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Abstract

Background: Biologists make frequent use of databases containing large and complex biological networks. One
popular database is the Kyoto Encyclopedia of Genes and Genomes (KEGG) which uses its own graphical
representation and manual layout for pathways. While some general drawing conventions exist for biological
networks, arbitrary graphical representations are very common. Recently, a new standard has been established for
displaying biological processes, the Systems Biology Graphical Notation (SBGN), which aims to unify the look of such
maps. Ideally, online repositories such as KEGG would automatically provide networks in a variety of notations
including SBGN. Unfortunately, this is non-trivial, since converting between notations may add, remove or otherwise
alter map elements so that the existing layout cannot be simply reused.

Results: Here we describe a methodology for automatic translation of KEGG metabolic pathways into the SBGN
format. We infer important properties of the KEGG layout and treat these as layout constraints that are maintained
during the conversion to SBGN maps.

Conclusions: This allows for the drawing and layout conventions of SBGN to be followed while creating maps that
are still recognizably the original KEGG pathways. This article details the steps in this process and provides examples of
the final result.

Background
Biological network sources
Life scientists commonly use biological networks from
online databases in research and teaching. As an exam-
ple, metabolic pathways are of high interest for exploring
organism-specific metabolism, mapping -omics data onto
metabolic networks for further analysis, and simulating
metabolic processes using techniques such as flux balance
analysis.
There are various online repositories for biological

pathways, see http://www.pathguide.org/. Here we will
concentrate on metabolic networks. Major databases
for metabolism are the Kyoto Encyclopedia of Genes
and Genomes (KEGG) PATHWAY [1], a multi-organism
pathway database containing thousands of metabolic
pathways, represented as manually drawn pathway maps;
BioCyc/MetaCyc [2], a collection of organism-specific
pathway databases; Reactome [3], a multi-organism
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pathway database initially established with a focus on
human biology; and PANTHER pathway [4], also a multi-
organism pathway database. There are also many special
metabolic pathway databases covering a specific species
or group of species, e. g., PlantCyc [5] and MetaCrop [6]
for plants.
KEGG provides graphical representations for pathways

and the layout information is publicly available for down-
load via the XML-based KGML file format. As KEGG also
contains the largest collection of metabolic pathways we
choose this database for our work.

Biological network visualization
Biological network visualization requires (1) single biolog-
ical elements to be represented by meaningful graphical
symbols (glyphs), and (2) the spatial placement (layout) of
these glyphs to form a readable map.
Exchange of information between humans can often be

enhanced by the use of well-defined unambiguous stan-
dards for visual representation. While informal drawing
conventions exist for the visualization of biological net-
works, arbitrary graphical representations are still com-
monly used. Uniform systems of nomenclature describing
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the components of networks based on a well-defined set
of symbols are well established within fields such as engi-
neering, computer science, and physics. For the visual
representation of biological networks and cellular pro-
cesses the Systems Biology Graphical Notation (SBGN)
has been recently introduced [7]. Similar to wiring maps
in electrical engineering, SBGN allows the unambiguous
representation of biological knowledge using a limited
number of easily recognizable glyphs. The three differ-
ent languages (Process Description, Entity Relationship,
Activity Flow) covered by SBGN enable the representa-
tion of any kind of biological network such as metabolic,
regulatory, and interaction networks on different levels of
granularity. Figure 1(b) shows an example SBGN Process
Description map.
Ideally, online repositories for biological networks

would provide networks in a variety of notations including
SBGN, automatically converting between them as neces-
sary. Such conversions should preserve the existing layout
as much as possible, since it will often have been care-
fully chosen by a human expert to emphasize important
biological features in the map. Unfortunately, this is non-
trivial because the conversion may add, remove or alter
map elements, preventing use of the exact same layout.
Automatic layout of biological networks can be done

with graph drawing algorithms, see the book of [8]. These
techniques have also been applied to specific biological
network layout applications, such as for signal transduc-
tion maps (e. g., [9]), protein interaction networks (e. g.,
[10]), and metabolic pathways (e. g., [11,12]). However,
manually drawn layouts tend to be easier to understand
and aesthetically preferable to automatic layouts. Further-
more, automatic layout methods often cannot fulfill par-
ticular specific layout requirements, such as those given
in the SBGN specification. For example, these approaches
do not allow specification of positions of enzymes ormod-
ifiers relative to processes, layout for reaction groups, or
specific bundled routing via certain paths to draw visual
attention to particular structures.
Here we describe a method to automatically translate

the widely used KEGG metabolic pathways into SBGN
format.We infer important properties of the KEGG layout
and model these as layout constraints that are maintained
during the conversion to SBGN. This allows for style and
layout conventions of SBGN to be followed while creating
maps that are still recognizably the same pathway.
Our approach (see also Figures 1 and 2) relies on

(1) using SBGN as an unambiguous graphical representa-
tion for biological objects and interactions, and (2) solv-
ing geometric constraints which capture structural layout
requirements (e. g., non-overlap of map elements) as
well as arrangement preferences of the original author
(e. g., alignment) for automatic layout based on the origi-
nal KEGG map.

There are three main steps. The first step is to con-
vert the KEGG map into the SBGN Process Description
(PD) [13] notation, adding and deleting nodes and edges
where necessary. The second step involves finding an
arrangement for the nodes in the diagram. It is based on
the constraint-based layout method in [14] which allows
a network map to be laid out subject to computed or
user-specified geometric placement constraints, such as
non-overlap, alignment, and containment. In this step
we start with the layout of the initial KEGG maps to
infer important structural constraints, such as relative
orderings and alignment. We remove overlap between
new or modified nodes while enforcing containment rela-
tionships, preserving structural constraints and follow-
ing the layout guidelines of SBGN. In the third step,
we perform orthogonal edge routing to create routes
for edges which do not overlap nodes or each other
[15]. Our basic approach of using inferred constraints
to preserve existing layout while specifying further con-
straints to enforce required drawing conventions is a
powerful and flexible technique which could easily be
adapted for translating between other biological network
notations.
Constraint-based layout techniques originate with the

early CAD tool SketchPad [16] and are now widely used
in GUI widget layout, CAD systems and diagramming
tools. They have been used for a variety of purposes:
to support parametric objects whose shape changes to
different design contexts, automatic adjustment of user
interfaces and maps to different viewing contexts (e. g.,
[17]), enforcing similarity between consecutive layouts in
interactive and other dynamic settings (e. g., [18]), pre-
serving geometric relationships during editing (e. g., [16]),
and tailoring network map layouts to take into account
layout styles and user interests (e. g., [19]). To the best
of our knowledge our use of them to preserve the user’s
“mental map” of a layout during translation between two
different map notations is novel.
Geometric constraints can either be inferred from a

map or explicitly imposed by the user. Typically con-
straint inference is based on map elements satisfying a
possible constraint within some error tolerance [20,21],
but may also take into account syntactic requirements
of the particular map notation [22]. A wide variety of
different techniques have been suggested for solving geo-
metric constraints in graphical applications [23]. Our
approach utilizes constrained-satisfaction methods for
constrained graph layout [14,19] in combination with
automatic orthogonal edge routing techniques [15].
Some of the closest work to ours is research on con-

verting from SBML [24] or BioPAX [25] formats into
graphical formats like SBGN. Some examples for SBML
are Arcadia [26], which uses GraphViz [27] for layout
and the SBML Layout Extension [28]. BioPAX to SBGN
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Figure 1 Pentose phosphate pathway from the KEGG database. Part of the pathway map shown as (a) SBGN representation after translation
without layout adjustment, and (b) SBGN representation after translation with constraint layout applied (see also Figures 2, 3 and 4 for a complete
version of the map).
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Figure 2 Pentose phosphate pathway from the KEGG database. Part of the pathway map shown as (a) KEGG reference image, and (b) KGML
representation (see also Figure 1).

conversion is done, for example, by Paxtools [29] and
BioUML [30]. However, these approaches can’t translate
the widely used KEGG maps into SBGN, and they mostly
compute entirely new layouts rather than utilizing lay-
out information derived from the original (KEGG, SBML,
or BioPAX) map. Tools such as KEGGtranslator [31] and
MGV [32] can load and translate KEGG maps but also do
not support layout adjustment based on information from
the original KEGG map.

Methods
Translation of KEGG to SBGN
Some pathway database providers have begun to adopt
SBGN for the graphical representation of pathways

[3,4,6,33,34]. However, the popular KEGG database still
provides pathway maps in its own representation both
as static image files and as KGML files for utilization in
software tools.
The KGML files serve as the basis for our translation

from KEGG to SBGN since they contain all informa-
tion (including layout information for pathway entities)
necessary to reconstruct a pathway map. Note that the
static KEGG images contain often less edges than the
corresponding KGML file as several reactions are often
manually reduced to a single reaction in the static image.
We will focus on the translation of metabolic pathways
from the KEGG representation (KGML) to SBGN Process
Description (PD) maps.
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In general, a pathway map can be considered as a graph
G = (V ,E) composed of a set of nodes V representing
pathway entities and a set of edges E, where each edge con-
nects two nodes and thus represents a relation between
the pathway entities. KEGG pathway maps in particu-
lar consist of several types of nodes and edges [35]a. Let
GK = (VK ,EK ) be a graph representing a metabolic path-
way map from the KEGG database. In metabolic pathway
maps from KEGG all three types of nodes can be found:
(1) gene product, mostly protein but including RNA node
vGP ∈ VK , (2) other molecule, mostly chemical compound
node vOM ∈ VK , and (3) another map node vAM ∈ VK .
In addition, two types of edges can be found: (1) molec-
ular interaction or relation edge eMI ∈ EK and (2) link
to another map edge eLM ∈ EK . A typical drawing of a
KEGG pathway map can be seen in Figure 2(a), a gene
product node vGP is drawn as a rectangle showing a reac-
tion, an other molecule node vOM is represented by a circle
showing a substrate or product of a reaction, another map
node vAM is drawn as a rectangle with rounded corners,
a molecular interaction or relation edge eMI is shown as
an edge with a filled arrowhead, and a link to another
map edge eLM is drawn as a dotted edge with an empty
arrowhead.
For all elements of a KEGG metabolic pathway map a

respective element (or several respective elements) in the
SBGN Process Description (PD) language can be found;
for a description of all SBGN PD elements see [13]. How-
ever, to create a valid SBGN PDmap the number of nodes
and edges increases during the translation as described
below. Let GS = (VS,ES) be a graph representing the

SBGN PDmap. The translation of an other molecule node,
another map node, and a link to another map edge from
KEGG to SBGN PD is a one-to-one translation: an other
molecule node vOM is mapped to a simple chemical node
vSC ∈ VS, a another map node vAM is mapped to a submap
node vSM ∈ VS including the required number of termi-
nal nodes vTE ∈ VS, and a link to another map edge eLM is
mapped to an equivalence arc edge eEA ∈ ES. A reaction in
a KEGG pathway map shown by a gene product node vGP
is translated to a macromolecule node vMA ∈ VS showing
the enzyme catalyzing the reaction plus an additional pro-
cess node vPN ∈ VS showing the reaction itself. Both nodes
are connected by an additional catalysis arc edge eCA ∈
ES. The translation of a reaction node therefore increases
the number of nodes and edges. Molecular interaction or
relation edges eMI have to be translated according to the
reaction they are connected to. In case of an irreversible
reaction the edge eMI from the substrate node to the reac-
tion node is translated to a consumption arc edge eCA ∈ ES
and the edge eMI from the reaction node to the product
node is translated to a production arc edge ePA ∈ ES. For
reversible reactions the translation is simplified, all edges
eMI are translated to production arc edges ePA ∈ ES indi-
cating the reversibility of the reaction. See Table 1 for
more information about the translation process, Figures 1
and 2 for detailed examples and Figures 3 and 4 for the full
maps.
As an added complication, the KGML files for some

pathway maps have errors and do not contain the com-
plete information necessary for a correct automatic trans-
lation. Typical KGML errors are missing information

Table 1 Translation of KEGGmetabolic pathways to SBGN PDmaps using KGML files

KEGG representation KGML representation SBGN PD representation

Irreversible reaction

Reversible reaction

Several reactions
between compounds

Link to another map

The KEGG, KGML, and SBGN PD representation is shown for irreversible reaction, reversible reaction, several reactions between compounds, and link to another map.



Czauderna et al. BMC Bioinformatics 2013, 14:250 Page 6 of 17
http://www.biomedcentral.com/1471-2105/14/250

Figure 3 Pentose phosphate pathway (KEGG). Pentose phosphate pathway from the KEGG database (http://www.kegg.jp/kegg/pathway/map/
map00030.html), reference image.

about (1) the reversibility of a reaction, (2) the type of
a compound (substrate or product) or (3) substrates and
products of a reaction at all.We automatically detect these
rare cases and render the relevant nodes and edges in red
to highlight the ambiguity.

Layout process
Pathway diagrams contained in the KEGG database are
manually drawn [35] and provide a layout that empha-
sizes the biological features regarded as important by
the author. A reference image for each pathway is
available online (http://www.kegg.jp/kegg/pathway.html).
These images show the pathways in a simplified manner
where the number of edges is reduced. In principle, a reac-
tion taking place between two compounds is shown by
an edge drawn from the substance to the reaction node
and an edge drawn from the reaction node to the product.
If several reactions take place between two compounds
there is only one edge drawn between the two compounds
and the reaction nodes are drawn together underneath or
above the edge.

In contrast, the KGML files provided by the KEGG
database contain enough information to reconstruct all
nodes and all edges but do not include the complete layout
information. The files only contain node layout infor-
mation (node positions, node sizes) but do not contain
edge routing information. Thus, a KEGG pathway map
can be reconstructed from a KGML file that preserve the
author’s intended layout except for the edge routing (see
Figure 2(b)).
The translation of KEGG metabolic pathways to SBGN

PD maps increases the number of nodes and edges as
described in Section “ Translation of KEGG to SBGN ”
and thereby breaks the initial layout by introducing node
overlaps (see Figure 1(a)).
Scaling the space between nodes in both the x and

y dimension would be a straightforward solution to
eliminate node overlaps but has the disadvantage that
the maps become unnecessarily large due to increased
whitespace. Furthermore, we would still need to pro-
duce new routes for edges. For this reason we perform
automatic layout of the SBGN PD maps. This process is

http://www.kegg.jp/kegg/pathway/map/map00030.html
http://www.kegg.jp/kegg/pathway/map/map00030.html
http://www.kegg.jp/kegg/pathway.html
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Figure 4 Pentose phosphate pathway (SBGN). Pentose phosphate pathway from the KEGG database (http://www.kegg.jp/kegg/pathway/map/
map00030.html), downloaded as KGML file, translated to SBGN and laid out using constraints with the described method.

designed to (1) preserve the original layout intent of the
author, including the use of orthogonal edge routing and
(2) arrange the pathway map according to SBGN layout
rules.
The specification for SBGN PDmaps describes require-

ments and recommendations for layout which govern
the visual appearance and aesthetics of the Process

Description (PD) language [13]. Layout requirements and
recommendations most important for the translation of
KEGG metabolic pathway maps to SBGN PD maps are
summarized below:

1. nodes are not allowed to overlap, except where one
node is contained by another;

http://www.kegg.jp/kegg/pathway/map/map00030.html
http://www.kegg.jp/kegg/pathway/map/map00030.html
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2. if an edge crosses a node it must be drawn on top, it
is recommended that edges not cross nodes;

3. edges are not allowed to overlap the border line of
nodes;

4. edges are not allowed to overlap each other (only
crossing is allowed);

5. consumption and production arcs are attached to the
center of opposite sides of a process node;

6. catalysis (modulatory) arcs are attached to the two
other sides of the process node;

7. at least a part of a label has to be placed inside the
node it belongs to;

8. labels should be horizontal; and
9. the number of crossings between edges should be

minimized.

Conceptually, the layout process is performed in two
main steps. The first stage determines a position for the
nodes in the SBGN map. It starts with a desired position
for each node based on their positions in the KEGG map
and a set of geometric constraints. Then a greedy heuristic
is used to find node positions that satisfy these constraints
and avoid overlap between nodes (Requirement 1 above).
The second stage is to take the resulting node positions as

well as edge connection information and compute orthog-
onal object-avoiding paths for edges. The paths satisfy
Requirements 2–6. In the next sections we describe these
stages in more detail.
We follow Requirements 7 and 8 when drawing labels,

although it is often unavoidable that this results in text
that overlaps other objects. The final recommendation of
minimizing edge crossings is a known intractable prob-
lem [36], but we employ heuristic approaches that give
reasonable results.

Computing node positions
The first stage of the layout process is to find node posi-
tions using constraint-based layout. This takes sizes and
a desired position for each node (from the KGML layout
description file) as well as a set of constraint relationships
that we would like to be satisfied. These constraints are
of three types: (1) Recognizability: Alignment and sepa-
ration constraints are used to preserve recognizability of
the original KEGG layout and the author’s original lay-
out intent; (2) Beautification: Non-overlap and spacing
constraints are used to make sure the new layout is not
bad; and (3) Style: Enforcement of SBGN style using con-
tainment and alignment constraints for hierarchical nodes

Figure 5 Pentose phosphate pathway from Figure 1(b). Pentose phosphate pathway from Figure 1(b) with alignment, separation, containment,
fixed-relative-position constraints and reaction group shown. Non-overlap constraints are determined automatically, taking into account
containment constraints. Node labels have been removed for better readability.
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Figure 6 Glycolysis / Gluconeogenesis (KEGG). Glycolysis / Gluconeogenesis from the KEGG database (http://www.kegg.jp/kegg/pathway/map/
map00010.html), reference image.

http://www.kegg.jp/kegg/pathway/map/map00010.html
http://www.kegg.jp/kegg/pathway/map/map00010.html
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Figure 7 Glycolysis / Gluconeogenesis (SBGN). Glycolysis / Gluconeogenesis from the KEGG database (http://www.kegg.jp/kegg/pathway/map/
map00010.html), downloaded as KGML file, translated to SBGN and laid out using constraints with the described method.

http://www.kegg.jp/kegg/pathway/map/map00010.html
http://www.kegg.jp/kegg/pathway/map/map00010.html
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and fixed-relative-position constraints to keep macro-
molecules positioned in relation to process nodes in a
reaction and non-overlap of nodes. These constraints are
shown for our previous example in Figure 5.
Recognizability constraints are determined by analyz-

ing the network to find groups of nodes that are visually
aligned in the original KEGG layout. When looking for
x or y alignment we use a small tolerance to include
cases where there was an obvious visual intention to
align objects but they are not pixel perfectly aligned. This
alignment inference is performed for all compounds (sim-
ple chemicals in SBGN) and reactions (process nodes in
SBGN) regardless of whether or not they are connected.
Once we have determined the alignment relationships
we add separation constraints between each alignment
group to preserve the relative orthogonal order of these
within the layout. If two compounds are aligned either in
x or y direction and several reactions take place between
them, additional alignment and separation constraints are
defined for these reactions to line them up in horizontal
or vertical reaction groups (see Figure 5).
Beautification constraints are non-overlap constraints

generated between all nodes to stop them from over-
lapping and to leave enough empty space between them
for subsequent edge routing. To achieve this spacing, we
specify slightly enlarged sizes for nodes during the layout
step.
In order to satisfy the drawing conventions of SBGN we

define Style constraints for the containment of hierarchi-
cal nodes and to keep particular nodes in a fixed position
relative to each other.
According to the SBGN specification, submaps contain

terminal nodes graphically shown as overlapping nodes
contained within them but sharing a border. Thus con-
tainment constraints have to be defined for submaps and
the corresponding terminals to force them to be posi-
tioned within their parent node and to prevent overlap
constraints being generated between them. Additionally,
an alignment constraint between a submap and each of
its terminals has to be defined to keep the terminals
positioned on the border of the submap.
For a macromolecule and a process node connected by

a catalysis arc the relative position is fixed by two con-
straints, either an alignment constraint in x direction and
a separation constraint specifying a fixed distance in y
direction or vice versa.
For the layout, the high-level geometric relationships we

use are represented at a low level in the solver as mul-
tiple separation constraints of the form u + g ≤ (=) v,
enforcing a minimum (or precise) gap g between the posi-
tions u and v of pairs of objects in either the x or y
dimensions of the drawing [19]. For example, a vertical
alignment between three nodes would be represented as
a position variable for the alignment and three equality

constraints that force the x position of each node to be
the same as the alignment position. Alignment, separation
and fixed-relative-position constraints are specified at this
high-level. We use the algorithm from [19] to project the
desired position of the objects onto the low level sepa-
ration constraints—this means that objects are placed as
close as possible to the desired position while satisfying
the layout constraints.
However, not all layout constraints have a direct trans-

lation to separation constraints. For instance, non-overlap
of two objects can be modeled by choosing to constrain
the first object to be “above”, “below”, “left” or “right” of the
second: the best choice depends upon the desired object
position and interaction with other constraints. We solve
this by using the greedy heuristic described in [14]. Using
this method, we do not specify non-overlap constraints
using individual separation constraints, but instead let the
solver compute the choice for how best to resolve overlap.
Importantly, we give non-overlap constraints a lower pri-
ority, hence considering them after all other constraints
have been satisfied. The four alternatives for enforcing
each non-overlap constraint are ranked based on min-
imizing potential node movement. We try adding each
alternative in turn until we find one that does not cause
itself or previously added constraints to become unsatis-
fied. Each time we encounter an unsuccessful alternative
we backtrack by resetting node positions to their earlier
values and try a different alternative.
Since we require the non-overlap requirement to be

relaxed for nodes contained within submaps, we extended
the method in [14] so that containment hierarchies may
be specified. The solver then considers these containment
relationships when resolving non-overlap, and instead
generates separation constraints keeping children inside
parent nodes as well as non-overlap constraints between
siblings at each level of the hierarchy. An added benefit of
this is that nodes at each level of the hierarchy are stan-
dard objects within the layout engine, which allows addi-
tional constraints between them, such as the alignment of
terminal nodes on the boundary of submaps.

Edge routing
To achieve high quality layout that follows the drawing
conventions of SBGN there are several requirements for
the edge routing. We require that edges do not cross or
touch nodes other than at the point where they are con-
nected to that node. The edge routes themselves should
be orthogonal paths made up of only vertical and horizon-
tal line segments with the minimum cost (i. e., weighted
sum of the total length and number of segments).We draw
these edges with slight rounded corners but this is not a
consideration in the routing problem itself. Finally, where
resultant edge routes share paths with each other, even
when connected to a common node, we require that they
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are nudged apart so that they may be visually discerned,
as per the SBGN specification.
Edge routing is performed using a technique that gen-

erates an orthogonal visibility graph from a set of rect-
angular obstacles and uses this to generate orthogonal
object-avoiding routes [15]. The edge router requires us
to give the locations of all nodes as rectangles with posi-
tions, as well as the edges and information on the nodes
to which they are connected. We are able to specify con-
nection ports on a node, which are specific positions
and directions by which an edge must be routed into
the node.
For most nodes we require that edges connect from any

direction to the center of the node, though are only drawn
to its border. For process nodes and macromolecules we
define specific ports on the nodes which specify a par-
ticular position and direction that catalysis, consumption
and production arcs must attach to. We use expanded
node dimensions for process nodes and macromolecules,
so that no edges cross catalysis arcs. We also specify con-
nection ports on terminal nodes to force edges to connect

to them at the boundary they share with their containing
submap.
For reaction groups we route edges from each of the two

compounds together so they diverge at a common point
inside the reaction group, see Figure 5. This was done by
extending the routing method in [15] to allow specifica-
tion of checkpoints that must be visited by a route. This
effectively involves routing individual sub-routes between
pairs of endpoints or checkpoints along a route while
appropriately penalizing bends occurring at the check-
points.
After routing is performed, we use the nudging feature

of [15] to separate overlapping edge routes. We extended
this nudging to also include final edge segments attached
to nodes. While these would usually be fixed in place due
to attaching to a pin or the center of a node, if multiple
edges all enter a node from one side we allow these to
be spaced apart up to the bounds of the node. We also
modified the nudging to take checkpoints into account.
We also found that it was fairly common for fixed-

distance nudging to fail when there were many edges

Figure 8 Citrate cycle (TCA cycle) (KEGG). Citrate cycle (TCA cycle) from the KEGG database (http://www.kegg.jp/kegg/pathway/map/map00020.
html), reference image.

http://www.kegg.jp/kegg/pathway/map/map00020.html
http://www.kegg.jp/kegg/pathway/map/map00020.html
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running through a limited space. For this reason we made
the fairly simple extension of having the router recursively
try increasingly smaller nudging distances for individual
bundles of edges when this occurs.

Results and discussion
Our implementation of the described technique for trans-
lation of KEGG pathways into SBGN is available in
SBGN-ED [37], an add-on for the VANTED framework
[38]b. This article describes a complete automated process
for translating KEGG maps to SBGN, including detection
and display of ambiguous informationc. In addition to the
translation process, we detail additions to our previous
constraint-based layout [14] to allow containment hier-
archies. The article also extends our prior edge routing
work [15] with checkpoints and improved nudging, which
permit edge bundling for reaction groups.
We have applied this completely automated pro-

cess to a large number of examples from the KEGG
database. Some examples of the SBGN diagrams along

with the original KEGG reference images are shown in
Figures 3, 4, 6, 7, 8, 9, 10 and 11. It takes an average of
four seconds to complete the translation and layout pro-
cess for an individual pathway. For some larger pathway
maps from the KEGG database with up to 300 nodes the
overall process can take up to 15 seconds.
Notice that layout features and the overall look of the

original maps are retained in the produced SBGN exam-
ples, including prominent vertical pathways in Figures 6,
7, 10 and 11, the TCA cycle in the lower half of Figures 8
and 9, and recognizable reaction loops in all three of
these examples. The quality of our produced layouts show
that the described method does a good job of translating
KEGGmaps into SBGNmaps while preserving important
aspects of the layout.
There are also some limitations to our approach. Firstly,

it can be slow for very large examples. While it is fast for
small examples and the layout algorithms have polynomial
complexity, they can take up to 30 minutes for a network
with 2,000 nodes and 2,000 edges. We are investigating

Figure 9 Citrate cycle (TCA cycle) (SBGN). Citrate cycle (TCA cycle) from the KEGG database (http://www.kegg.jp/kegg/pathway/map/map00020.
html), downloaded as KGML file, translated to SBGN and laid out using constraints with the described method.

http://www.kegg.jp/kegg/pathway/map/map00020.html
http://www.kegg.jp/kegg/pathway/map/map00020.html
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Figure 10 Valine, leucine and isoleucine degradation (KEGG). Valine, leucine and isoleucine degradation from the KEGG database (http://www.
kegg.jp/kegg/pathway/map/map00280.html), reference image.

http://www.kegg.jp/kegg/pathway/map/map00280.html
http://www.kegg.jp/kegg/pathway/map/map00280.html
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Figure 11 Valine, leucine and isoleucine degradation (SBGN). Valine, leucine and isoleucine degradation from the KEGG database (http://www.
kegg.jp/kegg/pathway/map/map00280.html), downloaded as KGML file, translated to SBGN and laid out using constraints with the described
method.

http://www.kegg.jp/kegg/pathway/map/map00280.html
http://www.kegg.jp/kegg/pathway/map/map00280.html
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some possible improvements in this area. Secondly, we
currently do not focus on producing compact layouts,
though it would be possible to adapt the techniques to
achieve this and still satisfy all the layout constraints.
Thirdly, we can sometimes have issues positioning large
numbers of edges routed along common paths if there is
not enough space between elements for them to be ideally
spaced. We could look at moving objects slightly to make
space in this case, again taking advantage of the layout
constraints so as not to degrade the quality of the layout.
While not necessarily a limitation of our approach,

labels on the maps we produce can be difficult to read
when they overlap with other elements. The SBGN spec-
ification requires that shapes representing compounds
have a fixed shape, rather than being sized to fit labels.
Also, it dictates that labels must be drawn on shapes,
which precludes us employing various approaches to map
labeling that have been investigated to solve this general
problem. The SBGNworking group are aware of the prob-
lem and these requirements will hopefully be changed in
future revisions of SBGN.

Conclusions
Databases of biological networks are widely used in
research and teaching by life scientists. While graphical
representation of these networks follow some common
drawing conventions they still often make use of various
somewhat arbitrary notations. Ideally, databases contain-
ing biological networks should provide these networks in
a variety of graphical representations including SBGN.
We have described a method to automatically trans-

late pathway maps from the well-known and widely used
KEGG pathway database into a SBGN representation. We
employ a constraint-based layout method to follow draw-
ing and layout conventions of SBGN while preserving
important layout features of the KEGG layout, allowing
the resulting map be easily read and to remain recogniz-
able as the original. The latter is especially important since
KEGG pathways are manually drawn so that their layout
emphasizes biological relationships regarded as important
by domain experts.
Our proposed constraint-based layout method could be

adapted for use on SBGN maps converted from SBML
or BioPAX formats. Similarly, these maps would mainly
consist of the SBGN elements simple chemical, macro-
molecule, process, and the corresponding arcs. The main
difference is that position information is not specified in
BioPAX format or in SBML format (when not extended
by layout information using the SBML Layout Extension
[28]). Thus positions have to be determined from the
context of the map, e. g., fixed relative position of a macro-
molecule and a process node connected by a modulatory
arc, or positioned first with more traditional graph layout
approaches.

In terms of future work, we would like to investigate
doing some form of compaction on the final layout, since
our method can still sometimes result in unnecessary
white-space being added into the maps. We would also
like to improve the case of detecting otherwise uncon-
strained reactions that appear to be incorrectly left out
of alignment relationships. Adjusting the alignment infer-
ence tolerance may solve this for individual maps, but
we would like to do this analysis by looking at the net-
work structure as well as the inferred constraints so that
it works more generally. While not particularly difficult,
solving these issue are important since they tend to be
examples of the more obvious problems that users will
notice in automatically generated layouts. It could also be
interesting to translate the large KEGG global maps into
SBGN using our technique.

Availability and requirements
• Project name: SBGN-ED
• Project home page: http://www.sbgn-ed.org
• Operating system(s):Windows (32-bit, 64-bit),

Linux (32-bit, 64-bit), and Mac OS (32-bit, 64-bit)
• Programming language: Java 6/7
• License: GNU GPL 2.0

Endnotes
aFor a detailed description see http://www.kegg.jp/

kegg/document/help_pathway.html.
bSBGN-ED with KEGG to SBGN translation including

automatic layout is currently available for Windows
(32-bit, 64-bit), Linux (32-bit, 64-bit), and Mac (32-bit,
64-bit).

cIn contrast, our previous simple KEGG-SBGN
conversion in [37] did not translate all elements (such as
groups), did not highlight errors from the KGML, and
included no layout or edge routing other than scaling up
the entire diagram to reduce overlaps.
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