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Abstract

have broad applicability are evidently needed.

Background: Accurate recognition of regulatory elements in promoters is an essential prerequisite for
understanding the mechanisms of gene regulation at the level of transcription. Composite regulatory elements
represent a particular type of such transcriptional regulatory elements consisting of pairs of individual DNA motifs.
In contrast to the present approach, most available recognition techniques are based purely on statistical evaluation
of the occurrence of single motifs. Such methods are limited in application, since the accuracy of recognition is
greatly dependent on the size and quality of the sequence dataset. Methods that exploit available knowledge and

Results: We developed a novel method to identify composite regulatory elements in promoters using a library of
known examples. In depth investigation of regularities encoded in known composite elements allowed us to introduce
a new characteristic measure and to improve the specificity compared with other methods. Tests on an established
benchmark and real genomic data show that our method outperforms other available methods based either on
known examples or statistical evaluations. In addition to better recognition, a practical advantage of this method is first
the ability to detect a high number of different types of composite elements, and second direct biological
interpretation of the identified results. The program is available at http://gnaweb.helmholtz-hzi.de/cgi-bin/MCatch/
MatrixCatch.pl and includes an option to extend the provided library by user supplied data.

Conclusions: The novel algorithm for the identification of composite regulatory elements presented in this paper was
proved to be superior to existing methods. Its application to tissue specific promoters identified several highly specific
composite elements with relevance to their biological function. This approach together with other methods will further
advance the understanding of transcriptional regulation of genes.

Background

Deciphering the mechanisms of transcriptional regula-
tion of gene expression is one of the key problems biolo-
gists are facing. It is widely accepted to date that genes
especially, in higher eukaryotes are regulated by a com-
bination of transcription factors (TFs) bound to their
cognate DNA sites, rather than by a single factor. There-
fore, an extensive research is conducted on combinator-
ial interactions of protein factors and their DNA binding
sites (BSs) with respect to transcriptional activity of af-
fected genes. The majority of present methods evaluate
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the statistical properties of motif pairs (for review see
[1]) or multiple combinations of motifs [2]. Some
methods use comparisons with existing examples of
motif combinations as a basis for recognition [3-6].

The minimal functional unit, which can provide com-
binatorial regulation, is a composite element (CE). Struc-
turally a CE consists of two closely located BSs for distinct
transcription factors (TFs). But functionally CEs are con-
sidered as single elements, since its regulatory function
are qualitatively different from regulation effects of either
individual BSs [7,8]. Function, structure and primary
sequence of CEs are studied in a number of different ex-
periments, in particular, to confirm protein-protein inter-
actions and cooperative binding to DNA, as well as effects
on transcriptional regulation. Such data on CEs can be
found in databases such as TRANSCompel [9].
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The major problem in developing general recognition
methods for CEs lies in the extremely limited number of
experimentally defined CEs. For particular types of CEs
some ad hoc methods have been suggested [3-5]. How-
ever, the method, which can identify many types of CEs
[6] shows relatively poor recognition characteristics.

The basic idea of the current method is to comple-
ment existing knowledge on experimentally identified
and functionally described CEs by data available for sin-
gle BSs constituting the CEs. We demonstrate that such
an integrative approach is able to model the heterogen-
eity of CEs, which results in good recognition character-
istics of the method. We also show that the existing
variety of CEs is in no way a limiting factor to the
method applicability. Quite the contrary, MatrixCatch
with the provided library outperformed all statistical
methods, that to date attract excessive attention of bio-
informatics community. Elements of crowdsourcing
were implemented in the website to allow further exten-
sion the existed CE library.

Methods

Matrix model of CE

The idea behind MatrixCatch is to complement the lack
of knowledge on sequence variation of each DNA BS in
CEs by recruiting data collected for respective BSs separ-
ately from each other. Such information is compiled in
position weight matrices (PWMs). Each CE will serve as
a template for a model, which consists of two PWMs, as
well as their minimal scores, relative orientation and dis-
tance. Thus, PWMs, which are built using many single
BSs, define sequence variability of BSs in the CE. Min-
imal scores for PWMs, orientation and distance between
PWMs are determined by the CE itself.

Building the CE model
First, PWMs related to the first binding TF are selected
from the entire TRANSFAC library (in case there are sev-
eral). Here and further we call the “first” and “second” BS
in a CE model in accordance to the database annotation.
Second, PWM scores are calculated for both orientations
at the position of the first annotated BS in CE for all se-
lected PWMs. Third, the combination of PWM, its score
and its orientation, which delivers the lowest prediction
rate on random sequences, is selected. Often, but not al-
ways, it is the PWM with the highest score. This score be-
comes the minimal required PWM score S,,,; in the model
for the first BS. After repeating the same three steps for
the second BS, all the parameters of the CE model are
identified: PWM;, PWM,, their orientations, minimal
scores S,,,;, S,,2 and in-between distance D,,,.

On this basis, we build 265 matrix models for all CEs
collected in the TRANSCompel database. To search for
potential CE, MatrixCatch will test these models on a
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DNA sequence. To be able to reveal “non perfect
matches”, model parameters like PWM scores (S,,,;, S,,.2)
and distance (D,,) should be relaxed. To increase the
specificity of the search we introduced a “composite
score” (CS). As will be showed later, this composite
score provides higher recognition accuracy in compari-
son to existing methods.

Dependence between binding sites in CEs
It was observed that the combination “one BS with low
PWM score — another with high PWM score” in real CEs
is more frequent then “low - low” (distribution of
PWM scores in the constructed CE models can be seen
in Figure 1a). Pearson correlation coefficient calculated
for PWM scores equals —0.164 (p-value 0.003) indicat-
ing negative correlation between matrix scores within
one CE. To test the statistical relevance of this observa-
tion, we investigated the distribution of PWM scores
(S,.15 Syu2) in matrix models of “random CEs”. Random
sequence CEs were obtained from real CEs by
reshuffling its DNA sequence. Matrix models for ran-
dom CEs were constructed following the same proced-
ure as for real CEs. The procedure with random CEs
was repeated 4 times, generating 1060 models. Pearson
correlation in this case was only —-0.0088 (p-value 0.39).
Accuracy of the recognition method will obviously bene-
fit when such mutual dependence of BSs is taken into ac-
count. From Figure 1A it becomes obvious that better
separation of real and random CEs cannot be achieved by
vertical or horizontal lines but rather by a diagonal. The
diagonal corresponds to the sum of PWM scores, whereas
vertical and horizontal lines are minimal scores for both
BSs separately. Combination of restrictions on scores of
both BSs individually (lines A'B’ and B'C" on Figure 1A)
and their sum (line EF) is one of the key points of the
method and formally described in equation (4).

Recognition rule

Mathematically this approach has to be described as fol-
lows. The diagonal or an absolute value of the composite
score is defined by:

absCS = Sp1 + Smos (1)

where S,,;, S,,2 are PWM scores defined by the CE
model.

For the purpose of recognition we will use relative
values for the composite score:

Sml _Sl
Sml

+ SmZ_Sl

ICS =
re S,

(2)

where S, are the actual matching scores of PWMs on
an investigated DNA sequence. It is notable, that re/CS
may adopt negative values when one or both BSs of
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Figure 1 Distributions of PWM scores and distances between BSs in real and random CEs. (A) Distribution of PWM scores for first and
second BSs in real CEs (red) and random sequence CEs (blue). Scores S,,,; and S,,,, define the rectangle OABC and perfectly separate high scoring
CEs. By reducing the scores (dashed green lines), many additional true CEs, but also a large number of random CE are also covered by the
rectangle OAB'C'. Introduction of a sum of scores (diagonal EF) greatly improves the separation between real and random CEs (discontinuous
line A'E'F'CY). (B) Distribution of distances between BSs and sum of matrix scores in real CEs (blue). Distance values were averaged in intervals of
score values (1.75-1.80), (1.80-1.85), (1.85-1.90), (1.90-1.95) and (1.95-2.00) (red). The trend line reflects the dependence between PWM scores and

Sum of matrix scores in CE model, S;,1+S,,»

potential CE have higher PWM scores than defined by the
model (S; > S,,,; and/or S, > S,,5). In such cases we say
that the potential CE matches the model better than it is
minimally required. Alternatively, another BS may have
lower PWM score than required by the model, which cor-
responds to “high-low” phenomena described above.

To account for a relative positioning of BSs in CE we
add a third term to (2):

S1=S S-S
ﬁ—F#—FMDm—DL (3)
St Sz

CS =
where D is the actual distance between identified BSs
and D,, - distance defined by CE model.

Considering the physics of DNA-protein and protein-
protein interactions, it can be suggested that remotely
located BSs both might have higher affinity to their TFs
compared to closely located ones. Despite the fact that
DNA may form loops and BSs distant by sequence may
become close in 3D, we found this suggestion relevant
and subjected it to verification.

Using all matrix models of CEs the distribution of dis-
tances between BSs (D,,) and the absCS was calculated
(Figure 1B). Averaged distance between BSs show that
CEs that have longer distances between BSs have on
average a higher absCS. Linear regression coefficient

between distance and sum of scores equals 53.62 with a
90% confidence interval (40.9, 66.2). T-score of this re-
gression is 7.6 with p-value of 0.004. 90% confidence
interval for the slope value (53.62) equals (40.9, 66.2),
95% — (38.5, 68.7).Therefore, our assumption on de-
pendence on distance and quality of BSs within a CE
can be regarded as statistically relevant.

To make our method more stringent we considered
both positive and negative fluctuation of distance D
around the D,,, as unfavorable. Coefficient A in (3) was set
to be equal to the slope value of the trend line (1/53.62).

Finally, a DNA sequence is reported as a potential CE,
when the following recognition rule holds true:

Sml_Sl
Sml
Sm—S2
Sm2

CS <Rcs
|Din=D|
D,,

<R;

where Rcs, R;, R, and Rp, are the relaxation parameters
for the composite score CS, PWM scores and the dis-
tance respectively. A maximum stringency search is
achieved with all these parameters set to 0.
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Input and output

To run MatrixCatch, the user should supply (a) DNA se-
quence(s) in EMBL, FASTA or plain text formats and
(b) should define search stringency. Results are ordered
by p-value. Threshold for p-value or expected frequency
of CEs per 1kb can be optionally supplied. Calculation of
raw p-values and its correction for multiple testing can
be done using Bonferroni (5b), Bonferroni step-down
(5¢), and Benjamini and Hochberg (5d) procedures by
the formulas:

p-value = 1-(1-p-q) [Dm=DI (5a)
corrected_p-value® = p-value-SequenceLength

(5b)
p-value® = p-value-(SequenceLength—rank_CE)

(5¢)

p-value®™ = p—value.(SequenceLength/rank CE),
(5d)

where p (q) is a frequency of the first (second) BS of a
CE found on a random sequence with PWM minimal
score equals S; (S,), and rank_CE is the rank of CE in
the output list sorted by p-values before correction.

All p-value related parameters, namely p-value thresh-
old, type of p-value correction or frequency of CEs per
1kb, can be adjusted after the search in order to refine
the output. MatrixCatch produces a list of potential CEs,
their positions, scores, p-values and respective links to
the original CEs in the database. Graphical visualization
and machine readable output is also provided.

In addition to the preloaded library users are encour-
aged to create, store and search for their own CE models
(please visit the website). To do this a user should select
PWMs from the existing library, specify thresholds, ori-
entations, interspace distance and optionally give a de-
scription. Such an element of crowdsourcing allows a
quick integration of novel data and its use by the com-
munity. A single composite regulatory element found in
a specific experiment is already sufficient to be submit-
ted into the system and used without a need for a pro-
gramming and/or an establishment of a separate
website. As a gratitude for such submissions, users who
will use these models in their research are requested to
cite the work of the submitter.

Results

Comparison with other CE recognition methods

At first, we compared our method to other available
methods for CE prediction. CompelPatternSearch [6] is
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based on comparison of an original sequence of CE with
an investigated sequence. By increasing the number of
allowed nucleotide mismatches in both motifs and the dis-
tance between them the accuracy of the method can be
adjusted. Another method was specifically developed for
the recognition of composite element NF-AT/AP-1 [4]
with a score function based on weighted logarithms of
PWM scores and a fixed length of intermediate sequence
from 5 to 11bp. False positive rates were estimated on se-
quences of second exons derived from the human gen-
ome, since they are supposed to comprise no regulatory
elements. In all tests the elements to be recognized were
excluded from the training data. All three methods were
tested on the same dataset by the same procedure.
Receiver operating characteristic (ROC) curves of the
three methods tested on recognition of NF-AT/AP-1 are
shown in Figure 2. ROC-curves for another two CEs (C/
EBP/NFkappaB and E2F/Spl) can be found in Additional
file 1: Figures S1 and S2. These tests show that MatrixCatch
in general outperforms the simple pattern based search
used in CompelPatternSearch. CompelPatternSearch per-
forms similarly only when used with most stringent pa-
rameters, i.e. when no mismatches are allowed in both
BSs and length variation is not more than just a few nucle-
otides. Relaxing parameters results in a sharp increase of
the false positive rate. Already with >2 allowed mis-
matches per BS, CompelPatternSearch becomes practic-
ally unusable due to extreme number of predictions
(Additional file 1: Figure S1). MatrixCatch performance is
much more tolerant to parameter relaxation. This also
shows that MatrixCatch is less subjected to an over-

Number of CE models removed from the library

7
6
5 —e—MatrixCatch
4
—e—CompelPatternSearch
3
5 —a—Method for recognition of NFAT/AP-1
1@ T T T T T
0 5 10 15 20 25

False positive predictions per 1000bp

Figure 2 Receiver Operating Characteristic (ROC) curves of
three methods on recognition of CE NFAT/AP-1.
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training effect, since more knowledge is enclosed in CE
matrix models rather than just in the DNA sequence of CE.
Unfortunately, many types of CEs are represented by a
single example. In practical applications all are used for
recognition, but for testing, obviously at least two known
CEs of the same class are required. Therefore, a cross-
validation for all elements is not feasible. We presented
comparisons for two classes NF-AT/AP-1 and C/EBP/
NFkappaB that have the highest number of examples.
However, even for smaller classes the performance of
MatrixCatch is evident (Additional file 1: Figures S2).

Comparisons with statistical methods

First let us define what we call known, novel and de novo
regulatory element. By known regulatory elements (both
single sites and pairs) we assume those verified experi-
mentally. By novel regulatory elements we assume those
identified by any kind of computational comparison but
without experimental verification on functionality. These
elements can be found using similarity to known ones
(then we say novel or potential BS and CE) or solely by
statistical evaluations of motif frequencies in an investi-
gated dataset (in this case we say de novo motif identifica-
tion, for example see [1,10,11]). So, for example,
MatrixCatch uses a library of CE models and hence finds
novel composite elements. CMA and ModuleSearcher use
a library for single sites (PWMs) and find novel single sites
but discover pairs de novo. CisModule discovers single
sites and pairs de novo purely based on statistics. Although
these methods utilize different approaches, from practical
view one would like to know which method(s) to apply
first to, for example, a set of DNA sequences to have the
highest chances of true discovery. In such cases collections
of known elements are commonly used for evaluation of
both library based and de novo methods.

For testing of the performance of MatrixCatch we se-
lected well established benchmark datasets [1], and as a
quality measure, we chose the nucleotide-level correl-
ation coefficient (nCC). We preferred nCC over PPV
(positive predictive value), since the latter did not accur-
ately account for situations when, for example, a pre-
dicted module only slightly overlaps with a real one or is
much longer then a real one. Instead nCC reflects the
sensitivity and specificity of predictions by counting the
number of correctly predicted nucleotides i.e. nucleo-
tides that lie in an overlap of a predicted and a real mod-
ule (for exact formula see [1]).

The selected benchmark consists of TRANSFAC
matrices related to the composite elements to be identi-
fied, complemented by a number of “noise” matrices
(not related to the CEs). Noise levels correspond to the
number of the additional matrices in a set. The
“noise_99” series comprises all PWMs. MatrixCatch
was run with its default parameters, the entire library of
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CE models and with PWM datasets provided by [1] that
correspond to the different noise levels. Reduction in
the PWM library automatically directed MatrixCatch
not to use CE models that comprise missing PWMs. Re-
sults obtained were submitted for evaluation (http://tare.
medisin.ntnu.no/composite/composite.php). Unfortunately,
coMOTTF [11] converged to equiprobable PWM (all ele-
ments equal 0.25) on all datasets. Other tests showed that
coMOTIF performs better on data consisting from a large
number of shorter sequences (data not shown).

The results of the comparison are presented in Figure 3.
It is evident that MatrixCatch significantly outperforms all
other methods on all datasets. Despite such a good per-
formance, one should note the different nature of these
methods (de novo identification and library based) and the
results need to be interpreted adequately.

MatrixCatch was used with the entire CE library. It
identified all CEs in each of the datasets (data not shown),
which would indicate a sensitivity of 100%. However, we
should point out that the identified CEs are the same that
were used to build the models and MatrixCatch by its def-
inition always identifies the CEs used to construct the
models. This is the major difference to comparisons in the
previous section, where respective CE models were re-
moved from the CE library. Thus, comparing the sensitiv-
ity parameter is not fully appropriate here.

Instead, specificities of the predictions should be com-
pared. nCC score is calculated upon all reported CEs and
its higher values in all categories for MatrixCatch indicate
higher specificity. This can be interpreted in such a way

07 —&—MatrixCatch —e—CMA —e—ModuleSearcher
7 Stubb —e—MSCAN —e—MCAST ]
—o—Cister Cluster-Buster —- CisModule

06 \\
0.5
0.4

I S i e

02 +—

) \\*

0 T T T T T -
noise0 noise50 noise75 noise90 noise95  noise99

nCC

Figure 3 Nucleotide level correlation scores (nCC) on the
TRANSCompel dataset. Nucleotide level correlation scores (nCC) on
the TRANSCompel dataset. The graphs show nCC scores at
increasing noise levels. Values for CisModule could be calculated only
for the "noise0” dataset. For further details see (Klepper et al. [1]).
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that MatrixCatch not only identified all true CEs in the
dataset but also did not report too many false hits.

However, if we assume that a dataset contains only
regulatory elements principally different from those in
the library, priority should be given to de novo identifica-
tion methods. The practical application of MatrixCatch
presented in the next section shows that the existing
variety of known CEs is already sufficient to outperform
statistical methods in most of situations.

Investigation of tissue-specific promoters

An experimental study of tissue-specific promoters was
recently performed by [12]. The authors investigated the
expression of genes triggered by alternative promoters in
different tissues. They could show that transcription from
alternative promoters differs significantly in most investi-
gated cases. Therefore, tissue specific promoters found in
that study represent a competitive example for bioinfor-
matics analysis. We will search for potential composite
regulatory elements similar to known ones using
MatrixCatch and novel combinations using other pro-
grams. The key question is which program can identify el-
ements that are most specific to the dataset of interest.

Using the data provided by [12], 11 datasets of positive
and negative promoters with a length of 500bp and 1kb
that covered regions —400 to +100 and -900 to +100
around the TSS, respectively, were generated (datasets can
be found in Additional file 2). For the discovery of cis-
regulatory modules, methods reviewed by [1] were se-
lected. Out of eight programs, two are not available to date
(MSCAN and Stubb). Cluster-Buster and Cister could not
be applied, since they require a single sequence as input,
but not a set. MCAST identified very long modules with
many motifs. For instance, in the 500bp breast dataset
MCAST reported a module 355bp long with 23 motifs as
a top hit. Though of very significant E-value, this result
seems to have little practical use. Finally, only three pro-
grams, CisModule, ModuleSearcher and CMA in addition
to MatrixCatch were used for the analysis.

The goal was to identify such a module(s) that can be
found in at least Min" of positive promoters and in no
more than Max~ of the negative ones. If we denote C*
and C the normalized number of positive and negative
promoters comprising a module, then the above can be
formalized: C* > Min* and C~ < Max™. Several values
for Min* and Max~ were fixed: (0.90, 0.50), (0.75, 0.50),
(0.66, 0.50), (0.50, 0.25), (0.33, 0.15).

All programs were run with default parameters except
the following. The number of single PWMs in a module
was set to 2 in CMA, ModuleSearcher and CisModule. In
ModuleSearcher “Number of top scoring modules to re-
turn” was set to 10. CMA was set to output 5 pairs (max-
imum allowed) and to optimize distance of a module.
Both above programs used the TRANSFAC library of
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PWMs. CisModule does not require PWMs, since it iden-
tifies them during the search. In summary, all programs
were set to find several modules each consisting of a pair
of DNA motifs. Since ModuleSearcher and CisModule
cannot use negative datasets, the results of all three pro-
grams were additionally optimized in order to maximize
the ratio C*/C", provided that the boundary conditions for
C" and C hold true. This was done by varying independ-
ently the minimal required scores for both PWMs in a
module and the one with the highest C*/C is reported as
a hit. MatrixCatch was run with entire library of CE
models and relaxation parameters were adjusted for max-
imum C*/C".

We believe that this determination of the method per-
formance is straightforward and is most indicative in
real applications. Indeed, no common measures like false
positives, true negatives efc. can be calculated, since
regulatory modules are to be discovered de novo. Tests
on re-discovery of known examples are presented above.

Results of the application of the four methods are
presented in Tables 1, 2 and Additional file 1: Table S1. As
can be seen from Table 1, in each specificity group
MatrixCatch has found modules in more datasets, com-
pared to the other methods. For example, in a group (C* >
0.75 and C < 0.50) MatrixCatch found CEs in breast,
heart, kidney and prostate promoters, while CMA and
ModuleSearcher only in prostate promoters.

Out of four methods only MatrixCatch was able to iden-
tify a regulatory element with very high specificity (group
0.90/0.50 in Table 1, CE number 112, relaxation parame-
ters: R;=0.02, Ry,=0.26, R-s=0.20 and Rp=0.32). This CE
could be recognized in 16 out of 17 promoters active in
prostate (p-value 5.624*10°, promoters and CEs are
graphically represented in Additional file 1: Figure S3). As
was identified in a study of chicken myeloid cells both mo-
tifs of this CE are bound by C/EBP-related proteins [13]. It
is very important to mention that C/EBP transcription fac-
tor was later found to upregulate metastatic gene expr-
ession in human prostate cancer cells [14,15]. This
demonstrates that MatrixCatch identified highly specific
regulatory elements the functionality of which was con-
firmed by several independent studies. In comparison,
other programs could identify modules only in 13 (CMA,
ModuleSearcher) or 12 (CisModule) promoters. None of
the methods found an element similar to C/EBP binding
motif. We may speculate that elements reported by statis-
tical methods may represent some functionality, but no
other support than statistical significance can yet be
presented.

To emphasize the importance of the developed ap-
proach, we should mention that this type of CE is repre-
sented by a single example. As can be seen from Table 3
newly discovered CEs in prostate promoters don’t show
many conserved positions in either motif. Approaches
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Table 1 recognition of regulatory elements in tissue specific promoters

Specificity level ( Min* / Max™ ) 0.90/0.50 0.75/0.50 0.66/0.50 0.50/0.25 0.33/0.15
MatrixCatch 1 4 7 4 5
CMA 0 1 3 0 1
ModuleSearcher 0 1 6 1 3
CisModule 0 0 1 1 2

Number of datasets of tissue specific promoters in which the programs found at least one module with the required level of specificity. The total number of

datasets is 11.

based on mere pattern matching of the DNA sequence of
the CE itself (as for example, CompelPatternSearch [6])
would produce a huge number of hits, which renders pre-
dictions useless. Matching the motifs independently (as
statistical methods do) will not help to reveal this CE ei-
ther, due to the low score of one of the BSs. Indeed, com-
posite elements in genes NET1, SULF1 MADILI,
KIAA1539, SDR39U1 and COL4A6 have one C/EBP site
recognized with a very low PWM score (Table 3). Never-
theless, the second site, recognized with a high PWM
score, contributes to the overall composite score (3) of the
pair. Thus, in all of the above-mentioned genes the com-
posite score entailed specific recognition of the regulatory
element.

Altogether, using the approach presented here it be-
came possible to build up a matrix model for a singular
example of a C/EBP/ C/EBP composite element and use
this model for recognition of new potential regulatory
elements in prostate promoters with high specificity.
Therefore, highly reliable experimental knowledge is not
dismissed due to statistical considerations.

We investigated potential composite elements identified
with specificities C* > 0.75, C” < 0.50 (in Additional file 1:
Table S1) for their biological relevance. CE NF-kappaB/
ATF-1 (relaxation parameters: R;=0.06, R,=0.10, R-s=0.70
and Rp=0.48) was found specific (0.75/0.391) to promoters
active in breast tissue and was described as activator of
interleukin 2 gene [16]. Although neither NF-kappaB nor
ATE-1 per se exhibits any specific tissue specificity, the

Table 2 Specificity values of regulatory modules

NF-kappaB family has shown to be active in human breast
cancers [17]. Taking into account that composite elements
often have their own transcriptional function [8], this
element may represent a promising example for further
investigations. Another element c-Myb/Ets-1 (R;=0.08,
R,=0.10, Rcs=0.10 and Rp=0.28), found in heart specific
promoters, contains Ets-1 as one of the contributing fac-
tors, which has been shown to be expressed during heart
development in mouse [18]. The third element HNF-4a/
HNF-4a found in kidney promoters (R;=0.20, R,=0.26,
Rcs=0.70 and Rp=0.76) is known to play a role in develop-
ment of the liver, kidney and intestines. Altogether, these
examples show that MatrixCatch is able to identify poten-
tial composite elements that are not only specific, but are
also biologically relevant to the investigated datasets. The
biological knowledge behind is an important advantage in
comparison to methods based on pure statistics.

An interesting dependence on the input data is shown
by the programs CisModule and ModuleSearcher.
ModuleSearcher identified regulatory modules substan-
tially in 1kb promoters, whereas CisModule in 500bp (in
Additional file 1: Table S1). Such a behavior may impede
the practical applications of these methods since there is
no agreement on a “proper” length of a promoter.
MatrixCatch is more tolerant towards the input data as
well as to the optimization of parameters. Results in
Additional file 1: Table S1 show that in general
MatrixCatch finds composite modules in many specificity
groups. There are just a few cases when modules that

Dataset (number of seq.) MatrixCatch CMA ModuleSearcher CisModule
Breast (24) 529 1.65 2.90 3.66
Heart (68) 260 - 138 -
Kidney (51) 347 146 2.54 -
Muscle (86) 143 - 1.35 -
Pancreas (61) 2.56 - 143 -
Prostate (17) 9.54 6.19 249 6.54
Thyroid (74) 1.62 - 140 -

Highest values of specificity (C*/C) shown by the programs in different datasets. None of the programs found modules in the datasets:

and Testis.

Cerebellum, Liver, Spleen
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Table 3 Composite element in prostate specific promoters

Name' Gene Position? Strand S} s3 p-value Sequence

Original composite element sequence ATGAGGCAAT cggcact  GTTGCCACAT
uc002uum.1 MOB4 —346 + 0972 0976 0012 3801e-06  AGITTGCGAAAAT gctgtg  GTTTCTTAAGAGA
uc003jwu.1 OCLN -213 + 0973 0949 0202  9.234e-05 AGATTCAGAAACA gcgccaatg  TTTACACACGACT
uc003qcg.1 EPB41L2 -100 + 0988 0981 0.099 1.418e-06 AGATTTTGAAATG ctac TTTTCACAAAATA
ucO0Tiia.l NET1 -369 + 0.991 0765 0207 1.091e-05 ACCTTTGGTAATT ggaaat ATATCTCATATTG
uc002eby.1 ZNF843 —352 + 0963 0929 0123  1.895e-04 AGCCTAGGCAAAA  gagcacg ATTCCGTCTCAAG
uc004dpe.1 SHROOM4 +3 + 0.961 0915 0140  3402e-04 TGCTATTGTAAAT  ggaactg TTTTCTTTCTTTC
Sequence complementary to the original composite element sequence ATGTGGCAAC  agtgccg ATTGCCTCAT
uc003edg.1 C3o0rf15 -317 - 0946 0959 0.110 1.347e-04 TGGCTGAGAAAAT  caatgac  ATTGCTTATGAAA
uc003fsb.1 TP63 —345 - 0924 0972 0228  2.397e-04 ACAAAGAGTAAAA agaagaag  TTTTCATAAAGGA
uc003gno.1 CI1QTNF7 =27 - 0947 0997 0234  4.040e-06 AAACTGAGAAAGA taa CTTTCTGAAATGC
uc003xye.1 SULF1 —-333 - 0728 0987 0304  1456e-04 AAAGAAAGGTAGG ca GTTGCAAAACTTC
uc002tah.1 AFF3 —149 - 0922 0993 0046  4.600e-06 TCAGAAGGAAAAA  agtttag  ATTTCAAAATGTA
uc003sli.1 MAD1L1 +2 - 0.761 0.981 0276 1.790e-04 TGTCTAGGGGAGA tagaat CTTGCCTAAGCAA
uc003zwl.1 KIAA1539 -310 - 0760 0959 0300  8.385e-04 CTCCGTAGTCACC agatttt ATTTCACAAGGTG
uc00Tlwy.1 SLC22A18 -113 - 0939 0965 0167  1.691e-04 CGCTCCCGGAACT  tecat TTTACATATGAGG
uc00Twpn.1 SDR39U1 -12 - 0767 0993 0313  3.045e-05 TTAGTGAGACAAT ggcg  ATTGCAAAGCGCG
uc004env.1 COL4A6 —44 - 0752 0.981 0.285  2.156e-04 TGAGATGGACATT  ttattttt  ATTGCCTAAACTG

Composite regulatory element C/EBP / C/EBP recognized in promoters of genes active in prostate tissue. Nucleotides with significant conservation shown in bold

(within binding motifs) and italics (intermediate sequence).

' Names according to (Jacox et al., [12]).

2 Beginning of the element relative to TSS.

3 S1,2 - PWM scores for the first and second C/EBP motif, CS - composite score.

discriminate positive and negative datasets are found ex-
clusively in one specificity group which corresponds to
one specific set of relaxation parameters. For example,
modules found in pancreas and thyroid promoters are
probably false hits, since they can be identified only in the
specificity group (C* = 0.66, C” < 0.50), which may repre-
sent an artefact of parameters optimization. As a rule, if
MatrixCatch identifies a composite module it can be
found in several specificity groups, which proves greater
tolerance to search parameters than in other methods.

Discussion

Investigation of transcriptional regulation of genes by bio-
informatic methods is widely used in biomedical research
and the presented approach contributes to that topic. The
software MatrixCatch is supplied with 265 matrix models
of composite elements, which represents the most com-
prehensive collection of known CEs available to date. The
program has no restriction on the size of promoters and is
suitable for examination of a single short DNA locus of
particular interest or big datasets representing the whole
genomes. The search stringency can be easily adjusted via
several parameters. The program was tested for recogni-
tion of known composite elements and compared with
other programs on the established datasets. In all cases,

MatrixCatch outperformed other methods. In a real study
of tissue specific promoters, MatrixCatch identified a can-
didate composite element that is specific to promoters ac-
tive in prostate, which we offer for further investigation.
Other methods identified hits with much lower specificity
and for many tissues they were not able to find any.

In the Introduction we pointed out that the problem
in developing CE recognition methods lies in the ex-
tremely limited number of experimentally characterized
and documented CEs. We may speculate that this could be
a major reason why there is a bias towards statistical
methods rather then methods based on experimental ex-
amples. In addition, many algorithms for the recognition of
particular examples have no software implementation [3]
or the announced web resource is not maintained anymore
[5]. To the best of our knowledge, MatrixCatch is the only
ready-to-use application available to date that is designed
for recognition of known composite regulatory elements.

One fundamental question is whether DNA motifs con-
stituting a CE and bound by interacting protein factors are
similar to those bound by the same factors separately. This
is an important issue, since it allows a generalization of
the search by recruiting the information available for the
single binding motifs. Similar performance of our method
and the one described by [4] (Figure 2) suggests no or very
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minor changes of binding motifs, since the latter method
uses exclusively DNA sequences of CEs for motif recogni-
tion. This method definitely accounts for all kinds of de-
pendences between motifs - if any. But based on that
principle, recognition methods could be constructed for
just a few types of CEs, for 2 or 3 at best, since statistics
become a critical issue. We can speculate that some TF
binding motifs may be different in single sites and within
composite elements, where they are bound by a TF com-
plex. There are cases when subsets of a specific motif of
single sites appear as constituents of CEs [19]. However,
data available to date do not provide sufficient experimen-
tal evidences either to support or reject this. Similar re-
sults of this and the previous method [4] suggest that
single binding motifs are at least not strongly changed,
which allows to build a method for recognition of many
types of CEs.

The presented approach has the advantage that
already on the basis of any single identified CE, a matrix
model can be constructed, which will ensure a reliable
recognition. Thus, existing limited although valuable
knowledge on combinatorial regulation of transcription
can be used for the discovery of similar regulatory ele-
ments in other genes and/or related genes in different
organisms. Together with other methods, both statis-
tical and library based, MatrixCatch may serve as a basis
for more sophisticated combinatorial analysis of pro-
moters, enhancers or other regulatory regions, thereby
helping to understand complex transcriptional regula-
tion of genes and reconstruct complete hierarchical
regulatory models.

Conclusions

Here, we have presented a novel methodology for the iden-
tification of composite regulatory elements in promoter se-
quences. The software implementation MatrixCatch is
supplied with a library of 265 matrix models used for rec-
ognition. That represents the widest scope of known CEs
available to date. Additionally, this library can be easily ex-
tended via user supplied models. Investigation of regular-
ities encoded in known composite elements helped to
improve the specificity of the identification compared to
other methods, that is proved on an established benchmark
and real genomic data. Another advantage of the approach
is that on the basis of any single newly discovered CE, a
matrix model can be constructed and used for the recogni-
tion. A practical advantage of this method compared to
statistical methods is the direct biological interpretation of
the identified results.
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