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Abstract

packages can easily learn what is done in TCC.

Background: Differential expression analysis based on “next-generation” sequencing technologies is a fundamental
means of studying RNA expression. We recently developed a multi-step normalization method (called TbT) for
two-group RNA-seq data with replicates and demonstrated that the statistical methods available in four R packages
(edgeR, DESeq, baySeq, and NBPSeq) together with TbT can produce a well-ranked gene list in which true
differentially expressed genes (DEGS) are top-ranked and non-DEGs are bottom ranked. However, the advantages of
the current TbT method come at the cost of a huge computation time. Moreover, the R packages did not have
normalization methods based on such a multi-step strategy.

Results: TCC (an acronym for Tag Count Comparison) is an R package that provides a series of functions for
differential expression analysis of tag count data. The package incorporates multi-step normalization methods,
whose strategy is to remove potential DEGs before performing the data normalization. The normalization function
based on this DEG elimination strategy (DEGES) includes (i) the original TbT method based on DEGES for two-group
data with or without replicates, (i) much faster methods for two-group data with or without replicates, and (iii)
methods for multi-group comparison. TCC provides a simple unified interface to perform such analyses with
combinations of functions provided by edgeR, DESeq, and baySeq. Additionally, a function for generating simulation
data under various conditions and alternative DEGES procedures consisting of functions in the existing packages
are provided. Bioinformatics scientists can use TCC to evaluate their methods, and biologists familiar with other R

Conclusion: DEGES in TCC is essential for accurate normalization of tag count data, especially when up- and
down-regulated DEGs in one of the samples are extremely biased in their number. TCC is useful for analyzing tag
count data in various scenarios ranging from unbiased to extremely biased differential expression. TCC is available at
http://www.iu.a.u-tokyo.ac jp/~kadota/TCC/ and will appear in Bioconductor (http://bioconductor.org/) from ver. 2.13.

Background

High-throughput sequencing (HTS), also known as next-
generation sequencing (NGS), is widely used to identify
biological features such as RNA transcript expression
and histone modification to be quantified as tag count
data by RNA sequencing (RNA-seq) and chromatin
immunoprecipitation sequencing (ChIP-seq) analyses [1,2].
In particular, differential expression analysis based on tag
count data has become a fundamental task for identifying
differentially expressed genes or transcripts (DEGs). Such
count-based technology covers a wide range of gene
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expression level [3-6]. Several R [7] packages have been
developed for this purpose [8-14].

In general, the procedure for identifying DEGs from
tag count data consists of two steps: data normalization
and identification of DEGs (or gene ranking), and each R
package has its own methods for these steps. For example,
the R package edgeR [8] uses a global scaling method, the
trimmed mean of M values (TMM) method [15], in the
data normalization step and an exact test for the negative
binomial (NB) distribution [16] in the identification step.
The estimated normalization factors are used within the
statistical model for differential analysis and gene lists
ranked in ascending order of p-value (or the derivative)
are produced. Naturally, a good normalization method
combined with a DEG identification method, should
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produce well-ranked gene lists in which true DEGs are top
ranked and non-DEGs are bottom ranked according to
the confidence or degree of differential expression (DE).
Recent studies have demonstrated that the normalization
method has more impact than the DEG identification
method on the gene list ranking [17,18].

Note that the normalization strategies employed by
most R packages assume that there is an approximately
balanced proportion of DEGs between the compared
samples (i.e., unbiased DE) [19]. However, a loss of func-
tion of histone modification enzymes will lead to a biased
distribution of DEGs between compared conditions in the
corresponding ChIP-seq analysis; i.e., there will be data
with biased DE. As a result, methods assuming unbiased
DE will not work well on data with biased DE. To
normalize data that potentially has various scenarios
(including unbiased and biased DE), we recently proposed
a multi-step normalization procedure called TbT [17]. TbT
consists of three steps: data normalization using TMM
[15] (step 1), DEG identification by using an empirical
Bayesian method implemented in the baySeq package [9]
(step 2), and data normalization using TMM [15] after
eliminating the estimated DEGs (step 3) comprising the
TMM-baySeq-TMM pipeline. Different from conventional
methods, our multi-step normalization strategy can
eliminate the negative effect of potential DEGs before the
normalization in step 3.

While the three-step TbT normalization method per-
formed well on simulated and real two-group tag count
data with replicates [17], it is practically possible to
make different choices for the methods in each step. A
more comprehensive study regarding better choices for
the DEG elimination strategy (DEGES) is needed. To our
knowledge, only the R package, TCC (from Tag Count
Comparison), provides tools to perform multi-step
normalization methods based on DEGES. Our work
presented here enables differential expression analysis
of tag count data without having to worry much about
biased distributions of DEGs.

Implementation

The TCC package was developed in the R statistical
environment. This is because R is widely used and the
main functionalities in TCC consist of combinations of
functions from the existing R/Bioconductor [20] packages
(i.e., edgeR [8], DESeq [10], and baySeq [9]). Since the
main purpose (identification of DEGs from tag count data)
of these three packages is essentially the same as that of
TCC and many users may be experienced in their use,
we will illustrate the main functionalities of TCC by
contrasting them with the corresponding functions in
those packages (see Figure 1). While TCC employs Object
Oriented Programming design utilizing the R5 reference
class, it has interface functions that do not change the
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object passed as the argument in order to be compatible
with the semantics of the standard R environment.
Detailed documentation for this package is provided as a
vignette:

vignette ("TCC”)

Preparations

Differential expression analysis between compared samples
based on tag count data typically starts by preparing two
objects: i) a count table matrix where each row indicates a
gene, each column a sample, and each cell the number of
counts (or reads) mapped to each gene in each sample
and ii) a vector that indicates which group each sample
belongs to. These data are stored in a TCC class object
using the new function. Similar functions of other packages
are the DGEList function in the edgeR package, the
newCountDataSet function in the DESeq package,
the new function in the baySeq package, and so on
(see Figure 1a). Consider, for example, a matrix object
hypoData consisting of 1,000 rows and six columns and a
numeric vector group consisting of six elements, i.e., (1, 1,
1, 2, 2, 2). The first three samples in the matrix are from
Group 1 (G1), and the others are from Group 2 (G2). The
TCC class object is constructed as follows:

library (TCC)

data (hypoData)

group <-c(1,1,1,2,2,2)

tcc <-new("TCC”, hypoData, group)

Normalization

Normalization of two-group count data with replicates
When obtaining normalization factors from count data
with replicates, users can select a total of six combinations
(two normalization methods x three DEG identification
methods) coupled with an virtually arbitrary number of
iterations (=0, 1, 2, ..., 100) in our DEGES-based
normalization pipeline (Figure 1b). Here, we describe two
representative choices (DEGES/TbT and iDEGES/edgeR).

DEGES/TbT The TCC package provides robust norma-
lization methods based on the DEGES recently proposed
by Kadota et al. [17]. The original three-step normalization
method (TbT) is performed by specifying the two major
arguments (norm.method and test.method) as follows:

tcc <- calcNormPFactors (tcc, norm.method = "tmm”,
test.method = "bayseq”,
iteration = 1)
In relation to the other DEGES-based methods, we

will call the method “DEGES/TbT” for convenience. As
mentioned in ref. [17], the multi-step normalization can
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Figure 1 DEGES-based analysis pipelines in TCC. (a) Main functions for obtaining DE results from tag count data in individual packages
(edgeR, DESeq, baySeq, and TCC). The analysis pipelines of the packages can be roughly divided into two steps after importing the input data
(black squares): (i) calculating normalization factors (blue solid squares) and (i) estimating degrees of DE for each gene (blue dashed squares).
(b) Outline of the DEGES-based normalization methods implemented in TCC. The key concept of DEGES in our calcNormFactors function is to
remove data flagged as potential DEGs in step 2 before calculating normalization factors in step 3. Note that steps 2 and 3 in DEGES can be
repeatedly performed in order to obtain more robust normalization factors and the function accepts many iterations n (i.e, n =0~ 100).

be repeated until the calculated normalization factors con-
verge. The iterative version of the DEGES/TbT (iDEGES/
TbT) can be described as a TMM-(baySeq-TMM),, pipeline
with 7 > = 2. Accordingly, the TMM normalization method
[15] and the DEGES/TbT can be described as pipelines
with 7 =0 and 1, respectively, and # can be specified by the
iteration argument.

DEGES/edgeR A major disadvantage of the TbT method
is the long time it requires to calculate the normalization
factors. This requirement is due to the empirical Bayesian
method implemented in the baySeq package. To alleviate
this problem, a choice of alternative methods should be
provided for step 2. For instance, using the exact test [16]
in edgeR in step 2 enables the DEGES normalization pipe-
line to be much faster and entirely composed of functions
provided by the edgeR package. The three-step DEGES

normalization pipeline (we will refer to this as the TMM-
(edgeR-TMM),, pipeline with n=1 or DEGES/edgeR, for
convenience) can be performed by changing the test.
method argument to “edger”.

The TbT pipeline automatically calculates the percent-
age of DEGs (Ppgg) by virtue of its use of baySeq. In
contrast, a reasonable threshold for defining potential
DEGs should also be provided when using the exact
test in edgeR (or the NB test in DESeq). Here, we de-
fine the threshold as an arbitrary false discovery rate
(FDR) with a floor value for Ppgg. The default is
FDR < 0.1 (i.e., FDR =0.1), and the default floor Ppgg
value is 5% (i.e., floorPDEG = 0.05); different choices are
possible. For example, in the case of the default settings,
x% (x>5%) of the top-ranked potential DEGs are elimi-
nated in step 2 if the percentage (= %) of genes satisfying
FDR < 0.1 is over 5%.
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Although iDEGES/TbT would not be practical because
of its long computation time, the iterative version of
DEGES/edgeR (iDEGES/edgeR with n>= 2) is potentially
superior to both non-iterative DEGES/edgeR and DEGES/
TbT. A suggested choice of n = 3, consisting of seven steps,
can be performed by changing the iteration argument
(i.e., iteration = 3) as follows:

tcc <- calcNormFactors (tcc, norm.method = "tmm”,
test.method = "edger”,
FDR = 0.1, floorPDEG = 0.05,
iteration = 3)

The suggested number of iterations is determined from
the results of iDEGES/TDbT; it is a number at which the
accuracies of DEG identifications corresponding to the
calculated normalization factors converge [17]. The number
of iterations for iDEGES/edgeR is determined in the same
way (see the Results and discussion section).

Normalization of two-group count data without replicates
Most R packages are designed primarily for analyzing data
including biological replications because the biological
variability has to be accurately estimated to avoid spurious
DE calls [21]. In fact, the functions for the DEG identifica-
tion method implemented in edgeR (ie., the exact test;
ver. 3.0.4) do not allow one to perform an analysis without
replicates, even though the TMM normalization method
in the package can be used regardless of whether the data
has replicates or not. Although the edgeR manual provides
users with some ideas on how to perform the DE analysis,
it is practically difficult to customize the analysis with
DEGES to data without replicates.

However, there are still cases in which we have to per-
form DE analysis of tag count data without replicates.
When obtaining normalization factors from two-group
count data without replicates, users can select from a total
of four combinations (two normalization methods x two
DEG identification methods) and a virtually arbitrary num-
ber of iterations (=0, 1, 2, ..., 100) in our DEGES-based
normalization pipeline. That is, the calcNormFactors func-
tion with the norm.method = “deseq” or “tmm” and test.
method = “deseq” or “bayseq” can be selected. A pipeline
(iDEGES/DESeq; the DESeq-(DESeq-DESeq),, pipeline with
n = 3) using functions in the DESeq package for analyzing
two-group count data without replicates can be performed
by changing the two arguments (norm.method and test.
method) as follows:

tce <- caleNormFactors(tcc, norm.method = "deseq”,
test.method = "deseq”,
FDR = 0.1, floorPDEG = 0.05,

iteration = 3)
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Normalization of multi-group count data with replicates
Many R packages (including edgeR, DESeq, and baySeq)
support DE analysis for multi-group tag count data.
TCC provides DEGES-based normalization methods for
such data by virtue of the three packages that are intern-
ally used in TCC. Similar to the analysis of two-group
count data with replicates, users can select from a total
of six combinations (two normalization methods x three
DEG identification methods) and a virtually arbitrary
number of iterations (=0, 1, 2, ..., 100) when
obtaining normalization factors from multi-group data
with replicates.

Retrieving normalized data

The calculated normalization factors can be obtained from
tcc$norm.factors. Similar functions are the calcNormFactors
function in the edgeR package and the estimateSizeFactors
function in the DESeq package, (Figure 1a). Note that the
terminology used in DESeq (i.e., size factors) is different
from that used in edgeR (ie., effective library sizes) and
ours. The effective library size in edgeR is calculated as
the library size multiplied by the normalization factor.
The size factors in the DESeq package are comparable
to the normalized effective library sizes, wherein the sum-
mary statistics for the effective library sizes are adjusted to
one. Our normalization factors, which can be obtained from
tcc$norm.factors, have the same names as those in edgeR.
Since biologists are often interested in such information
[19], we provide the getNormalizedData function for
retrieving the normalized data. The normalized data can
directly be used as, for example, the input data of another
package NOISeq [13].

Differential expression

The goal of the analysis would be to obtain a list of
DEGs. To this end, we provide the estimateDE function.
The function internally calls the corresponding functions
implemented in three packages: exactTest in edgeR,
nbinomTest in DESeq, and getLikelihoods.NB in baySeq
(Figure 1). If the user wants to perform the DE method
implemented in edgeR and to determine the genes having
an FDR threshold of 10% as DEGs, one can do as follows:

tce <- estimateDE(tcc, test.method = "edger”, FDR = 0.1)

A similar analysis based on DE methods in DESeq or
baySeq can be performed by changing the test.method
parameter to “deseq” or “bayseq”. The results of the
DE analysis are stored in the TCC class object. The
summary statistics for the top-ranked genes can be
retrieved by using the getResult function. In general, the
identified DEGs at FDR<0.1 should be up-regulated in
either G1 or G2. The plot function generates an M-A plot,
where “M” indicates the log-ratio (i.e., M = log,G2 - log,G1)
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and “A” indicates the log average read count (ie.,
A = (log,G2 + log,G1)/2) based on the normalized count
data.

Generation of simulation data

As demonstrated in our previous study [17], the DEGES-
based normalization methods implemented in TCC
theoretically outperform the other normalization methods
when the numbers of DEGs between groups are biased.
However, the validation of the biased DE in real data is
very difficult in practice [19]. Thus, the performance of
methods handling biased DE needs to be evaluated using
simulation data. The simulateReadCounts function gener-
ates simulation data with various conditions. Currently,
this function can generate simulation data analyzed in the
TbT paper [17], thereby enabling further comparisons of
our DEGES-based methods with methods developed by
other researchers in the near future. For example, the
hypoData object, a hypothetical count dataset in 7CC,
was generated by using this function with the following
arguments:

tcc <- simulateReadCounts (Ngene = 1000, PDEG = 0.2,
DEG.assign = ¢(0.9,0.1),
DEG.foldchange = c(4,4),
replicates = ¢(3,3))

The simulation conditions for comparing two groups
(G1 vs. G2) with biological replicates are as follows: (i)
the number of genes is 1,000 (i.e., Ngene = 1000), (ii) the
first 20% of genes are DEGs (PDEG =0.2), (iii) the first
90% of the DEGs are up-regulated in G1 and the
remaining 10% are up-regulated in G2 (DEG.assign =c¢
(0.9, 0.1)), (iv) the levels of DE are four-fold in both
groups (DEG.foldchange = c(4, 4)), and (v) there are a
total of six samples (three biological replicates for G1
and three biological replicates for G2) (replicates = ¢(3,
3)). The empirical distribution of read counts is built
from Arabidopsis data in NBPSeq [12].

The output of the simulateReadCounts function is
stored in the TCC class object with information about the
simulation conditions and is therefore ready-to-analyze.
This function can generate several kinds of simulation
data, such as those for comparing four groups (Groups
1-4) with replicates and those for comparing two
groups without replicates. See the vignette for details.

Results and discussion

Accurate data normalization is essential for obtaining
well-ranked gene lists from tag count data. Similar to
other R packages such as edgeR, the TCC package has
functionalities for DE analysis of tag count data. Of these
functionalities, TCC provides multi-step normalization
methods (including DEGES/TbT [17]) that internally use
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the functions implemented in edgeR, DESeq, and baySeq.
Here, we demonstrate that the DEGES-based normalization
methods are more effective than the methods implemented
in the other packages. All analyses were performed using
R (ver. 2.15.2) and Bioconductor [20]. Execution times
were measured on a Linux system (CentOS release 6.2
(Final), Intel® Xeon® E5-4617 (2.9 GHz) 24 CPU, and
512 GB memory). The versions of major R libraries were
TCC ver. 1.1.99, edgeR ver. 3.04, DESeq ver. 1.10.1, and
baySeq ver. 1.12.0.

Following our previous study [17], we here demonstrate
the performance of these methods by using the same evalu-
ation metric, simulation framework, and real experimental
datasets. We use the area under the receiver operating
characteristic (ROC) curve (i.e., AUC) as a means of
comparison. The simulation conditions are as follows:
5-25% of the genes are DEGs (Ppgg = 5-25%), 50-90%
of the DEGs are up-regulated in G1 compared to G2
(Pg1 =50-90%), and the levels of DE are four-fold in
both groups. The count dataset consists of 70,619
unique small RNAs (sRNAs) and a total of four
Arabidopsis thaliana leaf samples (i.e., two wild-type
[WT1 and WT2] and two RNA-dependent RNA polymer-
ase 6 (RDR6) knockout [KO1 and KO2] samples) [9]. This
dataset was originally analyzed with baySeq. The data has
657 provisional true DE sRNAs (i.e., Pppg =657 / 70,619
=0.93%), and all of the sRNAs can be regarded as up-
regulated in the wild-type (ie, Pg;=100%). This is
because they uniquely match tasRNA, which is produced
by RDR6, and they are down-regulated in RDR6 mutants.
In addition to the RDR6 knockout dataset, we also analyze
four other experimental datasets (called “sultan” [4],
“gilad’ [22], “magqc” [23], and “katz.mouse” [24]) obtained
from the ReCount database [25]. The four datasets are
used for evaluating the DEGES-based methods aimed at
two-group count data with replicates.

Simulation data with replicates (sensitivity, specificity,
and computation time)

We assessed the performance of a total of six norma-
lization methods: (a) TMM, (b) DEGES/TbT, (c) DEGES/
edgeR, (d) iDEGES/edgeR, (e) iDEGES/TDT (i.e., the TMM-
(DESeq-TMM),, pipeline), and (f) iDEGES/DESeq. The
ranked gene lists were obtained using the individual DEG
identification methods in three packages (edgeR, DESeq,
and baySeq), together with normalization factors calculated
from each normalization method. Accordingly, a total of 18
combinations (six normalization methods x three DEG
identification methods) were evaluated. Table 1 shows
the average AUC values of 100 trials between the ranked
gene lists and the truth for various simulation conditions
(Ppeg = 5-25% and Pg; = 50-90%). While the # iterations
for the three iDEGES-based methods roughly require an
n-fold computation time, the improvement due to
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Table 1 Average AUC values for simulation data with replicates
DE method edgeR edgeR edgeR DESeq DESeq DESeq baySeq baySeq baySeq
PG, 50% 70% 90% 50% 70% 90% 50% 70% 90%
(a) TMM
Ppec = 5% 90.30 90.30 90.18 89.09 89.08 88.92 89.43 89.42 89.22
Ppeg = 15% 90.30 90.12 89.63 89.15 88.91 88.26 89.54 89.28 88.66
Poec = 25% 90.40 89.89 88.26 89.27 88.62 86.82 89.63 89.07 87.25
(b) DEGES/TbT
Poeg = 5% 90.30 90.31 90.28 89.09 89.12 89.07 8943 89.47 89.41
Poec = 15% 90.30 90.25 90.26 89.15 89.07 89.01 89.54 89.48 89.49
Ppoeg = 25% 90.41 90.27 89.89 89.27 89.07 88.61 89.63 89.56 89.22
(c) DEGES/edgeR
Ppoeg = 5% 90.29 90.32 90.28 89.09 89.13 89.08 8943 89.48 8941
Poeg = 15% 90.30 90.25 90.26 89.15 89.07 89.02 89.54 89.48 89.50
Poeg =25% 90.40 90.28 89.91* 89.27 89.08 88.64 89.63 89.56 89.24
(d) iDEGES/edgeR
Ppoeg = 5% 90.29 90.32 90.28 89.09 89.13 89.08 89.43 89.48 89.42
Poeg=15% 90.30 90.25 90.29* 89.15 89.08 89.06 89.54 89.49 89.54
Ppoeg = 25% 90.40 90.30* 90.04* 89.27 89.11 88.80 89.63 89.60 89.42
(e) IDEGES/TDT
Poeg = 5% 90.30 90.32 90.28 89.09 89.12 89.09 8943 89.48 89.42
Poeg = 15% 90.30 90.23 90.20 89.15 89.05 88.93 89.54 89.45 89.40
Poeg = 25% 90.40 90.25 89.82 89.27 89.04 8853 89.63 89.52 89.13
(f) iIDEGES/DESeq
Ppoeg = 5% 90.30 90.31 90.28 89.09 89.13 89.09 8943 89.48 8943
Poeg = 15% 90.30 90.24 90.21 89.15 89.05 88.95 89.54 89.45 89.42
Ppeg = 25% 90.40 90.26 89.86 89.27 89.05 88.58 89.63 89.53 89.18

Average AUC values (%) of 100 trials for each simulation condition are shown. Simulation data contain a total of 10,000 genes: Ppec% of genes is for DEGs, Pg1% of Ppeg
in G1 is higher than in G2, and each group has three biological replicates (i.e., G1_rep1, G1_rep2, G1_rep3, G2_rep1, G2_rep2, and G2_rep3). A total of nine conditions
(three Ppgg values x three Pg; values) are shown. The highest AUC value for each condition is in bold. AUC values with asterisks indicate significant improvements
(p-value < 0.01, paired t-test) compared with DEGES/TbT. We used a bootstrap resampling size of 10,000 in baySeq when performing the normalization (i.e., baySeq at
step 2 in the DEGES/TbT) and 2,000 when performing the DEG identification after normalization (i.e., baySeq in the XXX-baySeq combination).

increasing the number of iterations plateaued around
n =3 when performing iDEGES/TbT [17]. Therefore,
we decided to show AUC values for the three iDEGES-
based methods with 7 = 3.

DEGES/edgeR performed comparably to TbT, whereas
iDEGES/edgeR outperformed the others, irrespective of
the choice of DEG identification method (edgeR, DESeq,
and baySeq) after normalization. That is, iDEGES/edgeR
followed by any DEG identification method YYY (termed
the iDEGES/edgeR-YYY combination) performed the best
among the six normalization methods. These results dem-
onstrate that the alternative DEGES approaches (iDEGES/
edgeR) implemented in TCC generally outperform the
original DEGES approach (i.e, DEGES/TbT). In other
words, the use of the exact test [16] implemented in edgeR
is sufficient to determine the potential DEGs to be elimi-
nated. Advantageous characteristics for the exact test also
revealed themselves after performing any normalization

method: Comparing the three DEG identification methods
(edgeR, DESeq, and baySeq), we see that the XXX-edgeR
have the highest AUC values. Overall, iDEGES/edgeR-edgeR
performed the best. It should be noted that, however,
the AUC values for the pipeline look very close to those
of the original recommendation (i.e, DEGES/TbT-edgeR)
[17], e.g., 90.30% for iDEGES/edgeR-edgeR and 90.27% for
DEGES/TbT-edgeR under one simulation condition of
Ppig = 25% and Pg, = 70%.

Although the AUC values for the individual combi-
nations are under 0.0042% of the standard deviation
(see “Sheet 1”7 in Additional file 1) and are statistically
significant (p <0.01; see Table 1), some researchers may
think the current recommendation (iDEGES/edgeR-edgeR)
does not look compelling. We do not argue the fact
that iDEGES/edgeR performs comparably to DEGES/TbT
(or DEGES/edgeR), regarding the absolute AUC values (i.e.,
sensitivity and specificity). We rather want to emphasize
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that iDEGES/edgeR outperforms DEGES/TbT in terms
of computation time (Table 2). This table shows that
iDEGES/edgeR takes roughly three-times longer than
DEGES/edgeR but it is over 100 times faster than
DEGES/TDbT. In light of the absolute computation times
(shorter than 10 seconds), iDEGES/edgeR finishes execu-
tion within one minute. Although the TMM norma-
lization method has the shortest computation time, its
AUC values are clearly lower than those of the others,
especially when the Pg; value is displaced from 50%. An
evaluation based on sensitivity and specificity should take
precedence over one based on the computation time.
These results show that iDEGES/edgeR is good for analyzing
two-group tag count data with replicates because of its
sensitivity, specificity, and practical computation time.

Simulation data with replicates (effect of iteration)
Next, let us show the effect of iterations in the iDEGES
approach to see whether the iteration can truly produce

Table 2 Average computation times for obtaining
normalization factors

Pgq 50% 70% 90%
(@) TMM
Ppeg = 5% 0.13 0.18 0.22
Poeg = 15% 0.16 0.19 0.15
Ppoeg = 25% 0.17 0.14 0.15
(b) DEGES/TbT

Pogg =5% 1492.92 1423.55 1573.23
Poge = 15% 1556.93 1510.17 140846
Ppoec = 25% 1527.08 1483.09 1543.80

(c) DEGES/edgeR
Poec = 5% 3.04 3.08 324
Poeg = 15% 3.08 3.05 2.89
Ppeg = 25% 2.99 292 3.05

(d) iDEGES/edgeR
Ppoeg = 5% 8.80 8.95 9.53
Poeg = 15% 8.94 891 839
Poec = 25% 875 839 892

(e) iDEGES/TDT
Poeg = 5% 1792 17.54 18.24
Poec = 15% 19.85 1945 18.74
Ppoeg = 25% 2117 20.74 21.16

(f) iIDEGES/DESeq
Ppoeg = 5% 17.88 17.54 18.34
Poec = 15% 19.96 1943 18.72
Poeg =25% 2117 20.75 2127

Average computation times (in seconds) of 100 trials for the six normalization
methods in Table 1 are shown. The results of DEGES/TbT were obtained by
using a suggested parameter setting for performing bootstrap resampling
(i.e,, samplesize = 10000).
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a convergent result or not. Table 3 summarizes the
results under three simulation conditions (Pg; = 50, 70,
and 90% with a fixed Ppgg value of 20%). Of a total of
300 trials, iDEGES/edgeR yielded 251 convergent and 49
non-convergent (i.e., cyclic) results. We got similar results
for the three other iDEGES methods (iDEGES/TbT,
iDEGES/TDT, and iDEGES/DESeq), irrespective of the
simulation conditions. These results clearly indicate that
the iDEGES-based normalization methods do not always
produce convergent normalization factors, contrary to
previous expectations [17].

Of practical interest when using the iDEGES approach
is the number of iterations required for obtaining a con-
vergent result. We defined # as N if the potential DEGs
estimated at the (Nc+1)™ iteration are the same as
those in the (N¢)™ iteration. The distribution of Nc
values for the four iDEGES-based methods are given in
Additional file 2. In our trials, the maximum N value
was 8 (see “Sheet 1” in Additional file 2). The distribution
suggests that the iDEGES approach with # =8 could be
sufficient for obtaining convergent results under various
simulation scenarios. However, the improvement had by
iDEGES/edgeR with n > = 4 compared with that with n =3
is actually negligible despite the requirement of additional
computation time (see “Sheet 3” in Additional file 2).
Therefore, the use of our iDEGES pipeline with # =3 can
be recommended for reducing useless computation time.

We observed that the number of iterations needed for
obtaining convergent results (the Nc value) tends to
increase when the degree of biased DE is high (Pg; > 50%):

Table 3 Result of the iDEGES approach does not
necessarily convergent

Pg 50% 70% 90% Total
(a) iDEGES/TbT
convergent 69 70 83 222
cyclic 31 30 17 78
(b) IDEGES/edgeR
convergent 86 86 79 251
cyclic 14 14 21 49
(c) iDEGES/TDT
convergent 82 81 84 247
cyclic 18 19 16 53
(d) iIDEGES/DESeq
convergent 99 97 100 296
cyclic 1 3 0 4

The numbers of convergent and non-convergent (cyclic) results of 100 trials
under Ppgg =20% are shown: (a) iDEGES/TbT, (b) iDEGES/edgeR, (c) iDEGES/
TDT, and (d) iDEGES/DESeq. We defined the trial as ‘convergent’ if potential
DEGs estimated in the (Nc + 1) iteration was the same as those in the (No™
iteration and the number of iteration n required for obtaining the convergent
result as Nc (Nc > = 1). We defined the trial as ‘cyclic’ if potential DEGs
estimated in the (i + Np)™ iteration were the same as those in the it” iteration
and the cycle as Np (Np > = 2).
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the average N values for the iDEGES/edgeR under the
three conditions of Pg; = 50, 70, and 90% were 2.17, 3.14,
and 3.60, respectively (see “Sheet 1”7 in Additional file 2).
This is reasonable because, in the case of the simulation
with Pg; >>50%, a relatively large number of # in the
TMM-(edgeR-TMM),, pipeline is theoretically needed for
obtaining accurate normalization factors and because, in
the case of the simulation with Pg; = 50%, the theoretical
Pg; value obtained from the potential DEGs in any
iDEGES-based pipeline at n=1 is 50% (i.e., no need to
apply the iDEGES approach to such data).

Now, let us briefly discuss the non-convergent results.
All the non-convergent results showed cyclic characteris-
tics, that is, there exists a same set of potential DEGs
estimated in both the /™ and the (i+Np)™ iterations
within a trial (Np > = 2). We found that the most frequent
Np value was 2 (see “Sheet 1” in Additional file 2). For
example, iDEGES/edgeR vyielded 83.7% (41/49) non-
convergent results with Np =2. This result indicates that
two different sets of potential DEGs are alternately elimi-
nated in the i™ and (i + 1)™ iterations. Note that different
normalization methods do not seem to produce consistent
results (convergent (C) or non-convergent (P)) within a
trial. Under one simulation condition (Ppgg=20% and
Pg1 =90%), for example, iDEGES/edgeR and iDEGES/TbT
got 21 and 17 non-convergent results, respectively. Of
these, only three trials (i.e., the 8th, 10th, and 61th)
showed the same non-convergent results (see “Sheet 2” in
Additional file 2).

We confirmed that the Ppgg values (satisfying FDR < 0.1)
originally estimated by three methods (iDEGES/edgeR,
iDEGES/TDT, and iDEGES/DESeq) in every iteration in
Table 3 were above the predefined floor value of 5%,
indicating that the floor value of 5% for Ppgg has no effect
on whether the results converge or not. The iterative
method can be viewed as a discrete dynamical system
since the number of state is finite and determined by the
combination of genes as potential DEGs. Oscillations in
the trajectory are common phenomena in such dynamical
systems. Thus, a method based on an optimality criterion
should be developed to select the best point in the cycle
after detecting an oscillation. Nevertheless, we observed
an overall improvement regarding non-convergent results
when more iterations were used.

Simulation data without replicates

TCC also provides DEGES-based methods for normalizing
two-group data without replicates. As described previously,
the DEG identification method (i.e., the exact test) in edgeR
does not allow for an analysis without replicates. Ac-
cordingly, we evaluated a total of eight XXX-YYY com-
binations (XXX = DESeq, iDEGES/DESeq, iDEGES/TDT,
and DEGES/TbT; YYY =DESeq and baySeq). Here, the
DESeq-DESeq combination indicates the original procedure
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in DESeq. Different from the results for the data with
replicates, iDEGES/DESeq (and iDEGES/TDT) performed
better than DEGES/TbT in this case (see “Sheet 1”7 in
Additional file 3). The same trend can be seen in the
accuracies of the estimated DEGs: the accuracies calculated
from baySeq (i.e., DEGES/TbT) were clearly inferior to
those from DESegq, irrespective of the choice of norma-
lization method (see “Sheet 2” in Additional file 3). The
advantageous characteristics of the NB test in DESeq
become apparent when we compare the two DEG identifi-
cation methods (DESeq and baySeq) for any normalization
method XXX: the XXX-DESeq combination outperforms
the XXX-baySeq combination. These results indicate that
the higher AUC values of the iDEGES/DESeq-DESeq are
primarily by virtue of a well-ranked gene list produced
from the NB test and that constructing a model based on
bootstrap resampling employed in baySeq is difficult in a
non-replicate situation.

We observed that the numbers of potential DEGs
satisfying FDR< 0.1 in the iDEGES/DESeq were nearly
zero (i.e., the estimated Ppgg values were 0%) in all of
the simulations, although the Ppgg values were 5-25%.
This is reasonable because any attempt to work without
replicates will lead to conclusions of very limited reliability:
DESeq employs a conservative approach to prevent spuri-
ous DE calls. Accordingly, a predefined floor Ppgg value
(= 5%) was used; i.e., 5% of the top-ranked genes were not
used when calculating the normalization factors in the
iDEGES/DESeq and iDEGES/TDT methods. These facts
indicate that (i) iDEGES/DESeq performs almost as well
as the original normalization method in DESeq when the
floor Ppgg value is decreased from the default (= 5%), (ii)
the methods perform equally well when the floor Ppgg
value of 0% for iDEGES/DESeq is used, and (iii) iDEGES/
DESeq (and iDEGES/TDT) with a floor value of x% tends
to work better when analyzing simulation data with the
same Ppgg value. Note that we set the floor Ppgg value
to 5% in order to obtain certain differences between
the iDEGES-based methods and the original DESeq,
but we should consider the appropriate choice of the
parameter in the future. Results of iterations in the
iDEGES approach (i.e., convergent or non-convergent)
when analyzing two-group data without replicates were
given in Additional file 4.

Real data (Arabidopsis RDR6 knockout dataset)

Here, we describe the results for a real dataset with repli-
cates, ie, {WT1, WT2} vs. {KO1, KO2}. The experiment
was originally reported in Ref. [9]. Following the evaluation
scheme in Table 1, we calculated the AUC values by using
the 18 combinations shown in Table 4. Consistent with the
results shown in Table 1, we found that the XXX-edgeR
combination (i.e., the use of the DEG identification method
in edgeR after any normalization method) was the best,
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Table 4 AUC values for an RDR6 knockout dataset

DE method edgeR DESeq baySeq
™M 68.36 61.09 60.21
DEGES/TbT 66.70 61.40 60.09
DEGES/edgeR 69.28 61.27 60.31
iDEGES/edgeR 65.70 61.34 60.86
iDEGES/TDT 65.76 60.84 60.19
iDEGES/DESeq 64.88 60.45 59.20

The AUC values (%) for a total of 18 combinations with default setting
(i.e., a floor Ppgg of 5%) are shown.

and consequently, we recommend using this combination
to analyze two-group data with replicates. Although the
iDEGES/edgeR-edgeR combination performed the best on
simulation data with replicates (see Table 1), iDEGES/
edgeR did not distinguish itself among the six XXX-edgeR
combinations. Note also that the AUC value for iDEGES/
edgeR with n = 3 (65.70%) was inferior to that for iIDEGES/
edgeR with n=1 (ie., DEGES/edgeR; 69.28%), suggesting
that the iterative approach had a negative impact on this
TMM-(edgeR-TMM),, pipeline.

To see the effect of iteration, we investigated the changes
in the AUC values for the four XXX-edgeR combinations
(XXX = iDEGES/TbT, iDEGES/edgeR, iDEGES/TDT, and
iDEGES/DESeq) when the default floor Ppgg value (= 5%)
was used (Figure 2a). The figure shows that the values
from the iDEGES/edgeR pipeline (black lines) has a cyclic
characteristics with Np =7, and the cycle starts at the 7th
iteration (ie., Ng=7). In contrast, the AUC values from
the other pipelines had convergent characteristics: Nc =3
for iDEGES/TbT, 2 for iDEGES/DESeq, and 5 for
iDEGES/TDT. Interestingly, the Ppgg values estimated by
iDEGES/edgeR, iDEGES/TDT, and iDEGES/DESeq were
0% in every iteration. Because of that, the floor Ppgg value
(5% default) was employed instead of the original values.
Meanwhile, the estimated Pppg values for iDEGES/TbT
were above 5% in every iteration (ranging from 6.09% to
6.18%). These results indicate that the floor value of 5%
for Ppeg has no effect on whether the results converge
or not.

We observed that the compositions of the potential
DE sRNAs were identical when the AUC values were the
same (see, e.g., light blue line at n =2~ 30). This was
true even for cyclic results (e.g., the compositions
obtained from iDEGES/edgeR at the 10th, 17th, and 24th
iterations). The different AUC values, in turn, were due
to the difference in the normalization factors at each
iteration and the different compositions caused the next
normalization factors to be different. We found that the
relatively large difference in the AUC values among cycles
for the non-convergent results (approximately 3% differ-
ence) were due to (i) the paucity of variations among the
657 provisional true DE sRNAs and (ii) their low expression
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levels. Of the 657 sRNAs, there were only 143 unique
patterns of counts across the four samples (ie, WT1,
WT2, KO1, and KO2). For example, there were 91 DE
sRNAs that had one tag count only in WT1, i.e., (1, 0,
0, 0) and 200 DE sRNAs that had one count only in
WT2, ie., (0, 1, 0, 0). These two count patterns occupied
44.3% of the 657 DE sRNAs. Such low-count DE sRNAs
cannot be distinguished from other non-DE sRNAs if both
patterns are identical. Indeed, we found that the positions
for the low-count DE sRNAs in the ranked gene list varied
from iteration to iteration.

Similar to the paucity of variations regarding the count
vectors for the 657 DE sRNAs, we found that out of a
total of 70,619 sRNAs, there were only 2,535 unique
patterns of sRNA counts. This indicates that many
sRNAs displayed the same degrees of DE, and therefore,
their ranks (or the AUC values calculated based on the
ranks) will vary if slight changes are made to the calculated
normalization factors. Indeed, we observed considerably
different changes in the AUC values when a higher floor
Ppgg value of 10% was used (Figure 2b); e.g., the results for
iDEGES/TbT converged when a 5% floor was used, but
they became cyclic when 10% was used (the red lines in
the figure). We also found that iDEGES/ TbT, iDEGES/
edgeR, and iDEGES/TDT performed about the same when
a 10% floor was used. These results indicate that the large
difference between AUC values in this dataset might be
within the error range.

All results described above were obtained with the
original raw count data, in accordance with the edgeR
and baySeq design. However, we should note that the
current procedure is different from one recommended
in the TbT paper [17], where the data was scaled to
counts per million (CPM) in each sample when the DEG
identification method in baySeq (ie., the empirical
Bayesian method) was executed. This recommendation
was derived from a comparison of uncertain AUC values
between the raw count data and the CPM data of this
dataset, and it is now questionable. Accordingly, all the
procedures implemented in the current TCC are based
on the original raw count data.

Real data (four ReCount datasets)

Lastly, let us show the results of four experimental
datasets: three human RNA-seq datasets (called “sultan”
[4], “gilad” [22], and “magqc” [23]) and one mouse dataset
(“katz.mouse” [24]). These datasets were obtained from
the ReCount database [25]. Different from the RDR6
dataset and simulated datasets, we do not know the true
DEGs for the four datasets, indicating that we cannot
calculate the AUC values. We therefore investigated the
effect of iteration regarding the potential DEGs to be
eliminated (i.e., convergent or non-convergent). Consistent
with the RDR6 result, we observed several cyclic (P)
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Figure 2 Effect of iterations for an RDR6 knockout dataset. (a) AUC values for four XXX-edgeR combinations with different iteration numbers
(n=0~30) when using a default floor Ppec value (= 5%) are shown: XXX =iDEGES/TbT (red lines), iDEGES/edgeR (black lines) , iDEGES/TDT (blue
lines) , and iDEGES/DESeq (light blue lines). The AUC values after convergence were 69.64% for iDEGES/TbT at the 3rd iteration and 64.88% for
iDEGES/DESeq at the 2nd iteration. The maximum and minimum values among cycles for iDEGES/edgeR were 67.37% and 64.57%, respectively.
Note that the AUC values for three pipelines (iDEGES/TbT, iDEGES/edgeR, and iDEGES/TDT) are the same (= 68.36%) when n =0 because those
pipelines correspond to XXX=TMM (i.e, the TMM-edgeR combination). The first cycle for the non-convergent (P) results is indicated by a brace.
(b) AUC values when using a 10% floor Ppeg value are shown. The Np values for iDEGES/TbT, iDEGES/edgeR, and iDEGES/TDT were 8, 3, and

3, respectively.

characteristics for the ReCount datasets (see “Sheet 2”
in Additional file 5).

It is important to evaluate the degree of impact for the
cyclic results. In the gilad dataset, for example, we observed
cyclic results for two DEGES pipelines: iDEGES/edgeR
(Ns =3 and Np = 3) and iDEGES/TbT (Ns =3 and Np = 2).
Figure 3 shows the results of hierarchical clustering ap-
plied to a total of 26 ranked gene lists (13 XXX-edgeR and
13 XXX-DESeq combinations). Two distinct clusters can
be seen: each cluster (i) consists of 13 gene lists with the
same DEG identification methods after performing differ-
ent normalization methods (i.e., the XXX-edgeR cluster
and the XXX-DESeq cluster) and (ii) has five cyclic results
(denoted as “(iteration number) followed by combination
name”; e.g., “(n =4)iDEGES/TbT-edgeR”). 1t is clear that
the five cyclic results are quite similar to the eight other
results. We also got similar results for another dataset
(see Additional file 6). These results suggest that cyclic
results are not of concern in practice.

Conclusion

The R package TCC provides users with a robust and
accurate framework to perform DE analysis of tag count
data. TCC has an improved data normalization step,
compared with existing packages such as edgeR. While
the other normalization strategies assume that there is
an approximately balanced proportion of DEGs between
compared samples (i.e., unbiased DE), our multi-step
DEGES-based normalization methods are designed to
deal with various scenarios (including unbiased and
biased DE situations): the internally used DEG identifica-
tion method eliminates the effects of biases, if any, of
potential DEGs. Our study demonstrated that the
iDEGES/edgeR-edgeR combination can be recommended
for analyzing two-group data with replicates (see Tables 1
and 2) and that the iDEGES/DESeq-DESeq can be recom-
mended for analyzing two-group data without replicates
(see Additional file 3). The success of these methods pri-
marily owes to the high scalability of the normalization
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and DEG identification methods in the R packages used
in TCC.

The functionality of TCC can be extended in many
ways. First, the current study focuses on the analysis of
two-group data, but some users may want to utilize the
DEGES-based methods for data consisting of two or more
groups. As can be seen in the vignette, some prototypes of
DEGES-based pipelines for analyzing data in three or four
groups have already been implemented. Evaluations such
as these and further improvement are our next tasks.
Second, the current approach of T7CC is somewhat rem-
iniscent of a microarray analysis of the count matrix for
genes. We know that (i) one or more isoforms can be
transcribed in a same gene region, (ii) those transcripts
may have distinct expression levels, and (iii) it could
lead to a DE result at the transcript level but a non-DE
result at the gene level. To prevent this possible problem
and fully utilize the resolution of RNA-seq data, advanced
R packages (e.g., BitSeq [21] and DEXSeq [14]) have
recently been developed. We believe that the use of those
packages together with DEGES enables us to obtain a
more reliable result, because the idea of DEGES can, of
course, be applied to DE analysis at both gene-level and
transcript-level resolutions.

Finally, the current DEGES-based normalization methods
implemented in TCC only employ linear scaling norma-
lization methods and statistical methods for identifying

DEGs. This is because these scaling normalization methods
do not change the shape of the original count distribution
and the statistical methods for identifying DEGs in
edgeR, DESeq, and baySeq assume the model. Technic-
ally speaking, we can construct many other pipelines
consisting of, for example, a non-linear normalization
method (e.g., quantile normalization [26]) and a DEG
identification method originally developed for microarray
analysis (e.g., WAD [27]). As we learned from the micro-
arrays, there are suitable combinations of normalization
methods and DEG identification methods [28]: we specu-
late that a non-linear normalization method would be
incompatible with a statistical DE method. A critical
evaluation of those pipelines will be of interest in the
future and we will continue to offer up-to-date guidelines.

Availability and requirements
Project name: TCC
Project home page: TCC is available at http://www.iu.
a.u-tokyo.ac.jp/~kadota/TCC/ and will appear in Biocon-
ductor (http://bioconductor.org/) from ver. 2.13.
Operating systems: Platform independent
Programming language: R
Other requirements: requires the edgeR, DESeq, baySeq,
and ROC packages
License: GPL-2
Any restrictions to use by non-academics: None
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Additional files

Additional file 1: Additional results for simulation data with replicates.
Sheet 1: Standard deviations of AUC values in Table 1 are shown. Legends are
the same as given in Table 1. Sheet 2: Estimated values for Poeg and
accuracies of the potential DEGs are shown. Averages of 100 trials are shown.
Values for (a) TMM do not exist because it does not estimate potential DEGs.
Following the original TbT study, the Ppeg value for DEGES/TbT was directly
obtained from the posterior probability output of baySeq (i, a floor value for
Poec was set to 0%; floorPDEG = 0.00) and the accuracy was calculated on the
basis of the estimated DEGs. The estimated Ppgc values for the other DEGES-
based methods were calculated as relative numbers of genes satisfying
FDR<0.1 (ie, FDR=0.1). The accuracy was calculated on the basis of the
potential DEGs if the Ppeg value was over 5% of the predefined floor Pogg
value (ie, floorPDEG = 0.05) and, otherwise, the accuracy of the 5% of
top-ranked genes was calculated as the surrogate DEGs.

Additional file 2: Effect of iterations for simulation data with replicates.
Details of the results in Table 3 are shown. Sheet 1: The N and N, values are
shown: (a) iIDEGES/TDT, (b) IDEGES/edgeR, (c) iIDEGES/TDT, and (d) iDEGES/
DESeq. Sheet 2: Raw results (convergent (C) or non-convergent (P)) for each of
the 100 trials are shown. The number to the right of the C (or P) indicates the
Ne (or Np) value. Sheet 3: Average AUC values (%) for the iDEGES/edgeR-edgeR.
AUC values with n = 1-6 for (a) all trials, (b) trials only having convergent
results, and (c) trials only having non-convergent results are shown.

Additional file 3: Results for simulation data without replicates.
Results of four normalization methods (XXX = (a) DESeq, (b) iDEGES/DESeq,
(c) iIDEGES/TDT, and (d) DEGES/TbT) under each simulation condition are
shown. Sheet 1: Average AUC values (%) of 100 trials and the standard
deviations from the XXX-DESeq and the XXX-baySeq combinations are
shown. Legends are the same as in Table 1. Sheet 2: Estimated values for
Poee and accuracies of the potential DEGs are shown. Averages of 100
trials are shown. Values for (a) DESeq do not exist because it does not
estimate potential DEGs. Other legends are the same as in Additional

file 1. Sheet 3: Average computation times (in seconds) of 100 trials for
the four normalization methods are shown.

Additional file 4: Effect of iterations for simulation data without
replicates. Sheet 1: Summary of convergent or non-convergent (cyclic)
results of 100 trials for three iDEGES-based normalization methods: (a)
iDEGES/DESeq, (b) iDEGES/TDT, and (c) iDEGES/TbT. Sheet 2: Raw results
(convergent (C) or non-convergent (P)) for each of the 100 trials are
shown. Sheet 3: Average AUC values (%) for the iDEGES/DESeq-DESeq.
AUC values with n=1-6 for (a) all trials, (b) trials only having convergent
results, and (c) trials only having non-convergent results are shown. The
characteristics of Np =2 for non-convergent results can be seen.

Additional file 5: Effect of iterations for real data. Sheet 1: Basic
information for the four ReCount datasets as well as the RDR6 dataset are
shown. The dataset names except for the RDR6 one are the same as those
provided in the ReCount database. The numbers in the “non-zero counts”
column indicate the numbers of genes (or transcripts or rows) having non-
zero counts for at least one of the compared groups. The numbers in the
“unique patterns” column indicate the numbers of unique patterns among
the genes having non-zero counts. Sheet 2: Results (convergent (C) or
non-convergent (P)) of four iDEGES-based normalization methods when
using floor Ppgg value settings of (a) 5% and (b) 10% are shown. The
number to the right of the C (or P) indicates the N (or Np) value. The
analysis were performed using non-zero count data. Note that the results of
iDEGES/edgeR for the maqc dataset were not shown because the method
cannot be applied to data without replicates.

Additional file 6: Dendrogram of average-linkage hierarchical
clustering for a katz.mouse dataset. Legends are basically the same as
those in Figure 3. Gene lists having iteration numbers on the right side
correspond to the results of the iDEGES/TbT-YYY combinations: the
iDEGES/TbT pipeline for this dataset converged after the fifth iteration
(i.e, Nc=5; see “Sheet 2" in Additional file 5). It can be seen that the
ranked gene lists obtained from the same combination with different
iteration numbers (i.e, the five lists obtained from the iDEGES/TbT-YYY
combination with n=1~5) are quite similar to the lists obtained from
the other XXX-YYY combinations if YYY is the same.
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