginalised. To perform regression, the
conditional property of the multivariate Gaussian gives:

pEIH =N (f*|Ktﬂth‘,t1f, Ki o, — Kt*,tthth,t*) )
3)

In practice, we are presented with a measurement vec-
tor y which is a noise corrupted version of f. Assuming
Gaussian noise? it is possible to write p(y|f) = N (v/f, BI),
where f is the variance of the noise and I the appropriately
sized identity matrix, and then marginalise the variable
f. Equivalently, one can consider y to be observations of
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Figure 1 An illustration of a simple hierarchical GP. Top: the prior
over the underlying function g, (t), with the mean u(t) = 0 shown as
a heavy solid line, and the shaded area representing the variance
(amplitude) of the function, controlled by the hyper-parameter ag. A
single sample from the prior is shown as a narrow line, and the
length-scale of the function, inversely controlled by the
hyper-parameter yg, is marked. Middle: three functions, representing
three replicates are shown, along with samples conditioned on the
sample shown in g (t). The three replicates follow the trend of g, (),
but deviate independently by a small amount (variance o) with a
short length-scale, marked in the third replicate. Bottom: the
covariance matrix used to generate the samples X,,. Note the
block-wise relationship to the replicates.

the Gaussian process y(¢), whose mean function is the
Gaussian process f (), and covariance function is B p.
This hierarchical structure is used later in this publica-
tion to build GP priors over replicates and clusters. Either
interpretation gives a joint density:

P(Le])=~ (7]

and regression follows from the conditional property sim-
ilarly to (3).

Gaussian process regression is a Bayesian method. We
move from a prior over functions to a posterior, and a

Kt,t + /31 I<t,t.,
0’|: Ke ¢t Ko, @
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significant attraction of the method is that this occurs in
closed form as (3). However we must still deal with hyper-
parameters of the covariance function. Here, we make use
of the usual technique which is to optimise the hyper-
parameters using type-II maximum likelihood. That is,
collecting the hyper-parameters «, 8 and y in to a vec-
tor @, we use gradient methods to optimise p(y|@) with
respect to 0. This is given by

D 1
logp(y|0) = ) log2m — 3

1
x log [Kee + BI| — gyT [Kee + B117 1y,
(5)

which depends on 6 through the covariance matrix K.

A hierarchy across replicates

Gene expression time-series may be collected in multiple
replicates, to account for biological variation. The idea is
that there exists some common trend, present in all repli-
cates, which we wish to identify, and the measurements
made of each replicate vary due to biological differences
as well as technical noise.

We shall use the notation y,, to denote the vector of
measurements of gene expression of the nth gene, in the
" biological replicate; these measurements were made at
times which we collect into a vector t,,. The data for the
n™ gene is denoted Y,, = {yn,}ﬁi”l, T, = {tnr}i”l.

Our proposed methodology mimics the structure of the
data, directly modelling underlying time-series as well as
the biological variation, and accounting for (uncorrelated)
measurement noise. First consider a time-series model of
a single gene. To combine replicates of a particular gene’s
time-series, we use a Bayesian hierarchical approach: the
underlying expression profile of the #n" gene g, (¢) is pre-
sumed to be drawn from a zero-mean GP with covariance
kg (t,t), whilst the expression profile of a particular repli-
cate f,,r(t) is drawn from a GP whose mean is g,(¢). Thus

gn(t) ~ GP (07 kg (£, t/)) ,

6
fnr(t) ~ gP (gn(t)¢ kf(t: t/)) . ( )

Note that the two covariance functions k; and k¢ may in
general be different: we have used the squared exponen-
tial function for both, with independent parameters. This
simple model is illustrated in Figure 1, where the depen-
dent nature of the functions is illustrated, as well as the
effects of the hyper-parameters.

The elegance of the hierarchical approach lies in its lin-
earity: it is simple to show that two points on the function
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fur(t) are jointly Gaussian distributed with zero mean and
covariance kg (¢,t') + k¢(t, t'). Furthermore, two points in
separate replicates are jointly distributed with covariance
kg(t,t'). Thus, given a set of Nj, replicates of gene expres-
sion time-series for a particular gene, Y, = {an}ii"p taken
at different time points T,, = {t,,r}i\zz”1 it is possible to write
the likelihood:

p(Yu|Ty, 0) ZN()A’MO: 2:n); (7)

where y, has been used to denote the concatenation of Y,;,
N :[y;lryl,y;l':2 . .y;lr,Nn]T, 0 represents the parameters of
the covariance functions k, and k¢, and the block of %,
corresponding to Yy, Y, is given by

Kg(tnr: ty) + Kf(tnr: ty) + Bl ifr = r
K, (tyr, ) otherwise.

(8)

Sl ] = {

In order to make inferences about the functions g, ()
and f,-(¢), the covariances between the data Y and the
functions are required. Using the superscripted y,(fr) to

denote the element of y,,, observed at time ¢:

cov (y;tr),gn (t/)> = kg(t, t/)» (9)

ke(t,t') +ke(t, ') ifr =7
kq(t,t') otherwise.
(10)

cov (Y, fur () = {

Inferences about functions can then be made using the
standard methods described above, and hyper-parameters
of the covariance functions can be optimised.

Fitting a hierarchical model to a set of replicates can
be used as a diagnostic tool. In particular, by exam-
ining the maximum-likelihood values of the covariance
function parameters, we can assess how noisy the exper-
iment is, and how similar the replicates are. Figure 2
shows three examples of hierarchical regression of the
time course data described the Results section, for three
genes (modelled independently), with each gene shown
in one row in the figure. The leftmost panes in the
figure show the inferred function for the gene, g,(¢), and
subsequent panes show the inferred functions for each
replicate, f;;(£).

These examples demonstrate different behaviours of the
time-series which are captured by the model. For the first
gene, CG18135, the replicates are quite similar, and most
deviation of the data from g, (¢) is attributed to noise. The
model attributes 87% of the data’s variation to the under-
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Figure 2 Hierarchical GP regression on the expression of three illustrative genes during Drosophila Melanogaster development, using
eight replicates with different time sampling. Each row represents one gene. The leftmost panes show the inferred function g, (t), subsequent
panes represent the replicates. Solid lines show the mean of the predicted function, and the shaded area represents the 95% confidence interval.
The parameters of the covariance function were optimised by maximum likelihood. Note that the replicates contain different numbers of data and

different times.

lying function g, (), and only 6% each to replicate variance
and noise, i.e. the model ‘recognised’ the similarity of the
replicates.

The gene represented by the middle row is AP-47, and
it can be seen that there is considerable replicate variance:
although each replicate follows a similar pattern, the pat-
tern is ‘amplified’ differently in the replicates. Here, the
model attributes 60% of the data’s variance to the function
gx(¢) and 34% to f,(¢), with 6% to noise.

The gene represented by the bottom row of Figure 2
is OstStt3. Here, the variances of g,(t), f,-(¢£) and noise
are 55%, 36% and 8% respectively. The model recog-
nises the differences in the replicates, but uses a long
length scale for f,,(¢). In this gene, the detailed pat-
tern of the time-series is captured entirely by g,(?),
and f,,(t) is used to account for amplitude shifts
between replicates. Note that these cannot be simply ‘nor-
malised out’ because not all replicates cover the same
temporal region. These genes were selected using a sim-
ple filtering procedure. The model was fitted indepen-
dently to each gene on a microarray, and the genes
were ranked according to the ratio of signal variance
(a hyperparameter of k;) and replicate-plus-noise variance
(hyperparameters from k).

Deeper hierarchies

In many cases, gene expression time-series may have more
structure than simply biological replicates. For example,
we could incorporate previous studies in a hierarchical
fashion. In general, suppose that there is some underlying
function g, (t) which models the general gene expression

activity for the n™ gene. Subsequently, we define the func-
tions e,;(¢) for each experiment which we want to model,
and finally f,;-(¢) for the r'? replicate in the it experiment.

g}’l(t) ~ gP (01 kg(tr t/)) )
eni(t) ~ GP (gu (1), ke(t, 1)),
Juir(®) ~ gp (eni; kf(t1 t/)) .

(11)

With every layer of the hierarchy, we have introduced
new parameters corresponding to the covariance function
for that layer. Note that the hierarchy can be extended
arbitrarily to represent the structure of the data. For exam-
ple, we might want to model biological variation where
the lineage is known, or to model inter-species variation,
or to build a hierarchy which reflects the phylogenetic
relationship between species.

An efficient model of clusters
Clustering of gene expression time-series is often per-
formed with a view to finding groups of co-regulated or
associated genes. The central assumption is that genes
which are involved in the same biological processes will be
expressed together: they share an underlying time-series.

In order to model a group of genes as defined by a
cluster, the hierarchical model is extended to a three-
layer hierarchy across the cluster, individual genes and
replicates.

All genes in the i™ cluster are presumed to share an
underlying profile /;(¢), and subsequently each gene fol-
lows a profile g, (¢) and each replicate of that gene follows
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a profile f;(¢). The mean of each level in the hierarchy
is given by the level above, so the data Y; in cluster i is
modelled by:

hi(t) ~ GP (0, ky(t, 1)),
ng(t) ~ gP (hl(t); kg(t’ t/)) )
Sur(@®) ~ GP (gu(0), ke (8,1)) .

(12)

If y; is the concatenation of all of the y, representing
genes in the /™ cluster, noting that each ¥, is itself a con-
catenation of the biological replicates, then the marginal
likelihood of the expression data in the i" cluster, Y; is
given by

p(Yi|T) =N (30, =) (13)
where the covariance matrix ¥; is structured such that the
block corresponding to the two genes n and #’ is given by

Su+ Kyt ty) if n=n'

Ky, (t,, t,y) otherwise. (14)

Ziln, l’l/] = {
Note that the diagonal blocks of X; are themselves block-
structured, reflecting the double hierarchy in the model.
The computational complexity of this model grows
cubically as the size of the cluster increases, which is an
undesirable property. To reduce the computational load, it
is possible to exploit a known property of the data. In each
array all genes are simultaneously measured, although we
allow different times for each replicate. Denote t the con-
catenation of the times in all replicates, define Kj as the

covariance matrix formed by evaluating &, on the grid of
t, and ¥, a covariance matrix structured as (8), modeling
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the variance of a single gene. The marginal likelihood can
then be written

_ND 1 L 1
pYilT) =21~ 72 |Kp| 2| X,] 2 [K, " + N;X,[2

N;i
exp{—30 ya S, Y =N BN 2D T e ),
n=1

(15)

where y; is the mean of the y, in the cluster, D is the
length of t, and N; is the number of genes in the clus-
ter (see appendix for a derivation). This expression has
reduced the computational complexity of the model from
OWN?D3) to O(D3).

An example of this model is shown in Figure 3. The
inferred function /(t), shown in the bottom-left pane has
a single wide peak at around 15 hours; all of the functions
2,(t) (leftmost column) show a similar pattern, though the
functions are each ‘distorted’ a little, with the width of the
peak varying from gene to gene. Similarly, each replicate
shows a similar pattern to the mean function for the cor-
responding gene, with smaller variations. The bottom row
shows the predictive density for a new gene within the
cluster.

Clustering

To use our model for clustering, the partitioning of genes
into clusters needs to be inferred. Dunson [18] proposed
a clustering scheme where a GP is used to model the
function within a cluster, and a Dirichlet process prior is
placed on the partitioning. This leads to a Gibbs sampling
scheme where each Gibbs step involves removing a gene
from the clustering and then stochastically re-allocating
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Figure 3 A hierarchical model of expression across multiple genes within a cluster. Each row represents one gene (gene names are to the
right) and each box within that row represents a biological replicate. Data are represented as black points, the shaded area represents 95%
confidence interval and a solid line represents a posterior mean function. The left-most box on each row shows the inferred function for each gene
gn (1), and the bottom row shows the mean function for the cluster h(t) (left) and the predicted function(s) for a hypothetical new gene.




Hensman et al. BMC Bioinformatics 2013, 14:252
http://www.biomedcentral.com/1471-2105/14/252

it. Our model potentially improves on Dunson’s formu-
lation since we consider a structured covariance across
the genes and replicates (which was treated as iid noise
by Dunson), though it would be possible to use the same
Gibbs sampling scheme to infer the cluster partitions.

Heller and Ghahramani [19] showed that inference in
a DP can be effectively approximated using an agglom-
erative clustering scheme dubbed Bayesian Hierarchical
Clustering (BHC)P. Cooke et al. [20] applied this hierar-
chical clustering scheme to gene expression time-series
with a GP prior, and we extend their work using a hier-
archically structured GP to model the clusters, as well as
the efficient computation of the marginal likelihood as per
equation (15).

The algorithm is depicted in Algorithm 1, and works in
a ‘bottom-up’ fashion. Starting with each gene in an indi-
vidual cluster, the clusters are merged by greedily selecting
the merge which maximises the log marginal likelihood of
the data (by summing the log marginal likelihood over all
clusters). Once no more merges are available to improve
the overall marginal likelihood, the hyper-parameters are
optimised, and the procedure is repeated with the new
covariance function in an EM fashion.

Results and discussion

In a recent study of Drosophila development [21], gene
expression was measured in eight replicates measured
across six species at differing time-points. 3695 genes
(with orthologs across the species) were investigated using
Agilent microarrays. Here we focus on Melanogaster
development: time courses for typical genes are shown
in Figure 2 and 3, with eight replicates at up to thirteen
time-points. Note in particular that no replicate contains
all the time-points: some replicates cover only the last few
points, whilst some have broader coverage.

For all the missing data experiments, the covariance
function hyper-parameters were set to the maximum like-
lihood value using gradient based-numerical optimisa-
tion. Whilst we show that the hierarchical GP has better
performance than the GP in all cases, it does not require
any extra computation. All experiments took only a few
minutes on a desktop PC.

Missing data imputation

The imputation of missing data is a straightforward
method for validation of our model. In this Section, we
remove data systematically, effectively removing entire
microarrays from the experiment and predicting what was
on them. Most missing data imputation methods cannot
handle this type of missing data, highlighting an advan-
tage of our method. This experiment also validates our
assertion that it is important to include the replicate struc-
ture in modelling microarray time-series, and that simply
averaging the data on a time-point basis is not satisfactory.
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Algorithm 1 Cluster
time-series

replicated gene expression

~ N .
Inputs: observed data for each gene, Y = {y,},%,; times
of observations t,; initial hyper-parameters 6.
Repeat until convergence:

¢ Define a set of Ny active clusters, each containing a
single gene.

e Compute the covariance matrices Kj and X, from
the current hyper-parameters 6.

e Compute the overall log-marginal-likelihood as the
sum of that for all (active) clusters as per equation (15)

® Repeat until no merges are possible:

— Compute the marginal likelihood for each
potential cluster which can be created by
combining two of the active clusters

— Select the pair which gives the greatest
increase in the overall
log-marginal-likelihood. If this is positive:

* Remove the two selected clusters
from the active set

* Add a new cluster to the active set
containing the genes from each of the
selected clusters

% Update the overall
log-marginal-likelihood

e Optimize the overall log-marginal-likelihood w.r.t.
the hyper-parameters 6.

Whilst systematically missing data are not common in
the laboratory, this test does examine the performance
of our model in some potentially interesting applica-
tions. For example, we may wish to predict the future
gene expression levels of a patient given the time series
observed in other patients.

The results of imputing missing data are compared with
the simple but oft-used technique of averaging the repli-
cates, using both the mean and median of the non-missing
replicates. The method is also compared with a simple GP
model which does not account for replicate structure. We
investigated the effectiveness of our algorithm using vary-
ing amounts of missing data, removing 1, 5, 10 and then
20 of the 56 microarrays at random. Each experiment was
repeated 10 times with different randomisations; for each
we computed the RMSE (root mean square error) aver-
aged over all missing arrays and over all genes. The mean
RMSE and two standard deviations as measured over the
randomisations are shown in Table 1.

Table 1 shows that the hierarchical GP performs bet-
ter at imputing the missing data in all examined cases.
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Table 1 RMSE for missing data imputation for differing
numbers of randomly removed arrays

10of 56 50f 56 10 of 56 20 of 56
HGP 0.30+0.27 0.32+0.09 0.34+0.05 0.38+0.06
GP 046 £0.23 044 £ 0.09 043 £0.08 046 £ 0.07
Mean 052 £0.24 048 £0.12 048 £0.11 048 £0.08
Median 0504025 046 +0.11 047 £0.11 048 £ 0.08

The rows correspond to Hierarchical GPs (HGP), non-hierarchical GPs (GP), and
imputation using the mean and median of available replicates. Columns
represent increasing amounts of missing data.

Although the Table shows only the average over ran-
domisations, the HGP algorithm gave the lowest RMSE
for every randomisation that we tried. The standard
deviations in the Table generally decrease as the number
of missing points increases. This reflects the degree to
which the missing data imputation depends on which
time-points are missing, which may be due to the differ-
ent temporal sampling schemes employed in the different
replicates.

We note from Table 1 that our contribution of adding
replicate structure to the GP methodology makes a sig-
nificant difference to the results, since the standard GP
offers only modest improvement over the simple averag-
ing methods. We also note that the averaging methods are
only possible where time-points are duplicated between
replicates, a restriction which the (H)GP methodology
removes.

Randomly missing data imputation

Our proposed model is novel in the sense that it can
impute entire missing arrays, as above. Most missing
data algorithms assume randomly missing data and use
correlation between genes for imputation. To compare
our algorithm with those from the literature, we ran-
domly removed 100 values from the Melanogaster dataset,
and measured the error on imputation. For comparison,
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we also used two popular methods, K-nearest-neighbour
(KNN) [22] and Bayesian principal component analysis
(PCA) [23].

Gene expression experiments usually contain many
types of effect aside from the one under study. In this
case, the data includes cross-sectional effects which arise
from array-specific and sample-specific causes, and are
not due to the underlying time-series. These are treated
as noise by our model, whereas PCA and KNN make no
distinction between longitudinal and cross-sectional vari-
ance and will freely impute these effects. This is illustrated
in Figure 4, where cross-sectional effects mean that the
missing datum’s true value lies below that seen by aver-
aging the replicates, or imputed by HGP. The HGP and
KNN methods, being sensitive to these effects impute
the true value well, despite it being inconsistent across
replicates.

To test the methods’ abilities to impute the replicable
part of the signal, we tested the imputed values of
the three methods against the median value for the
missing time-point, averaged across replicates. We mea-
sured the RMSE over the 100 imputations, and repeated
the experiment 10 times with different randomisa-
tions. The mean RMSE (over randomisations) and two
standard deviations are shown in the first column
of Table 2.

Another way to investigate the ability of the model
to deal with missing data is to examine the differ-
ence between the model as inferred with some missing
points to that inferred with all the data: the results of
doing so are shown in the second column of Table 2.
Whilst this method may not give a completely fair
reflection of the performance of the PCA and KNN
methods, the small size of the errors on imputa-
tion imply that our model is relatively insensitive to
missing data: because the model can borrow statisti-
cal strength from other replicates, small amounts of
data missing at random make little difference to the
model.

—2F

x

0 5101520 0 510152 0 5 10
Figure 4 An example of randomly missing data imputation. Here, the left-most pane shows the inferred mean function for the gene g,(t), and
the next three panes show three replications, in the last of which the missing data imputation occurs. Other replications are omitted for brevity. The
final panel shows a zoom of the imputed region (boxed in the previous panel). Imputation by the HGP is marked by a circle on the mean function;
replicate median is denoted by a square; PCA is denoted by a diamond and KNN by a triangle. The HGP imputation is closer to the replicable
statistic, being less affected by cross-sectional noise effects than the other methods.
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Table 2 RMSE of missing data imputation for hierarchical
Gaussian processes (HGP) principal component analysis
(PCA) and K-nearest neighbour (KNN)

Replicate median Full model
HGP 0.13 +£0.03 0.05 +0.01
PCA 0.15£0.03 0.10 £ 0.02
KNN 0.17 £ 0.04 0.13+£0.02

The first column shows the RMSE measured against the replicate-median, and
the second column shows the RMSE against the model with no missing data.

Data fusion

The data under investigation are sampled at two-hour
intervals. To improve our knowledge of the system, it is
possible to perform data fusion with existing data sets. We
demonstrate this with two previous studies: [4,24], which
offer more tightly temporally-spaced data, but with fewer
replications (three and one respectively).

We constructed a hierarchical model across the three
experiments, and across replicates within the experi-
ments. The data were considered on a gene-by-gene basis,
and the model was optimised for each gene. An example
gene (Acer) is shown in Figure 5. The figure shows the
inferred function for each replicate in each experiment,
as well as the inferred mean function for each experiment
(first column) and the inferred ‘top-level” function (inset)
which underlies all the experiments.

Clustering

In order to investigate the usefulness of our model in a
clustering task, we first selected 300 dynamically differen-
tially expressed genes using a method similar to [7].

We computed the marginal likelihood using our hierar-
chical model and a simpler GP model without replicate-
specific or gene-specific variance. This model, simply
fitting a GP to the lumped data is similar to the method
proposed in [20], which represents the current state-of-
the-art. Cooke et al [20] compared their method to sev-
eral other algorithms and concluded that the GP method
allowed for the discovery of clusters in a more effec-
tive manner than non-temporal models. Here we show
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that this method can be improved further by considering
the gene-wise and replicate-wise intra-cluster structure
of the data’s variance. For both models, we applied the
EM algorithm with several restarts (varying the covari-
ance function hyper-parameters on each restart), selecting
the solution with the highest log-likelihood. We used our
own implementation for Cooke et al’s method to ensure
that results were comparable: i.e. that improvements in
the method were due to the HGP structure, rather than
specifics of the implementation. We are primarily con-
cerned with the improvements that the HGP model can
offer in explaining cluster variance, and this allows for a
direct comparison.

For further comparison, we used the R package Mclust
[25]. Mclust fits a range of Gaussian models of increasing
complexity; in the first instance, we simply concatenated
the replicates and Mclust struggled to fit some models
in the 56 dimensional space. Subsequently, we provided
Mclust with shorter vectors formed by averaging the repli-
cates at each time point, which gave similar results. We
include the validation for both methods. In both cases,
we used all available covariance structures for Mclust,
and let the package pick the best using its BIC (Bayesian
Information Criterion) approach.

In order to validate the different clusterings, we use the
biological homogeneity index (BHI) [26], which assesses
the number of genes with common function within each
cluster, assigning the entire clustering a score from 0 to
1 with larger values corresponding to more biologically
homogeneous clusters. For biological annotation, we used
the three gene ontology (GO) categories (data obtained
using biomaRt [27]), which correspond to molecular func-
tion (MF), biological process (BP) and cellular component
(CC). Computation of the BHI is then straightforward: it
is the proportion of within-cluster pairs that share at least
one biological annotation. The BHIs and log-likelihoods
for all the experiments are shown in Table 3. We note
that other comparisons between the clusters and the Gene
Ontology may be possible, for example the GO term over-
lap score [28,29], but we use the BHI here for ease of
interpretability.

Replicate 1 Replicate 2 Replicate 3

Replicate 4 Replicate 5 Replicate 6 Replicate 7 Replicate 8

RGN

Kalinka '09

my/'\x;/ S~
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Tomancak '04

J,’ s ‘\7 ) B4 \\\\4

0 5 10 15 20 25 5 10 15 20 25

28l

Hooper ‘07

5 10 15 20 25 5 10 15 20 25

(Y-scales removed for clarity but are consistent between plots).

Figure 5 Hierarchical GP regression on across three data sets, for the gene Acer. Each data set is represented by one row, and each replicate
within a data set is represented by a single pane in that row. Shaded regions represent 95% confidence intervals. Inset: the fused time-series.

Fused time series
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Table 3 Results of clustering 300 genes using the four
proposed algorithms

MF BP cc L N. clust.
Agglomerative HGP 092 0.32 1.0 7360.8 50
agg. GP (as Cooke et al)) 0.78 0.26 0.72 6203.7 128
Mclust (concat.) 0.78 0.14 0.50 1324.0 26
Mclust (averaged) 0.80 016 042 -736.2 20

The first three columns report the Biological Homogeneity Index (BHI) for the
gene ontology categories of Molecular Function (MF), Biological Process (BP)
and Cellular component (CC). The two last columns report the log-likelihood £
of the models and the number of recovered clusters.

From the Table, it can be seen that HGP method
improves the biological homogeneity for all three GO
categories. By directly comparing with the standard GP
method, we have demonstrated that the improvement in
clustering performance is not due simply to the cluster-
ing methodology or the GP correlations which give the GP
method a small improvement over Mclust, but the hier-
archical structure of intra-cluster variance which allows
genes and replicates to differ in a temporally-correlated
fashion.

Conclusions

We have presented a method based on hierarchically
structured GPs, which are a practical and flexible frame-
work for modelling replicated time-series. The framework
has a wide range of applications, and can be extended for
various data structures besides biological replications.

The method performed well in several tasks, including
missing data imputation and clustering. We have shown
that the method performs particularly well in missing data
imputation, and that small amounts of missing randomly
data have only a minor effect of the model. Biological
validation through the BHI confirms the importance of
modelling intra-cluster variance in a hierarchical fashion.

Above we showed how fitting the simplest of our pro-
posed models can lead to a quantitative assessment of how
biological replications are behaving, as well as illustrat-
ing how our method deals with different types of replicate
variation. Of course, if the replicate variance is truly inde-
pendent — e.g. if only technical variation is present —
then we recover standard GP regression. In this case the
hierarchical approach requires the inclusion of an extra
parameter, but we find that the additional computational
complexity is negligible.

A problem with standard GP regression is that the com-
putational complexity grows cubically with the number
of data. We have presented a method which exploits the
necessary condition that all genes in a cluster are mea-
sured on the same time-points in order to significantly
reduce the computational complexity and make our clus-
tering algorithm applicable to large data sets. We note that
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the complexity of the clustering algorithm scales poorly
with the number of genes: the initial step of the algorithm
must compare the likelihood of merging of each pair. To
address this, randomised versions of the same algorithm
can be adopted [30,31], and our hierarchical model and
its efficient computation as (15) could be used with no
modification.

Whilst we have demonstrated that our model is useful
in several applications, we envisage a number of exten-
sions. For example, our model could be used for data
fusion of microarray data with high-throughput sequenc-
ing data. Or, the hierarchical structure could be used in
models of pathway activity [32], which may include prior
information about gene groupings from Gene Ontology.

Although we have only used simple GP models within
our hierarchical structure, the idea can be applied to more
complex GP models, such as those proposed to model
gene interactions [9,33].

Endnotes

2 Other noise distributions are possible, but break the
conjugacy of the model and thus complicate inference,
see [10].

b Note that hierarchical in this sense means a
hierarchical partitioning of the genes, distinct from our
Bayesian hierarchical model applied within the cluster.

Appendix

Efficient computation of a cluster likelihood

The expression for the marginal likelihood of a cluster of
genes as given in equation (15) can be derived by con-
sidering the values of the underlying function /() at the
time points t, which we denote h. The model (for a single
cluster) can be written:

p(Yi|Ty) = /P(hlt*) HP(Yk|h,t*) dh. (16)

kGCi

This consists of a prior for the latent variable h and a
likelihood for the data associated with each gene in the
cluster, conditioned on the latent variable. The objective
here is to marginalise (integrate-out) the latent variable to
achieve a tractable expression. Expanding equation (16),

POYIT) = / (2)~ (VDD 5 1N/ g, 12

1
expq — EhTK;lh

1, 1
=52 =W G~ ¢ dh
kEC,’

(17)
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Some re-arrangement and completing the square inside
the exponent leads to

P(YIT) = / (2m)~HDDP2 N2, 1

1 ~ ~
exp{ — E(h—h)TA(h—h) 8)

log o 1 ATw—1a
—5h Ah—EZyk =Y ¢ dh

kec;

where we have defined for brevity A = I(;1 +Ng=, ! and

h=A"! E_lNgii. The first and third lines of this expres-
sion can be moved outside the integral, and we recog-

nise the Gaussian nature of fexp {—%(h — fl)TA(h — ﬁ)}
dh = (27)P/2|A|1/2. Substituting this and the expres-
sions for h and A back into (18) leads to the expression
given in (15).
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