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Abstract

Background: Amyloids are proteins capable of forming fibrils. Many of them underlie serious diseases, like
Alzheimer disease. The number of amyloid-associated diseases is constantly increasing. Recent studies indicate that
amyloidogenic properties can be associated with short segments of aminoacids, which transform the structure
when exposed. A few hundreds of such peptides have been experimentally found. Experimental testing of all
possible aminoacid combinations is currently not feasible. Instead, they can be predicted by computational
methods. 3D profile is a physicochemical-based method that has generated the most numerous dataset -
ZipperDB. However, it is computationally very demanding. Here, we show that dataset generation can be
accelerated. Two methods to increase the classification efficiency of amyloidogenic candidates are presented and
tested: simplified 3D profile generation and machine learning methods.

Results: We generated a new dataset of hexapeptides, using more economical 3D profile algorithm, which showed
very good classification overlap with ZipperDB (93.5%). The new part of our dataset contains 1779 segments, with
204 classified as amyloidogenic. The dataset of 6-residue sequences with their binary classification, based on the
energy of the segment, was applied for training machine learning methods. A separate set of sequences from
ZipperDB was used as a test set. The most effective methods were Alternating Decision Tree and Multilayer
Perceptron. Both methods obtained area under ROC curve of 0.96, accuracy 91%, true positive rate ca. 78%, and
true negative rate 95%. A few other machine learning methods also achieved a good performance. The
computational time was reduced from 18-20 CPU-hours (full 3D profile) to 0.5 CPU-hours (simplified 3D profile) to
seconds (machine learning).

Conclusions: We showed that the simplified profile generation method does not introduce an error with regard to
the original method, while increasing the computational efficiency. Our new dataset proved representative enough
to use simple statistical methods for testing the amylogenicity based only on six letter sequences. Statistical
machine learning methods such as Alternating Decision Tree and Multilayer Perceptron can replace the energy
based classifier, with advantage of very significantly reduced computational time and simplicity to perform the
analysis. Additionally, a decision tree provides a set of very easily interpretable rules.
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Background
Amyloids are proteins that can form fibrils - highly or-
dered aggregates of a characteristic zipper structure [1-4].
Majority of these proteins natively have a completely dif-
ferent functional structure in their physiological state, al-
though functional amyloids also exist [5,6]. A hypothe-
sis holds that in vivo amyloidogenic regions are usually
capped by gatekeeper aminoacids, like prolines and gly-
cines, which prevent aggregation, and may have a high
affinity to chaperone proteins [7]. Very often amyloids
lead to serious diseases, like Alzheimer disease (amyl-
oid-β, tau), Parkinson disease (α-synuclein), type 2 diabetes
(amylin), Creutzfeldt-Jakob disease (prion protein), Hun-
tington disease (huntington), amyotrophic lateral sclerosis
(SOD1), etc. (for a review see e.g. [5]). The number of
diseases that turn out amyloid-associated is constantly in-
creasing. It is believed that their toxicity is related to inser-
tion of non-mature aggregates into plasma membranes as
non-selective ion channels.
Recently, it was discovered that amyloidogenic pro-

perties can be due to short segments of aminoacids in a
protein sequence (hot spots), which can transform the
structure when non-burried [8]. It was proposed that
hexapeptides can sufficiently represent such hot-spots,
although they may vary between 4–10 aminoacids. A
few hundreds of such peptides have been experimentally
found, however testing all combinations is not possible.
Instead, they can be predicted by computational methods.
Several physico-chemical methods have been proposed

to predict amylogenicity of a peptide, e.g. Tango [9],
ZipperDB [10,11], Pasta [12], AggreScan [13], PreAmyl
[14], Zyggregator [15], CamFold [16], NetCSSP [17],
FoldAmyloid [18], AmyloidMutant [19,20], BetaScan [21],
and consensus AmylPred [22]. The majority of these me-
thods predict probability of a sequence to form β-aggre-
gates. As it turned out, such an approach was not always
successful. Although β-aggregation is related to amyloid-
osis, structural and biophysical properties are different
[7,9]. β-aggregation is quite common in highly concen-
trated proteins, which do not form fibers. On the other
hand, certain amyloids, like prions, are poorly predicted
by tools dedicated to β-aggregates.
Methods like 3D profile, applied in ZipperDB or

AmyloidMutant, which take into account more specific
structural features of amyloids - resembling a steric zipper
[4] - work better in such cases. Also statistical elements
seem to help in the classification, as shown in Waltz
[23] using Position Specific Scoring Matrices (PSSM),
or Bayesian classifier and weighted decision tree ap-
plied to long sequences of bacterial antibodies [24].
Experimental datasets, upon which new classification

methods could be built, are still very limited. Those se-
quences that show amyloid propensity are rarely well
characterized. For the majority of them, it is not known
which segment is responsible for their amylogenicity and
few of them have an experimental structure of high reso-
lution [4]. The biggest database of potential hexapep-
tides, generated with the 3D profile method, comes from
the ZipperDB. The classical 3D profile method applies
over 2.5 thousand scaffolds resembling a steric zipper
structure, on which tested hexapeptides are threaded,
and their minimal energy is calculated. If the minimal
energy of one chain is below a threshold value, which
could be obtained from experimental dataset of hexa-
peptides, then the hexapeptide is classified as amyloido-
genic. The method is reasonable and quite accurate - the
authors of Waltz tested it on the independent dataset
from prion protein sup35, which was experimentally de-
rived. They reported that the 3D profile method showed
accuracy of 0.8, with sensitivity of 0.67 and specificity of
0.84 [23]. The database in ZipperDB, which is freely
available on-line [25], is constantly growing. Currently it
covers all ORFs from 3 genomes: H. sapiens, S. cervisiae,
and E. coli, with 50% redundancy. Interestingly, the data-
base shows hot spots in a majority of proteins. It does
not mean that they can easily turn into amyloids in the
physiological conditions but it shows new interesting
aspects of this topic. Unfortunately, the 3D profile me-
thod is very computationally expensive and not very sim-
ple to use.
In this paper, we propose two methods to extend the

ZipperDB dataset, classifying hexapeptide candidates at
lower computational cost. One of the methods is closely
related to the original idea of ZipperDB, only reducing
the number of profiles. The other one, which introduces
the main increase of the efficiency, uses a completely
different statistical approach - machine learning. Both
methods are tested versus original ZipperDB database
classification.

Results and discussion
Dataset
We generated a new dataset of 4481 hexapeptdes, which
was later used for training machine learning methods
(see Additional file 1, trainset(+) and trainset(-)), using
our version of 3D profile method with very significant-
ly reduced number of profiles (see Methods - Dataset),
and the method of exact energy calculation proposed in
ZipperDB 2006 [10]. The dataset contains 825 positively
and 3656 negatively classified segments. Part of our da-
taset (2702 hexapeptides, see Additional file 1) is also
available in ZipperDB 2010 (as of February 2012), which
uses the simplified "triplet" method of calculating the
energy and fuzzy logic. Energies of these hexapeptides,
obtained from our study and from ZipperDB, were com-
pared. Based on the energy criterion, 93.5% of the seg-
ments were identically classified with regard to their
amyloid properties (Additional file 1). In this set, 622



Table 1 Machine learning performance

Method TPR TNR Acc AUC

MLP 0.78 0.95 0.91 0.96

ADTree 250 0.78 0.95 0.91 0.96

Naive Bayes 0.53 0.98 0.88 0.95

ADTree 50 0.64 0.96 0.89 0.94

RF 0.26 0.98 0.82 0.89

FT 0.73 0.94 0.90 0.85

SVM 0.76 0.95 0.91 0.86

Part 0.56 0.94 0.86 0.85

BFTree 0.67 0.91 0.86 0.82

Ridor 0.56 0.90 0.83 0.73

Jrip 0.29 0.93 0.79 0.61
The performance evaluation of the machine learning methods. The results are
ordered by decreasing AUC.
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(23%) hexapeptides were classified by our energy value as
amyloidogenic; ZipperDB classified 612 (22.6%) as amyloi-
dogenic. Differently classified hexapeptides often had en-
ergies close to the classification threshold of −23 kcal/mol.
The mean absolute value of the energy difference, bet-
ween these two sources, was 1 kcal/mol; 90% of the differ-
ence was below 1.4 kcal/mol. Energy values could differ
because of limited number of threading profiles, as well
as randomization element in Rosetta Design. Moreover,
computationally faster but simplified triplet method, used
in ZipperDB 2010, also affected the results. As stated by
the ZipperDB authors, who tested it on segments of E. coli
ORFs, an average error introduced by the triplet method
was of 4 kcal/mol (90% of the difference) with the ten-
dency to overestimate amylogenicity [11].
Our study shows that the results from our threading

method are very comparable with those from ZipperDB
2010. In the new part of our dataset (1779 segments),
204 (11%) of the hexapeptides were classified as amy-
loidogenic (Additional file 1). Also position dependant
frequencies of each aminoacid are similar in our set and
the set from ZipperDB (see Methods – Dataset and
Additional file 2).

Machine learning methods
Our dataset, with a binary classification of sequence amy-
loid propensities based on their calculated energies, was
applied for training machine learning methods [26], pro-
vided by WEKA [27]. Our objective was testing a potential
for sequence based machine learning methods, which
could be very significantly faster than threading and
energy calculation. From a hundred of different ma-
chine learning methods, pre-selection was carried out
(see Methods). Special consideration was given to meth-
ods with the highest potential for biochemical interpret-
ation. From the preliminary tests, using cross-validation
on the training set and selected efficiency measures, ten
methods gave promising results: Alternating Decision
Tree (ADTree) [28], Best-First Tree (BFTree) [29], Func-
tional Tree (FT) [30], a clone of the Repeated Incremental
Pruning to Produce Error Reduction (JRip) [31], a PART
decision list (PART) [32], Ripple Down Rule (Ridor) [33],
Support Vector Machine (SVM) method, implemented in
WEKA with Sequential Minimal Optimization (SMO) al-
gorithm for training a support vector classifier using poly-
nomial or RBF kernels [34], MultiLayer Perceptron (MLP)
[35], Naive Bayes [36], and Random Forest (RF) [37].
The final results of these 10 methods, using a separate

test set (see Methods – Database) are shown in Table 1.
The parameters of the methods (True Positive Rate - TPR,
where amyloidogenic is regarded as “positive”, True Nega-
tive Rate - TNR, Area Under ROC Curve - AUC) were
optimized. Top methods were selected according to their
AUC ROC (Figure 1).
The tests showed that some of the standard WEKA
methods can be very successfully used for classification
of amyloidogenic segments, compatible with 3D profile
method. In the best methods, Acc was typically close to
90%. The most effective methods from WEKA were
MLP, ADTree, and Naive Bayes (results in Table 1, mo-
del details in Additional file 3).
The best ADTree, with 250 rules, achieved AUC=0.96,

which is close to maximum AUC=1, characteristic of an
ideal classifier, TPR=0.78, TNR= 0.95, and Acc= 0.91.
Identical results were achieved with MLP classifier. We
have also tested if removal of hexapaptides that overlap
experimental datasets and introduce a bias in sequences,
coming from the highly redundant AmylHex dataset,
influence the result of our classifiers. The ADTree 250
trained on the reduced training set, deprived of hexapep-
tides overlapping AmylHex and Waltz, showed higher
efficiency – it obtained AUC=0.98, TPR=0.81, TNR=0.96,
and Acc=0.94. The rules (trained on the full set) concern-
ing each hexapeptide position are presented and com-
pared in Additional file 4. There are some differences
between trees built on the full and reduced training sets.
For example, the tree from the full training set favored val-
ine at position 3 (rule 14 with factor 0.6, Additional file 4),
overrepresented in AmylHex, while the tree built on the
reduced dataset shows valine only in rule 47 (less signifi-
cant), and with factor 0.45. The trees with a lower number
of rules, which are easier for interpretation, are also good
classifiers (see ADTree with 50 rules in Figure 2). The top
rules for this tree are fairly compatible with the PSSM
underlying Waltz method reported in [23], and they indi-
cate, for example, that isoleucine (I) is highly expected at
position 4 (see ADTree with 50 rules in Figure 2, rule 1:
AA4=I with the factor of 0.926), while proline (P) and ar-
ginine (R) are not welcome (Figure 2, ADTree with 50
rules, rule 12: AA4=P with the factor of −2.077, and rule
13:AA4=R with the factor of −1.636, respectively).
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Figure 1 A plot of ROC curves of all methods. A plot of ROC curve for all the methods. Among all methods, MultiLayer Perceptron and
Alternating Decision Tree with 250 boosting iterations cover the maximum area under the curve (i.e. 0.96), closely followed by Naive Bayes
(AUC of 0.95) and Alternating Decision Tree with 50 boosting iterations (AUC of 0.94). In Table 1 all the corresponding AUC values are reported.
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Efficiency of the MLP method was not sensitive to the
presence of the redundant hexapeptides in the training
set (results in Additional file 3). Naive Bayes improved
its efficiency when trained on the reduced set (AUC=0.97,
TPR=0.54, TNR=0.99, Acc=0.91).
Figure 2 ADTree with 50 rules. In notation of the rules, n: AA j, n indicat
aminoacid position. Below the rule label, the aminoacid occurrence (or abs
low aminoacid occurrence. A detailed explanation on how to read the Alte
A representative estimate of WEKA methods perfor-
mance, which was independent of class distribution and
the specifics of the training data set (see Methods) is
presented in Table 2, showing the number of wins, draws
and losses when all methods are compared to each other
es the rule number (ordered by their significance), j denotes the
ence marked by “!”) are valued by numbers. Negative numbers denote
rnating Decision Tree is given in the main text.



Table 2 Statistical evaluation

Method Wins Draws Losses

MLP 10 0 0

ADTree 250 8 1 1

Naive Bayes 6 3 1

ADTree 50 6 2 2

FT 3 5 2

SVM 3 3 4

PART 3 3 4

RF 3 3 4

Ridor 1 1 8

BFTree 1 1 8

JRip 0 0 10
Summary of wins, draws and losses of each method confronted with others
(with regard to their AUCs).
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for AUC. The corrected paired t-test showed that ADTree
and MLP had statistically significantly higher AUCs than
other methods, at the 5% of the significance level.

Compatibility of the energy based classification with
FoldAmyloid and Waltz
To test to what extent the 3D profile method overlaps
with other state of the art methods, i.e. how universal its
extended datasets could be, we performed the amyloge-
nicity prediction with other tools: FoldAmyloid and Waltz,
using different classification methods. FoldAmyloid is ba-
sed on the packing density [23] and Waltz is based on
PSSMs primarily derived from a dataset classified by phy-
sicochemical modeling [9]. The whole set of 4481 hexa-
peptides was tested, using all FoldAmyloid options and
Waltz optimizations for overall performance and sensi-
tivity (Additional file 5). The results are summarized in
Table 3.
The overall classification overlap was similar in all me-

thods; typically 80% of the hexapeptides were classified
identically, using 3D profile and FoldAmyloid or Waltz.
On the other hand, 84-88% of hexapeptides, classified by
Table 3 ZipperDB versus other methods

Method Ove

1. FoldAmyloid Contacts 0.7

2. FoldAmyloid Bone-Bone Donors 0.7

3. FoldAmyloid Bone-Bone Acceptors 0.7

4. FoldAmyloid Contacts+Donors 0.7

5. FoldAmyloid Contacts+Donors+Acceptors 0.7

6. Waltz Best Performance 0.8

7. Waltz High Sensitivity 0.8

CONSENSUS 3D profile + (5) + (7) 0.6

Compatibility of the 3D profile classification with FoldAmyloid and Waltz.
3D profile as non-amyloidogenic, were also negatively
classified by FoldAmyloid; Waltz overlap of negatives was
91-97%. However, classification of the positive hexapep-
tides was less compatible - ranging from 11% in Waltz
best performance method to 43% in FoldAmyloid triple
hybrid method. This result shows that classification of
positive instances is more challenging and should become
the target. Less numerous positive datasets of experimen-
tal data, on which all classification methods were previ-
ously trained, could contribute to this situation. Also in
our dataset, only 18.4% of hexapeptides were regarded
as positive. Importantly, recognition of non-amyloid seg-
ments in the optimal method overlapped in 84%. This
means that negative peptides can be eliminated efficiently
and consistently between different methods. We have also
tested the consensus between 3D profile, FoldAmyloid
triple hybrid and Waltz high sensitivity. It turned out that
the overlap was 69%, in which positive rate was 21% and
negative 65%.
Conclusions
Extending of the hexapeptide dataset, with computation-
ally effective methods, could help in predicting amyloi-
dogenic regions without laboratory experiments, which
are currently not possible on all sequence combinations.
We proposed an optimization to the classical 3D profile
method, and using only 54 arbitrarily selected profiles
we generated the new dataset of hexapeptides classified
with regard to their amylogenicity. Energies of our seg-
ments showed very good overlap with the segments cur-
rently available in ZipperDB, which used the simplified
Triplet method to calculate the energy. The new part of
our dataset contains 1779 segments that have not been
previously considered, with 204 segments classified by
energy value as amyloidogenic.
We also performed the amylogenicity prediction on

our dataset, using different classification methods - Fol-
dAmyloid and Waltz. The best result was obtained with
FoldAmyloid triple hybrid method, which overlapped
rlap Positive Negative

7 0.36 0.86

9 0.39 0.88

8 0.39 0.86

8 0.38 0.87

7 0.43 0.84

1 0.11 0.97

0 0.30 0.91

9 0.21 0.65
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the 3D profile classification in 77% (total), 43% (amyloi-
dogenic), and 84% (non-amyloidogenic). It showed that
different methods are quite compatible in the elimination
process, and in this respect datasets generated with the
3D profile methods are universal.
To test whether statistical approach, trained on our

dataset, could replace the energy based classifier, we used
machine learning methods implemented in WEKA. Our
dataset of 6-residue sequences, with a binary classification
of their amyloidogenic propensities based on the calcu-
lated energy, was applied for training. From all available
WEKA methods, we selected those giving the best re-
sults and tested with a separate test set, obtained from
ZipperDB. Our study showed that some of the methods
could be very successfully used for classification of amyloi-
dogenic segments, compatible to the 3D profile method.
The most effective methods in WEKA, in terms of AUC
ROC, were Alternating Decision Tree and a Neural Net-
work of a Multilayer Perceptron architecture, both with
AUC=0.96. The ADTree efficiency could be increased to
AUC=0.98 when highly redundant set of experimental
hexapeptides was removed from the training set. The per-
formance was then very close to an ideal classifier, for
which AUC=1. A great advantage of ADTree method is
a set of very easily interpretable rules. Part of the rules
were fairly compatible with the PSSM underlying an-
other classification method -Waltz, which was based on
different data All those methods could classify almost 80%
of positive and 95% of negative hexapeptides identically as
the 3D profile method.
Such a good result of classification, based only on ami-

noacid sequence and its binary classification, is very inter-
esting. It shows a good correlation between classification
with the laborious 3D profile method using the minimal
chain energy from numerous putative structures, and pu-
rely statistical machine learning methods - using just 6 let-
ters and the binary classification. This is possible only if a
strong statistical pattern exists in the amyloid sequences
recognized by 3D profile. Our results also prove that our
new dataset is representative enough for training machine
learning methods, in order to obtain amylogenicity of
new segments only based on their six letter sequences,
with no need to carry out threading procedure and energy
evaluation.
The main advantage of the machine learning approach,

presented in this paper, is very significantly reduced
computational time. Instead of 18–20 CPU-hours with
the full 3D profile method or 0.5 CPU-hours with the
simplified 3D profile, the classification can take below 1
CPU-minute with a very good overlap of the results. Such
a reduction of the computational time is crucial when
large amount of hexapeptides should be classified. Addi-
tionally, the machine learning enhances the simplicity to
perform the analysis.
Methods
Database
As a reference dataset of 6-residue sequences, also ap-
plied to test our machine learning results, we used the
first set published in ZipperDB as of 2010 (Additional
file 1: testset(+) and testset(−)) [11].
The set used for training machine learning methods

was obtained from non-redundant protein sequences of
UniProt [38], cut into 6-residue windows by shifting of 1
position along the full sequence. The hexapeptides were
then divided into amylo-positive and amylo-negative can-
didates with our simplified 3D profile method. To increase
chances of finding amyloid segments, UniProt entries
containing the keyword “amyloid” and proteins from
AmyPDB database [39,40] were selected for the pro-
cedure (both accessed in September 2010). The sequences
were first cut into strings not exceeding 80 aminoacids
each, and excessive redundancy was reduced at the level
of 90%, with CD-HIT (Cluster Database at High Identity
with Tolerance) [41,42]. Next, the remaining sequences
were cut into hexapeptides with a window of length 6,
shifted of 1 position in each move. The set was finally
enlarged with 266 hexapeptides studied experimentally:
AmylHex dataset [10] and Waltz [23].
The full dataset do not show position dependence

of aminoacids, with statistics close to the frequencies of
aminoacids in all UniProt [43]. Even closer statistics
were obtained for the dataset not enriched with the hex-
apeptides from AmylHex and Waltz. The statistics of
the test set is also close to the same characteristics, al-
though some numbers slightly differ (e.g. prolines are
excluded in the test set). Standard deviations are negli-
gible in both datasets. The statistics of datasets, in the
form of tables and logos (prepared with WebLogo [44]),
are presented in Additional file 2.

Threading and energy calculation
First, all cysteines were replaced by serines to avoid di-
sulfide bridges as in [10]. Similarly to 3D profile method
[10], a fibril-forming peptide NNQQNY, from sup35
prion protein of Saccharomyces, was used as a scaffold
in the threading method. Each hexapeptide from the set
was threaded on the scaffold; 5 identical copies of the
hexapeptide formed one of two identical β-sheets. In the
final structure, one of the β-sheets was shifted relative to
the other one. In our implementation, which differs from
3D profile method, the movement was exercised in two
planes: along the chains of 0-8 Å with the step of 1 Å,
and across the sheets fixing the distance between them
to 6–11 Å with the step of 1 Å. We did not use the third
direction, which was implemented in [10]. Finally, we
obtained 54 profiles, instead of 2,511 in full method [10];
no fuzzy logic was used to reduce the number of pro-
files as in [10]. Then, the energies of 54 profiles were
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calculated. For each segment from the dataset the energy
was obtained with Rosetta Design program [45,46], which
added the side chains to the backbones, applied a random
component of the simulated annealing to relax the struc-
ture, and calculated the energy of infinite periodic system
(for more details of the energy calculation procedure see
[45]). As an optimal configuration, for each hexapeptide a
structure with minimal energy was selected from the set
of profiles. Similarly as in [10], the threshold of −23 kcal/
mol was assumed to classify amylogenicity of a segment.
Positive instances contained at least one chain whose en-
ergy was not greater than the threshold.
The full original 3D profile method, evaluating a single

6-residue segment, required 18–20 CPU-hours (2.5 GHz
AMD Opteron, Phenom or Intel Xeon CPU), while 2–2.5
CPU hours were needed with the triplet method and fuzzy
logic selecting 80–100 templates [11], supplement. Our
method applies the original method, only reducing the
number of templates 46 times (from 2 500 to 54). The en-
ergy calculation would take 0.5 CPU-hour for each hexa-
peptide, with the same computer.

Machine learning
The classifiers were trained on all 4481 hexapeptides
from our dataset obtained by simplified 3D profile me-
thod (Additional file 1). Prediction methods were provided
by WEKA 3.6.6 (Waikato Environment for Knowledge
Analysis) [27],which includes a hundred of different classi-
fiers. Pre-selection, to find the most effective methods,
was carried out with default WEKA sets of parameters
and 10-fold cross-validation on the training set. Next, we
chose 10 most promising methods from WEKA suite. Fi-
nally, we used the following methods with the optimized
parameters:

– ADTree (numOfBoostingInterations=250 or 50,
randomSeed=1),

– BFTree (minNumObj=4, numFoldsPruning=4,
seed=2, pruningStrategy=un-pruned),

– FT (minNumInstances=26,
numBoostingIterations=86),

– RF (maxDepth=unlimited, numFeatures=log2(7)+1,
numTrees=200, seed=1),

– JRip (folds=4, minNo=1, optimizations=7, seed=4),
– MLP (hiddenLayers=1 with 60 nodes,

learningRate=0.1, Momentum=0.2, seed=0,
trainingTime=500),

– PART (confidenceFactor=0.3, mniNumObj=1,
numFold=3, seed=1),

– Ridor (folds=3, minNo=6, seed=1, shuffle=7),
– SVM (c=2.0, kernel=linear)
– Naive Bayes (no parameters).

Parameters not specified have their values set to default.
Out of the above mentioned methods, ADTree algo-
rithm has several advantages over other machine learning
methods, such as MLP or SVM, including easy interpret-
ation of the results. An alternating decision tree is in fact
a graphical representation of a collection of user interpret-
able rules. Each tree consists of decision and prediction
nodes. The prediction node contains a single number,
whereas decision node defines a predicate conditions. To
classify an instance, the ADTree follows all paths for
which all decision nodes are true. The final classifica-
tion score is gained by summing all the prediction nodes
through which the instance it passes.

Prediction accuracy assessment
The binary test set included 346 positive and 1240 ne-
gative hexapeptides from ZipperDB, as of May 2010
(Additional file 1). The classification results were eval-
uated based on typical measures: Sensitivity (called True
Positive Rate - TPR), Specificity (True Negative Rate -
TNR), Accuracy (Acc). These criteria widely used to eva-
luate the performance of prediction models, and defined
as below:

TPR ¼ TP= TPþ FNð Þ;
TNR ¼ TN= TNþ FPð Þ;

Accuracy ¼ TPþ TNð Þ= TPþ TNþ FPþ FNð Þ;

where TP, FP, FN and TN represent the numbers of true
positives, false positives, false negatives and true negatives
respectively. The overall quality of a classifier can be eval-
uated with area under ROC curve (AUC) [47]. The value
of the AUC score ranges from zero to one, with a score of
0.5 corresponding to random guess and a score of 1.0 in-
dicating perfect separation. This estimator evaluates the
method in separating amyloids from non-amyloids. In par-
ticular, The AUC is well received in the imbalanced data-
set community and it is becoming the standard evaluation
method.

Statistical validation
In order to obtain a representative estimate of WEKA
methods performance, which is independent of class dis-
tribution and the specifics of the training data set, we
performed an experiment with 10 train and test runs.
The data used for training and testing - a dataset of 4481
hexapeptides - was randomly divided into 66% and 34%,
respectively. The results were analysed statistically using a
corrected paired samples t-test [46] where we computed
p-values at the 5% significance level, comparing every
method with every other method for their AUC. This is a
parametric procedure used to determine whether there
is a significant difference between the average values of
the same performance measure for two different me-
thods. The test assumes that the paired differences are
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independent and identically normally distributed. Al-
though the measurements themselves may not be nor-
mally distributed, the pair wise differences often are.

Validation with other classification methods
Two different state of the art methods were used to test
the inter-compatibility of the energy based method:
FoldAmyloid [18,48] and Waltz [23,49] (as of March
2012). We performed the analysis on the whole set of
4481 hexapeptides, using our scripts in Python program-
ming language and spynner - open source web browsing
module for communication with both services. All stan-
dard FoldAmyloid methods were applied: contacts, bone-
bone donors, bone-bone acceptors, hybrid (contacts +
donors), and triple hybrid (contacts + donors + acceptors).
Waltz was run with its standard optimizations for overall
performance and sensitivity.

Additional files

Additional file 1: Dataset of hexapeptides with calculated energies
and amylogenic classification.

Additional file 2: Position specific aminoacid frequencies of the
training and test datasets.

Additional file 3: Detailed results of the best machine learning
methods trained on the full and reduced training sets.

Additional file 4: Rules of ADTree 250 methods for full and reduced
training sets. Columns contain the rules corresponding to each position
in amyloidogenic hexapeptides in decreasing order of their importance.
Yellow cells denote positive rules, purple – negative rules.

Additional file 5: Amylogenic classification of our dataset obtained
with reduced 3D profile (additional file 1: trainset(+) and trainset(-))
with different methods: 3D profile, FoldAmyloid and Waltz. The file
includes the spreadsheets labeled according to the name of the external
method.
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