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Abstract

Background: Biomedical corpora annotated with event-level information represent an important resource for
domain-specific information extraction (IE) systems. However, bio-event annotation alone cannot cater for all the
needs of biologists. Unlike work on relation and event extraction, most of which focusses on specific events and
named entities, we aim to build a comprehensive resource, covering all statements of causal association present in
discourse. Causality lies at the heart of biomedical knowledge, such as diagnosis, pathology or systems biology, and,
thus, automatic causality recognition can greatly reduce the human workload by suggesting possible causal
connections and aiding in the curation of pathway models. A biomedical text corpus annotated with such relations is,
hence, crucial for developing and evaluating biomedical text mining.

Results: We have defined an annotation scheme for enriching biomedical domain corpora with causality relations.
This schema has subsequently been used to annotate 851 causal relations to form BioCause, a collection of 19
open-access full-text biomedical journal articles belonging to the subdomain of infectious diseases. These documents
have been pre-annotated with named entity and event information in the context of previous shared tasks. We report
an inter-annotator agreement rate of over 60% for triggers and of over 80% for arguments using an exact match
constraint. These increase significantly using a relaxed match setting. Moreover, we analyse and describe the causality
relations in BioCause from various points of view. This information can then be leveraged for the training of automatic

causality detection systems.

hypotheses for experimental work.

Conclusion: Augmenting named entity and event annotations with information about causal discourse relations
could benefit the development of more sophisticated IE systems. These will further influence the development of
multiple tasks, such as enabling textual inference to detect entailments, discovering new facts and providing new

Background

Due to the ever-increasing number of innovations and
discoveries in the biomedical domain, the amount of
knowledge published daily in the form of research arti-
cles is growing exponentially. This has resulted in the
need to provide automated, efficient and accurate means
of retrieving and extracting user-oriented biomedical
knowledge [1-4]. In response to this need, the biomedi-
cal text mining community has accelerated research and
the development of tools. Text is being enriched via the
addition of semantic metadata and thus supports tasks
such as analysing molecular pathways [5] and semantic
searching [6].
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Reviews [7] show that, over the last decade, biomedi-
cal text mining has seen significant advancements, rang-
ing from semantically foundational tasks, such as named
entity recognition [8], coreference resolution [9,10] and
relation [11,12] and event extraction [13-17], to more
complex tasks, e.g., automatic summarisation [18,19],
question answering [20,21], multimedia [22] and even
multi- and cross-lingual information retrieval and extrac-
tion [23,24]. The heterogenous tools resulting from this
research can also be combined into workflows, using
systems such as U-Compare [25] and Argo [26]. Further-
more, there has been much interest recently in study-
ing the intentions expressed in text, also known as
meta-knowledge [27,28]. This includes, amongst others,
recognising sentences which contain speculation [29-32],
negation [31-33] or manner [34]. Other researchers who
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have looked at biomedical articles noticed significant
differences between abstracts and full papers regard-
ing structural, morpho-syntactic and discourse features
[35] and event and meta-knowledge aspects [36]. Oth-
ers define various discourse zones and try to determine
automatically to which zone a sentence belongs [37].

One of the most important outcomes of the recent
research undertaken into biomedical text mining is the
large number of newly created, manually annotated cor-
pora. Examples of such resources are the widely used
GENIA corpus [38], GENETAG [39] and other corpora
from shared tasks, such as BioNLP ST 2009 and 2011
[16,17]. Although these resources have been designed for
their target tasks, they are not necessarily restricted to
their respective task and can provide support for other
tasks as well. Data reuse is both highly demanded and
occurs frequently, as it saves important amounts of human
effort, time and money. For instance, the GENIA cor-
pus, which initially contained only named entity anno-
tations, has been extended, partially or fully, by various
researchers and groups, to include event annotations and
meta-knowledge information.

However, until now, comparatively little work has been
carried out on discourse relations in the biomedical
domain. The notion of discourse can be defined as a
coherent sequence of clauses and sentences. These are
connected in a logical manner by discourse relations, such
as causal, temporal and conditional, which characterise
how facts in text are related. In turn, these help read-
ers infer deeper, more complex knowledge about the facts
mentioned in the discourse. These relations can be either
explicit or implicit, depending on how they are expressed
in text — using overt discourse connectives (also known as
triggers) or not, respectively.

Statements regarding causal associations have been long
studied in general language, mostly as part of more com-
plex tasks, such as question answering [40,41] and textual
entailment [42]. Despite this, a single, unified theory of
causality has not yet emerged, be it in general or spe-
cialised language. There are several pieces of work which
characterise how annotators perceive causality and the
mechanisms they employ to identify it. For instance, some
researchers have showed that causality cannot be iden-
tified using intuitive testing techniques in a conscious
manner [43]. Therefore, they devise an experiment to
select features which allow annotators to coherently iden-
tify causality, such as rewording, temporal asymmetry,
counterfactuality and various linguistic tests. Other, inde-
pendent results are similar and show that necessary and
sufficient conditions are not enough to achieve satisfac-
tory inter-annotator agreement and that paraphrasing is a
much more useful method [44].

In biomedical science, causal associations between bio-
logical entities, events and processes are central to most
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claims of interest [45]. Many tasks, such as information
extraction, question answering and automatic summari-
sation, require the extraction of information that spans
across several sentences, together with the recognition of
relations that exist across sentence boundaries, in order to
achieve high levels of performance. Take, for instance, the
case in example (1), where the trigger Therefore signals a
justification between the two sentences: because “a nor-
mal response to mild acid pH from PmrB requires both a
periplasmic histidine and several glutamic acid residues’,
the authors believe that the “regulation of PmrB activity
could involve protonation of some amino acids”.

(1) In the case of PmrB, a normal response to mild acid
pH requires not only a periplasmic histidine but also
several glutamic acid residues. Therefore, regulation
of PmrB activity may involve protonation of one or
more of these amino acids.

Nevertheless, not all causality relations are as obvious
as the previous one, where the trigger is explicit and is
usually used to denote causality. In example (2), there
is an implicit discourse causal association between the
first half of the sentence, “This medium lacked Fe3+ or
Al3+, the only known PmrB ligands (Wosten et al., 2000),
and contained 10 mM MgCl2’; and the latter half, “which
represses expression of PmrA-activated genes” This is
due to the fact that, generally, bacterial gene expression
could be affected by specific properties of growth media,
such as pH and concentration of metals. Therefore, since
the repression of the gene expression was observed in
a specific condition of a medium, it is implied that the
medium in this condition is the cause of the repression
and biologists infer a causal association.

(2) This medium lacked Fe3+ or Al3+, the only known
PmrB ligands (Wosten et al., 2000), and contained 10
mM MgCl2, which represses expression of
PmrA-activated genes (Soncini and Groisman, 1996;
Kox et al., 2000).

Amongst the large number of corpora that have been
developed for biomedical text mining purposes, several
include the annotation of statements regarding causal
associations, such as Biolnfer [46], GENIA [38] and GREC
[47]. However, these corpora do not include an exhaustive
coverage of causal statements. Furthermore, the granu-
larity of the annotation of such statements is limited in
several respects, which are described below. Since such
corpus resources underlie most currently existing meth-
ods for the automatic analysis of biomedical text, there is
an opportunity to advance the state of the art in domain-
specific IE and text mining through the improvement of
annotation schemata, resources and methods in the area
of causal association statements.
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The development of tools and resources for the auto-
matic analysis of statements of causality is thus of key
importance to information extraction and text mining
in domain-specific scientific text. In this paper, we pro-
vide an overview of how causality is captured in three
types of biomedical research efforts, namely biocuration
efforts, pathway models and biomedical corpora. We then
describe guidelines for the annotation of statements asso-
ciated with causal relationships in biomedical texts and
present BioCause, a corpus that has been created accord-
ing to these guidelines. Finally, we analyse the causality
annotations and the agreement achieved between the
annotators.

Causality in biocuration efforts

General, non-specific physical causation is of obvious
interest in biocuration efforts such as the assignment of
Gene Ontology (GO) [48] terms to genes to characterise
gene functions [49], in part because detailed molecular-
level interactions are rarely known when a phenomenon
is first observed. For example, an effect due to P; posi-
tively regulating the expression of Py through activation of
a transcription factor of Py by catalysing its phosphoryla-
tion may be first observed, reported and curated simply as
P; having a positive effect on the activity of Py. Yet, general
terms of causality such as “cause” rarely appear in biomed-
ical domain ontologies or other formalisations of the ways
in which entities, processes and events are associated with
each other. Instead, such formalisations frequently apply
terms such as “regulation’, “stimulation” and “inhibition”
Whilst such terms also carry specific senses in biology,
their definitions in domain ontologies and use in biocu-
ration efforts show that, typically, their scope effectively
encompasses any general causal association.

The definitions of the Gene Ontology are good exam-
ples, due to the wide support of the ontology within
the biocuration community, the large number of existing
annotations and the adoption of the ontology definitions

Table 1 GO regulation definitions
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in prominent domain text annotation efforts. These def-
initions, included in Table 1, are broader than they may
initially appear: they explicitly include indirect physical
effects (“control of gene expression”) without limitation on
the length of the low-level causal chain and, through enu-
meration, (“frequency, rate or extent”) effectively exhaust
the ways in which a process can be affected by another.
Specific cases can further illustrate the breadth of these
definitions: GO terms such as REGULATION OF MUL-
TICELLULAR ORGANISM GROWTH are used in curation
efforts to capture such findings as that the HDAC3 gene
regulates the growth of humans — an indirect causal asso-
ciation across multiple levels of biological organisation
that involves very complicated and only partially under-
stood molecular pathways.

The GO definition of REGULATION OF BIOLOGICAL
PROCESS is thus broadly equivalent to the explicitly com-
prehensive definition “any process that has any effect
on another biological process” Furthermore, in a neutral
biological context, the following pairs of statements are
roughly synonymous according to the GO definitions:

“A affects B” — “A regulates B”

“A has a positive effect on B”— “A positively regulates B”
“A has a negative effect on B” — “A negative regulates B”
and the following hold :

“A causes B” & “A positively regulates B”

“A prevents B” &~ “A negatively regulates B”

One should also consider the exact GO synonyms of
positive regulation (UP REGULATION, UP-REGULATION,
UPREGULATION OF BIOLOGICAL PROCESS AND POS-
ITIVE REGULATION OF PHYSIOLOGICAL PROCESS)
and negative regulation (DOWN REGULATION, DOWN-
REGULATION, DOWNREGULATION OF BIOLOGICAL
PROCESS AND NEGATIVE REGULATION OF PHYSIO-
LOGICAL PROCESS). Thus, whilst the observation that
“causation” is rarely considered in general terms in
domain curation, text annotation or IE, most of its scope

GO definition

Any process that modulates the frequency, rate extent of a biological process. Bio-

logical processes are regulated by many means; examples include the control of
gene expression, protein modification or interaction with a protein or substrate
molecule.

Any process that activates or increases the frequency extent of a biological pro-

cess. Biological processes are regulated by many means; examples include the
control of gene expression, protein modification or interaction with a protein or
substrate molecule.

GOID GO term

G0:0050789 REGULATION OF A BIOLOGICAL PROCESS
G0:0048518 POSITIVE REGULATION OF A BIOLOGICAL PROCESS
GO:0048519 NEGATIVE REGULATION OF A BIOLOGICAL PROCESS

Any process that stops, prevents or reduces the extent of a biological process. Bio-

logical processes are regulated by many means; examples include the control of
gene expression, protein modification or interaction with a protein or substrate
molecule.

Gene Ontology definitions of regulation, positive regulation and negative regulation of biological processes.
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Table 2 SBML/CellDesigner reaction modifications
SBML/CellDesigner GENIA
Catalysis Positive regulation

Physical stimulation Positive regulation

Modulation Regulation
Trigger Positive regulation
Inhibition Negative regulation

Comparison between SBML/CellDesigner reaction modifications and GENIA
event types.

covered in the many efforts that involve the general
concept of regulation is physical causation.

Causality in pathway models

Pathway model curation is a specific biocuration task
of particular interest to systems biology [50]. Pathway
curation efforts seek to characterise complex biological
systems involving large numbers of entities and their reac-
tions in detail using formal, machine-readable represen-
tations. The Systems Biology Markup Language (SBML)
standard [51] (http://sbml.org) for pathway representation
has been applied to a large number of curation efforts.

In particular, the SBML version used by the CellDe-
signer software [52] (http://celldesigner.org/) has been
adopted by major efforts, such as PANTHER [53] (http://
www.pantherdb.org/). As such, the SBML/CellDesigner
reaction semantics are of significant interest to domain IE
efforts seeking to support automatic pathway curation.

SBML reactions are represented as typed associations of
three sets of entities: reactants, products and modifiers.
The base reaction types are normally specific biomolecu-
lar event/process types, such as binding or phosphoryla-
tion, and, thus, are out of scope for the study of general
causality. However, SBML also allows the ways in which
entities modify reactions to be characterised using spe-
cific types, summarised in Table 2, together with related
GENIA event types (following [54]). Some of the modi-
fication types (e.g., MODULATION and INHIBITION) are
generic and used in practice to annotate general physical
causal associations whose detailed molecular mechanisms
may not be known.

Causality in biomedical corpora
A number of biomedical domain text annotation efforts
include statements of general physical causality in their
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scope. The GENIA event corpus, the most widely adopted
manually annotated domain resource for structured infor-
mation extraction, adopts GO types and annotates state-
ments of general causation using the types REGULATION,
POSITIVE REGULATION and NEGATIVE REGULATION
[38]. Examples from the GENIA-derived annotation of
the BioNLP shared task 2011 GE task corpus are shown
in Figures 1 and 2. The GENIA event corpus annotation
guidelines have been adapted also to a number of other
tasks, such as in the annotation of the BioNLP shared
task EPI and ID corpora [55,56]. An example from the ID
corpus annotation is given in Figure 3.

Whilst other domain corpora with similar annota-
tion targets have adopted different ontologies and anno-
tation types, general causality is captured also in the
annotation of corpora such as Biolnfer [46] and GREC
[47]. Biolnfer applies an independently developed ontol-
ogy that incorporates types capturing both the general
positive-negative-unspecified distinction involved in GO
and GENIA annotation, as well as more detailed subtypes
capturing, e.g., the distinction between initiating a pro-
cess and having a general positive effect on one (Figure 4).
In contrast, the GREC corpus opts for an approach where
only a small set of specific associations are assigned
detailed types, with the majority being generically typed
as GENE REGULATION EVENT (GRE). Nevertheless, the
scope of this generic type extends to cover also general
physical causal associations (Figure 5).

Thus, general physical causality is broadly included
in the scope of many domain resources annotated with
structured representations for information extraction.
However, the scopes of these annotations do exclude a
variety of statements potentially involving causal associa-
tions. Restrictions include limitation to specific forms of
expression such as only verbal and nominalised forms,
annotation of explicit statements only and exclusion of
statements that only suggest possible causal connec-
tions (“A happened after B”). Such limitations imply gaps
between the full set of statements of interest and those
annotated in domain resources and leave open a number
of opportunities for further improvement of resources and
tools for the analysis of causality in biomedical text.

Several other more discourse-oriented resources have
also been created. The work most similar to ours is the
BioDRB corpus [57], which is a collection of 24 open-
access full-text biomedical articles selected from GENIA,
containing annotations of 16 types of discourse relations,

ause
Theme
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Einding of | kappa B/MAD-3 to NF-kappa B ;365 protein is sufficient to retarga NF-kappa B ;)65

Figure 1 BioNLP ST GE causality annotation example. Example annotation from BioNLP shared task GE with annotation for general statement of

causality (“is sufficient to").
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The IL-4-mediated prevention of FOXP3 expression was not caused by interferences.

Figure 2 BioNLP ST GE causality annotation example. Example annotation from BioNLP shared task GE with annotation for general statements

of causality ("prevention” and “caused”).

one of which is causality. It was created by adapting the
framework of the Penn Discourse TreeBank [58], which
annotates the argument structure, semantics and attri-
bution of discourse relations and their arguments. The
number of purely causal relations annotated in this corpus
is 542. There are another 23 relations which are a mixture
between causality and one of either background, tempo-
ral, conjunction or reinforcement relations. For machine
learning purposes, this dataset is considered relatively
small, as it might not capture sufficient contextual diver-
sity to perform well on unseen data. Thus, a detailed
comparison and combining this resource with the one
described in this article represent an interesting oppurtu-
nity for future work.

Methods

This section is concerned with the preparatory work
required prior to the annotation of the causality cor-
pus. We describe the data that we used and present an
overview of the annotation scheme, the annotation tool
and an evaluation of inter-annotator agreement.

Data

It has been shown that there are significant differences
between various biomedical sublanguages at the levels
of syntax and discourse structure [59], as well as deeper
semantics, such as named entity types [60,61]. Therefore,
observations made on one sublanguage may not necessar-
ily be valid on another. We thus believe that attempting
to train a machine-learning causality detection system on
a mixture of subdomains would be detrimental to the
learning process. Although we recognise that this choice
is associated with high domain specificity, it is preferable
to obtain a higher performance in a specific subdomain
than a lower performance in a more general domain or
a mixture of subdomains. Nevertheless, considering these
differences, switching to a different subdomain should
be simply a matter of re-training the classifier and re-
creating the causality model. Of course, one can extend

existing causality models by adding features that have
not been encountered before. These would most probably
be semantic features, such as a new typology for named
entities and events, since these are specific to subdomains.

Furthermore, discourse causality is dependent on the
named entities and events present in text. Therefore, in
order to isolate the task of recognising causality from that
of recognising entities and events, gold standard named
entity and event annotations are needed.

Finally, it has been shown that although the informa-
tion density is highest in abstracts, information cover-
age is much greater in full texts than in abstracts and
thus these may be a better source of biologically rele-
vant data [62,63]. For these reasons, Causality annotation
is added on the top of existing event annotations from
the BioNLP Shared Task (ST) on Infectious Diseases (ID)
[56]. Whilst in other document sets, such as in those used
for subdomain analysis [61], entity and event annotations
are automatically created by NER and event extraction
systems such as NERsuite (http://www-tsujii.is.s.u-tokyo.
ac.jp/nersuite/) or EventMine [13], the BioNLP ST ID
task has manually created annotations. Furthermore, the
BioNLP ST ID corpus has a large size (19 documents) and
is comprised of full-text articles.

The existing entity and event annotations have not been
be modified in this causality annotation effort even if
annotators have spotted mistakes.

Representation
Conceptually, the annotation involves two basic anno-
tation primitives, spans and relations. Spans represent
continuous portions of text with an assigned type, whilst
relations are directed, typed, binary associations between
two spans. Spans mark both the specific statements in text
that play the roles of Cause and Effect in statements of
causality, as well as expressions that explicitly state the
existence of a causal relation.

The annotation involves two span types: ARGUMENT
and TRIGGER. The former is used to mark statements that

2-comp-sys
—_—
—_—

Cause =
+Regulation }” "™ *[Process) "aicipant
—— e —

SalK/SalR, a TCS, is essential for full virulence of Streptococcus suis Serotype 2.

Figure 3 BioNLP ST ID causality annotation example. Example annotation from BioNLP shared task Infectious Diseases corpus with annotation

for general statements of causality (“is essential for”).
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Figure 4 Biolnfer causal ontology excerpt. Fragment of the
Biolnfer ontology of causal associations involving change in process
dynamics. Arrows correspond to IS-A relationships.

are part of a causal relationship, whilst the latter is used
to mark phrases that express causal triggers. For instance,
in example (3), the text spans “A occurred” and “B hap-
pened” would be marked as ARGUMENT, whilst the text
span “Thus” as TRIGGER.

(3) A occurred. Thus, B happened.

On the other hand, relations identify connections
between the various spans of text. The relation types iden-
tify the roles that the spans of text play in the association.
The annotation involves three relation types: EFFECT,
CAUSE and EVIDENCE. EFFECT always marks the state-
ment that is stated as the result, whilst CAUSE or EvI-
DENCE mark the statement that leads to that result. All of
these concepts are detailed below.

Causality

The sense type “Cause” is used when the two arguments
of the relation are related causally and are not in a condi-
tional relation. As previously mentioned, this definition is
rather vague, so annotators must also use other methods
in order to recognise causality. Thus, considering previous
research [43,44], they were asked to check for temporal
assymetry and counterfactuality, try rewording and other
linguistic tests.

Causality annotations are defined with reference to
the following two discourse relation subtypes, in a simi-
lar manner to the BioDRB corpus. The relation subtype
pair Reason/Result represents physical causality, whilst
the other pair, Claim/Justification, represents causality
within the discourse, rather than in the physical world
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it describes. Reason/Result holds when the situation
described in one of the arguments is the cause of the situ-
ation described in the other argument. The other subtype,
Claim/]Justification, holds when the situation described by
one of the arguments is the cause, not for the situation
described by the other argument, but rather for the truth
or validity of the proposition described by the argument.

Cause-Reason/Result

Reason/Result pairs are annotated as centred on a
TRIGGER span, whilst the associated spans are of type
ARGUMENT, with CAUSE and EFFECT representing the
direction (Figure 6). The span identifying the causal trig-
ger (TRIGGER) may be empty, but a non-empty span is
marked in all cases where an explicit connective occurs.
In cases where there is no explicit connective expressed,
the TRIGGER span is placed in between the two ARGU-
MENT spans with an empty (zero-width) span, as shown
in Figure 7.

Cause-Claim/Justification

Claim/Justification pairs are also annotated as centred
on a TRIGGER span and the associated spans are of
type ARGUMENT. However, unlike with Reason/Result
pairs, EVIDENCE and EFFECT relation types are used to
represent the directionality (Figure 8). Similarly to Rea-
son/Result, a TRIGGER span is always marked, using a
zero-width span in cases where no explicit trigger appears.

Scope

All statements of causality falling within the scope of the
annotation target should be marked. Consequently, any
two possible spans that are not connected by causality
annotations (implicitly) represent a “negative” example.

ARGUMENT and TRIGGER annotations should be cre-
ated only as required for annotating associations between
them, e.g., statements that are not part of any annotated
association should not be marked. Thus, ARGUMENT and
TRIGGER annotations are not exhaustive.

Statements of association other than those annotated as
Causality are not in the scope of the annotation and are
only defined for the reference of the annotators. Conse-
quently, the primary purpose of permitting annotations
other than Causality is to provide annotators a way to
communicate the reason why a specific candidate pair
was not marked as Causality. This annotation is entirely
optional and does not need to be exhaustive. Thus, it

Agent

Theme

[ Null Mutation }’Th*[Gene
pE———————

GRE}’Th '>[GRE}/_Gene]<'Th N Expression |
—

Disruption  of cueR caused

Ioss of copA expression.

Figure 5 GREC causality annotation example. Example annotation from GREC corpus with annotation for general statement of causality

(“caused”).
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Effect ause

(Triggen
~rigger}”

This resistance was PmrA-dependent because
Cause

Pro Argument

a strain deficient in the pmrA gene was approximately 100 000-fold more sensitive to polymyxin B than the wild-type strain when grown pH 5.8.

Figure 6 Explicit trigger reason/result. Example of Cause-Reason/Result annotation with an explicit trigger.

has not been included in the final version of the cor-
pus and its consistency is not considered in determining
inter-annotator agreement.

All discourse relation types, as defined in BioDRB,
are tentatively defined in the annotation tool as relation
types. They are represented as relations directly associat-
ing ARGUMENTSs and TRIGGERs do not need to be marked
to identify these associations. Some of these relation
types, such as Background and Purpose, could be poten-
tial candidates for extending the scope of the Causality
annotation.

Annotation software and format

The original event annotation of the BioNLP ID Shared
Task corpus was performed using BRAT [64]. This is a
web-based annotation tool aimed at enhancing anno-
tator productivity by simplifying and automating parts
of the annotation process. Customising the settings of
BRAT is reasonably straightforward, allowing users to
change the information to be annotated and the way
it is displayed. Furthermore, BRAT is freely available
under the open-source MIT licence from its homepage
(http://brat.nlplab.org). As such, we decided to continue
to use this tool for our task of annotating causality rela-
tions in text.

The stand-off annotation files are kept separate from the
original text files and are connected to them by charac-
ter offsets. Each span annotation (TRIGGER and ARGU-
MENTS) has a unique identifier and encodes the start and
end offsets of the text span, the type of the span and the
actual text span annotated, all separated by tabs. Each
causal relation has a unique identifier and stores the iden-
tifiers of the trigger and the two arguments, together with
their relation subtype. An example of a complete relation
annotation is illustrated in Figure 9.

This simple, yet highly efficient format allows for
easy processing and full transformation into other for-
mats (e.g., XML), thus increasing the portability between

various annotations systems. Furthermore, since this
schema is not very specific, it can be reused and eas-
ily applied to other datasets, not necessarily belonging
to the biomedical domain. Moreover, being represented
in an offset stand-off format, the schema can allow the
existence of other annotations over the same source text
without creating annotation conflicts, such as overlapping
in XML. In this case, the text is already annotated with
named entity and event information. Other types of anno-
tation are allowed and can be successfully integrated (e.g.,
part-of-speech and dependency).

Annotators and training

Although it has been shown that linguists are able to iden-
tify certain aspects in biomedical texts reliably, such as
negation and speculation [31], they could be overwhelmed
in trying to understand the semantics. Identifying which
events affect which events, especially when a causal trig-
ger is not explicitly stated, is an extremely difficult task,
as it requires vast, domain-specific background knowl-
edge and an almost complete understanding of the topic.
Therefore, due to the specificity of the biomedical domain,
it is necessary for the annotators to be experts in this
field of research. Furthermore, the annotators must have
near-native competency in English.

For the purpose of this task, two human experts have
been employed to create the annotations in the corpus.
One of the annotators is the second author of this article.

Besides the biomedical expertise, the two selected anno-
tators also have extensive experience in annotating text
from the biomedical domain for text mining purposes.
They have previously participated before in other annota-
tion efforts focussing on creating gold standard corpora of
named entities, events and meta-knowledge. The annota-
tors undertook a period of training prior to commencing
the annotation task proper. During this time, they were
given a small set of documents to practice on. As a result,

Cause

This medium lacked Fe3+ or AI3+, the only known PmrB ligands (Wosten et al., 2000), and contained 10 mM MgCI2,

Effect

which represses expression of PmrA-activated genes (Soncini and Groisman, 1996; Kox et al., 2000).

Figure 7 Implicit trigger reason/result. Example of Cause-Reason/Result annotation with an implicit trigger.
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/
[Argument]

Evidence

- (Trigger) ="~

Effect Argument

The hilE/mic double mutant showed an almost similar invasion ability to that of the hilE mutant, which suggests that

the effect of the mlc mutation on the invasﬁphen@pe is mainly dependent upon HilE function.

Figure 8 Explicit trigger claim/justification. Example of Cause-Claim/Justification annotation with an explicit trigger.

they became accustomed to both the annotation tool and
the guidelines.

Both annotators were given the same subset of articles
to annotate, independently of each other. This allowed
the detection of annotation errors and disagreements
between annotators. They produced annotations in small
sets of documents, which were then analysed and in
response to which the annotators obtained feedback
detailing their errors. Also, the annotators offered feed-
back regarding the annotation tool and guidelines, in
order to increase the speed of the process. This led to
noticing potential problems with the guidelines, which
were addressed accordingly. The final guidelines were pro-
duced after the training period finished and these were
used for the actual annotation.

Evaluating inter-annotator agreement

Due to the complexity of the annotation task and the vari-
ety of types of spans and relations, inter-annotator agree-
ment (IAA) cannot be computed using standard means.
For instance, the Kappa statistic [65] cannot be used in
our case, as this requires classifications to correspond to
mutually exclusive and discrete categories. Instead, we
have chosen to follow similar cases in selecting F-measure
to calculate IAA [47,66].

F-measure is usually used to combine the precision and
recall in order to compare the performance of an informa-
tion retrieval or extraction system against a gold standard.
In our case, precision and recall can be computed by con-
sidering one set of annotations as the gold standard. The
resulting F-score will be the same, regardless of which set
is considered gold.

Because of the various angles of annotation, we have
split the evaluation methodology into several subtasks
of the annotation process. For each subtask, we calcu-
lated the inter-annotator agreement in terms of F-score.

Initially, we computed the number of identical and over-
lapping triggers. For these triggers only, we then con-
tinued by counting the arguments, using both the exact
match criterion and the relaxed match criterion intro-
duced below. This is done separately for the CAUSE argu-
ment and for the EFFECT argument.

e Trigger identification — how many causal
associations have the same trigger. Two separate
values are computed here:

— Exact match - trigger text spans match
exactly.

— Relaxed match - trigger text spans overlap
with each other, but do not necessarily match
exactly.

e Argument identification — for agreed triggers, how
many have the same arguments. Four separate values
are computed here, two for each argument:

— Exact match — argument text spans match
exactly.

— Relaxed match — argument text spans overlap
with each other, but do not necessarily match
exactly.

e Relation subtype assignment — for agreed arguments,
how often do they have the same relation subtype.

Results and discussion

In this section, we firstly provide some key statistics
regarding the causality annotation produced, together
with a discussion of the characteristics of the corpus.
Subsequently, we examine the explicit trigger phrases on
which the causal relation is centred, followed by an analy-
sis of causality arguments and the distribution of relation

T65—>Trigger —>2153 2157—>Thus

E15—>Trigger:T65 Evidence:T64 Effect:T66

T64—=Argument —>1822 2151—>Measurement of the binding stoichiometry, which comprised HPLC-based quantification of adenine nucleotides from
the boiled supernatant and spectral analysis of heat denatured Rv2623 following reconstitution in 6 M guanidine-HClI,
yields 1.4+/-0.2 nucleotide equivalents/monomer with an overall content of 86+/-4% ATP (14+/-4% ADP)

T66—Argument —2159 2335—Rv2623 binds endogenous adenine nucleotides in E. coli, and the association is sufficiently tight that nearly 75% of
the nucleotide binding sites are occupied upon purification

Figure 9 Annotation format example. Example of an annotation file as created by BRAT.
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subtypes. Finally, we report on the inter-annotator agree-
ment scores on the doubly annotated section of the cor-
pus and investigate the disagreements between the two
experts that were found in this part.

Corpus characteristics and statistics

The causality corpus is freely available under the Creative
Commons Attribution Share-Alike Non-Commercial (CC
BY-SA-NC) licence from the site of the National Cen-
tre for Text Mining (NaCTeM) (http://www.nactem.ac.uk/
biocause). The corpus contains a total of 851 causal rela-
tion annotations spread over 19 open-access biomedical
journal articles regarding infectious diseases.

Table 3 summarises the general statistics of the corpus.
Counting the unique explicit trigger types was performed
using two settings. On the one hand, we considered
the surface expression of the trigger, thus distinguishing
between all morphological variants and modifications by
adverbs, prepositions or conjunctions. For instance, the
triggers thus and and thus were treated as separate types,
as well as suggest and suggests. However, the case of the
triggers was ignored. The tokenisation of triggers and
arguments was performed using a naive regular expres-
sion separating tokens when blank spaces, full stops and
commas are encountered. As can be seen from the table,
there are 381 unique explicit triggers in the corpus. This
means that, on average, each trigger is used only 2.10
times.

On the other hand, all tokens forming triggers were
lemmatised prior to counting. This means that both sug-
gest and suggests are counted for the same trigger type.
There are 347 unique lemmatised triggers in the cor-
pus, corresponding to an average usage of 2.30 times per
trigger. Both count settings show the diversity of causality-
triggering phrases that are used in the biomedical domain.

Furthermore, the causal argument of the relation is,
on average, almost 1.32 times longer than the other
argument, the effect. This is due to the specificity of
the biomedical domain and also the nature of research

Table 3 General statistics

Feature Value
No. of articles 19
No. of causal associations 851
No. of implicit associations 50
No. of unique explicit triggers 381
No. of unique lemmatised explicit triggers 347
Tokens per trigger 3.04
Tokens per CAUSE arg. 21.22
Tokens per EFFECT arg. 16.84

General statistics for the corpus.
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articles, where usually a causal argument that leads to an
effect is complex and is composed of several, concatenated
causes. This is exemplified below.

We also looked at the distribution of causality rela-
tions in the distinct discourse zones that are common
in research articles. Figure 10 depicts the percentage of
causal relations over six discourse zones, namely Title and
abstract, Introduction, Background, Results, Discussion,
Results and discussion and Conclusion. The zone Results
and discussion is included because this is how some of the
articles have been segmented in their original form.

As expected, most causal relations (over 80%) occur
in the Results, Discussion and Results and Discussion
section of articles, whereas the Background and Conclu-
sions section contain a very small number of relations, just
over 1%. However, because the discourse zones are very
different in size, we also computed the frequency of causal
relations relative to the number of tokens present in that
respective discourse zone. This distribution is depicted
Figure 11. The results change quite dramatically and tend
to be more balanced when computed in this manner.
The Title and abstract section becomes the zone with
the highest causal relation density (over 23%), whilst in
Background and Conclusion there are 17%. The Results,
Discussion and Results and discussion sections contain
50% of the total number of causal relations.

Triggers

Table 4 lists the 22 most frequent causality triggers in the
corpus, together with their count in the corpus as a whole.
These are counted in a surface expression setting. In total,
the causality relations that are centred on these 22 trig-
gers constitute more than 30% of the cases of causality in
the entire corpus. Similarly, Table 5 contains the 22 most
frequent triggers that occur at least five times, counted in
a lemmatised setting. These 22 triggers occur 332 times,
almost 41.5% of the total number of causality cases. The

9% <1%

I Title/Abstract

23% I Background

[N Introduction
Results

"1 Results/Discussion

[ IDiscussion

[ I Conclusions

<1%
p \\

39%

21%

Figure 10 Causality per discourse zone. Actual distribution of
causal associations in the corpus amongst seven different discourse
Zones.
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1%
I Title/Abstract

24% I Background
I Introduction
[ Results
179 ] Results/Discussion
[ Discussion
[ Conclusions
9% 16%

17%

Figure 11 Causality per discourse zone. Distribution of causal
associations in the corpus amongst seven different discourse zones
relative to the number of tokens in each zone.

data in both tables suggest that the majority of relevant
causality relations are centred on a relatively small set
of phrases and words. Indeed, in the entire corpus, only
22 distinct phrases or words have been used to annotate
five or more causal relations, whilst the remaining explicit
triggers have a very low frequency of less than five occur-
rences. As with many other natural language phenomena,
this distribution is Zipfian. Almost all of the entries in
Tables 4 and 5 correspond to phrases or words which
usually denote a causal relation or inference between two
spans of text.

Furthermore, the explicit triggers can be classified into
two categories, according to their means of lexicalisation.
Firstly, there are triggers which are expressed using sub-
ordinating conjunctions or adverbials. These are shown in
examples (4) and (5), respectively. There are 37 distinct
triggers which belong to this class.

(4) This acid pH-promoted increase appears to be
specific to a subset of PhoP-activated genes that
includes pmrD because expression of the
PhoP-regulated slyA gene and the PhoP-independent
corA gene was not affected by the pH of the medium.

(5) Mlc is a global regulator of carbohydrate metabolism
and controls several genes involved in sugar
utilisation. Therefore Mlc also affects the virulence
of Salmonella.

The second type is composed of triggers belonging
to open-class part-of-speech categories, mainly verbs or
nominalised verbs, which are usually modified by con-
junctions, prepositions or subordinators. Most of these
are of the form subject-predicate, lexicalised as pro-
noun/noun + verb + adverbial/conjunction/subordinator,
where the pronoun/noun is an anaphorical referent to the
argument that first appears in the text and the verb shows
the relation to the following argument. An instance of
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Table 4 Trigger frequency

Trigger Count (relative frequency)
suggesting that 51 (6.04%)
thus 42 (4.98%)
indicating that 34 (4.03%)
therefore 17 (2.01%)

these results suggest that 14 (1.66%)

suggests that 12 (1.42%)
due to 10 (1.18%)
suggesting 10 (1.18%)
indicating 9 (1.06%)
the results indicate that 9 (1.06%)
these results indicate that 9 (1.06%)
suggest that 8 (0.94%)
because 7 (0.83%)
caused 6 (0.71%)
required for 6 (0.71%)
resulting in 6 (0.71%)
which suggests that 6 (0.71%)
and thus 5(0.58%)
indicates that 5(0.58%)
suggests 5(0.58%)
these data indicate that 5(0.58%)
these observations suggest that 5(0.58%)

Count and relative frequency for the most frequently occurring triggers using
surface-expression forms.

this case is shown in example (6), where the verb sug-
gested denotes the causal relationship and the subject
This refers anaphorically to the first sentence. Other pat-
terns also exist, although with a lower frequency, such as
prepositional phrases and verb phrases.

(6) There was residual pbgP expression in the pmrB
mutant induced with mild acid pH, which was in
contrast to the absence of pbgP transcription in the
pmrA mutant. This suggested that PmrA could
become phosphorylated from another
phosphodonor(s) when PmrB is not present.

We also report, in Figure 12, the distribution of the
length of triggers annotated in the corpus, in terms of
tokens. As can be seen in the figure, more than 50% of
the total number of triggers consist of one or two words,
whilst around 25% consist of three or four words. The
length of the trigger appears to be inversely proportional
to its frequency — the longer the trigger, the more uncom-
mon it is. Again, the distribution has a Zipfian shape.
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Table 5 Trigger frequency
Trigger Count (relative frequency)
75 (9.36%)

45 (5.62%)

suggest that

indicate that

thus 42 (5.24%)
suggest 20 (2.50%)
therefore 17 (2.12%)

these result suggest that 15 (1.87%)

indicate 12 (1.50%)
cause 10 (1.25%)
due to 10 (1.25%)
resultin 9 (1.12%)
the results indicate that 9 (1.12%)
these result indicate that 9 (1.12%)
because 7 (0.87%)
demonstrate that 7 (0.87%)
which suggest that 7 (0.87%)
lead to 6 (0.75%)
require for 6 (0.75%)
these observation suggest that 6 (0.75%)
and thus 5(0.62%)
confirm that 5(0.62%)
our finding indicate that 5 (0.62%)
reveal that 5(0.62%)

Count and relative frequency for the most frequently occurring triggers using
lemmatised forms.

Arguments

In order to simplify the explanation we give below
and avoid misunderstandings, we will use the following
convention: the first argument will always refer to the
CAUSE or EVIDENCE argument of a relation, whereas
the second argument will always correspond to the
EFFECT.

Figure 13 shows the distribution of the lengths of both
the first (black) and the second arguments (grey) in the
corpus, in terms of tokens. As previously mentioned, it
can be noticed that the first argument is usually longer
than the second argument. This is due to the style used
in biomedical research articles, in which multiple causal
elements are concatenated or explained in order to infer
an effect. Take, for instance, the sentences in example (7),
where two causal elements (namely “the activation of the
hilA transcription” and “that of HilC/D-dependent invFD
expression”) are connected by a coordinating conjunction
(“and”). Another frequent case is the inclusion of expla-
nations or supplementary information, without which the
inference could not be possible. This explains why this
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Count

Length

11 1
—©— Trigger

Figure 12 Trigger length distribution. Distribution of triggers
according to their length in tokens.

information is also included in the argument annotation
spans.

(7) Since HilD activates the transcription of hilA (14),
which in turn can activate HilA-dependent invFA
expression (10), and directly activates
HilC/D-dependent invFD expression, these results
establish that the mlc mutation exerts a negative
effect on SPI1 gene expression, mainly by increasing
the level of hilE expression.

The order of the arguments does not vary significantly,
with more than 80% occurring in the form of cause-
trigger-effect. Table 6 shows the complete distribution of
the order of the two arguments relative to the trigger.
As can be seen, there are only 24 cases where the trig-
ger appears before or after both arguments. In the case of
implicit triggers, we considered them as being placed in
between the two arguments.

There are no restrictions on how far the two argu-
ments can be from each other in text. In other words, they
may or may not be adjacent. Therefore, we have looked
at the distance between the two arguments and show in
Figure 14 the frequency of the various distances measured
by the number of tokens. The average distance between
the two arguments is of 13.5 tokens. It should be noted
that this distance also includes the trigger if this is placed
in between the two arguments. There are more than one
hundred cases where the distance is two or three tokens
(116 and 177, respectively). For the distance of four to six
tokens, there are between 50 and 100 instances. It can
be observed that the graph has a flat, yet long tail. There
are almost 200 cases where the distance is greater than or
equal to 10 tokens.
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Figure 13 First and second arguments length distribution.
Distribution of first and second arguments according to their length
in tokens. Data points are plotted only where there are instances of
arguments of that length.

Inter-annotator agreement

In order to ensure the quality and consistency of the
causality annotation throughout the corpus, three full
articles (approximately 15% of the corpus) were annotated
by both human experts. This allowed us to calculate the
agreement levels between them. We first present some
general agreement statistics on the corpus as a whole,
followed by detailed numbers on each subtask. We also
analyse the differences in annotation between the two
experts.

General statistics

Table 7 contains a comparison between the two human
expert annotators from various points of view. We
included the number of causal associations and their sub-
types, the number of implicit and explicit triggers, as
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Table 6 Argument order

Order Count (relative frequency)
Al--A2 30 (3.52%)

A2- -Al 20 (2.35%)
AT-T-A2 686 (80.61%)
A2-T-Al 91 (10.69%)
A2-A1-T 2(0.23%)

T-A1-A2 9 (1.06%)

T-A2-A1 13 (1.54%)

Distribution of the order of arguments (A1, A2) relative to the trigger (T). Implicit
triggers are marked using an underscore character (' ’).

well as the average length of the trigger and of the two
arguments in tokens.

As can be observed from the table, there is little differ-
ence between the two annotators in terms of the different
comparison criteria. The second annotator has identi-
fied 16 more causal associations than the first annota-
tor. Nevertheless, the percentage of evidence arguments,
cause arguments and implicit triggers remains rather sta-
ble over the two sets of annotations. This is also true with
respect to the length in tokens of the triggers and the two
arguments.

Subtask statistics

In order to compute the agreement level in F-score terms,
we considered one annotator as the gold standard against
which we compare the other annotator. We report in
Table 8 the F-scores for the various subtasks. As can be
observed, in all the doubly annotated documents, the two
annotators agreed, with an exact match criterion, on 60
relations. This gives an F-score of 51.28%, which again
proves the difficulty and subjectivity of the task. In the
case of relaxed matching, the F-score increases to 65.81%.

The two annotators agreed only on two thirds of the
total number of triggers using an exact match crite-
rion. The agreement increases by a small amount when
relaxed matching is used. This demonstrates that identi-
fying causal discourse relations is a relatively difficult task,
even for experienced human judges.

The agreement on argument spans, nevertheless, is
extremely high. This strongly suggests that once the anno-
tators decide to mark a causal relation, finding the argu-
ments is a rather straightforward task to accomplish. The
F-score for identifying the CAUSE argument with an exact
match rule is just over 80%, whilst the EFFECT argument is
around 94%. This is due to the difficulty in recognising the
exact cause in a causal relation. When the relaxed match-
ing is used, the F-score increases significantly, to 90% for
the CAUSE argument and 98% for the EFFECT argument.

These agreement values are in line with similar semantic
annotation efforts for which F-score has been computed.
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Figure 14 Distance between arguments distribution. Distribution
of the number of tokens between the first and second arguments.
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For instance, in the BioNLP ST ID task, the partial-match
inter-annotator agreement for event annotation is approx-
imately 75%. However, the arguments of these events have
been already given as gold standard, therefore the task is
significantly simpler than the one described in this article.
Nevertheless, the best performing system participating in
the shared task obtained an F-score of 56%.

After performing the double annotation and comput-
ing of the agreement scores, the disagreed cases were
discussed between the annotators and the correct anno-
tations were decided upon. Specifically, one of the two
annotations was determined to be correct, an alteration
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Table 7 General IAA statistics

Feature First annotator Second annotator
No. of causal associations 109 125

No. of EVIDENCE arguments 64 (58.72%) 78 (62.40%)

No. of CAUSE arguments 45 (41.28%) 47 (37.60%)

No. of implicit triggers 13(11.93%) 18 (14.40%)

No. of explicit triggers 96 (88.07%) 107 (85.60%)

No. of tokens per trigger 2.80 2.87

No. of tokens per CAUSE arg. 19.55 17.60

No. of tokens per EFFECT arg. 13.94 13.84

General inter-annotator agreement statistics for the corpus.

was made or the annotation was removed completely. We
also computed the agreement of each of the annotator
with respect to the resulting gold standard corpus. In an
exact-match setting, the F-score of each of the two anno-
tators against the gold standard is 78.26% and 64.68%,
respectively. Using a relaxed-match criterion, the F-scores
increase to 86.17% and 87.73%, respectively.

Annotation discrepancies

We also looked at the differences between the two anno-
tators. A number of these differences were simply anno-
tation errors, where the selected spans contained extra
characters from surrounding words or missed charac-
ters from the words on the boundaries. These have been
corrected. The other differences relate to actual disagree-
ments between the two annotators. Similarly to the sub-
tasks on which we computed the agreement scores, the
differences can be categorised in those relating to triggers
or either of the two arguments.

Table 8 Subtask IAA statistics

Feature F-score
Exact relation 51.28%
Relaxed relation 65.81%
Exact trigger 64.10%
Relaxed trigger 65.81%
Exact CAUSE arg. 82.67%
ET Relaxed CAUSE arg. 90.67%
Exact EFFECT arg. 94.67%
Relaxed EFFECT arg. 98.67%
Exact CAUSE arg. 82.52%
Relaxed CAUSE arg. 90.91%
RT Exact EFFECT arg. 93.51%
Relaxed EFFECT arg. 98.70%

Inter-annotator agreement for relations, triggers and the two arguments in the
case of exact-match triggers (ET) and relaxed-match triggers (RT).
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Trigger discrepancies

In the doubly annotated section of the corpus, there are
only two cases of overlapping, but not identical, triggers.
One of them is given in example (8) below. One annotator
considered the span “therein” to be the trigger, whilst the
other annotator considered it to be “therein appears to be”.

(8) Further bioinformatics analysis of the 89K island
revealed a distinct two-component signal
transduction system (TCSTS) encoded
Annl [AnnZ [therein]AnVIZ appears to be]Annl
orthologous to the SalK/SalR system of S. salivarius, a
salivaricin regulated TCSTS.

In all other cases, the triggers are either exactly agreed
upon or completely distinct. The distinct triggers are not
linguistically realised in a different manner than those
which were agreed upon. The annotators simply did not
agree on considering those cases as suggesting causality.

Argument discrepancies

Cases where the two annotators choose overlapping argu-
ments are more frequent than overlapping triggers, but
are still insignificant compared to the number of agreed
arguments. There are eight cases of overlapping CAUSE
and four of overlapping EFFECT arguments. Examples for
both CAUSE and EFFECT are included below, in example
(9) and example (10), respectively.

(9) Ann1[Results of real-time quantitative RT-PCR also
confirmed that, 4,,2[in the complemented strain
CDeltasalKR, only partial genes identified as
down-regulated in the mutant rebounded to
comparative transcript levels of the wild-type
strain.] 4un2 Jann1 Those unrecovered genes were
probably irrelevant to the bacterial virulence of SS2.
The acid tolerance response of Salmonella results in
Annt[ann2 [the synthesis of over 50 acid shock
proteins (Bearson et al., 1998) that are likely to
function primarily when variations in internal pH
occur] gy, i.e. when Salmonella experiences severe
acidic conditions (pH approximately 3).] 4nn1

(10)

In example (9), the CAUSE arguments chosen by the
two annotators overlap. Whilst one annotator consid-
ered the entire first sentence as the CAUSE argument, the
other expert did not include the first clause, related to
the results. Thus, their argument was annotated as “in
the complemented strain CDeltasalKR, only partial genes
identified as down-regulated in the mutant rebounded
to comparative transcript levels of the wild-type strain”.
After discussions, the two annotators agreed to exclude
the clause related to the results, as this is not necessary for
the correct interpretation of the stated facts.
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On the other hand, example (10) shows a case of over-
lapping EFFECT arguments. One annotator considered the
effect to be “the synthesis of over 50 acid shock proteins
(Bearson et al., 1998) that are likely to function primarily
when variations in internal pH occur”. The other annota-
tor, however, also included the span of text that further
explains and describes the context, “i.e. when Salmonella
experiences severe acidic conditions (pH approximately
3)”. The selected argument was the extended version anno-
tated by the first annotator, mainly due to the fact that
only the specification of the mentioned condition provides
biologists with sufficient detail to correctly understand
the biochemical processes that occur in the described
situation.

Besides overlapping arguments, there are several cases
of completely different arguments. More specifically, there
are seven cases of disagreed CAUSE arguments and only
one case of a disagreed EFFECT argument. As we men-
tioned above, identifying the CAUSE argument is a much
more difficult task than that of identifying the EFFECT
argument. Since this subtask depends on the background
knowledge, expertise and interpretation of each annota-
tor, they might have different biomedical points of view on
how events connect to each other causally.

In example (11), we provide one case in which the
two annotators select different text spans for the CAUSE
argument of a causal relation.

(11) Apnn1[In the animal model, attenuation of virulence
has been noted for Salmonella strains that carry
mutations in the pts, crr, cya or crp genes, which
encode the general energy-coupling enzymes of the

Table 9 Comparison between BioDRB and BioCause

Feature BioCause BioDRB
No. of causal associations 851 565
No. of implicit triggers 50 (11.93%) 98 (17.34%)
No. of explicit triggers 801 (88.07%) 467 (82.65%)
No. of tokens per trigger 3.04 246
No. of tokens per CAUSE arg. 21.22 31.24
No. of tokens per EFFECT arg. 16.84 20.56
Al- -A2 30 (3.52%) 78 (13.80%)
A2- -Al 20 (2.35%) 20 (3.53%)
AT-T-A2 686 (80.61%) 192 (33.98%)
A1-A2-T 0 (0%) 81(14.33%)
A2-T-A1 91 (10.69%) 135 (23.89%)
A2-A1-T 2(0.23%) 10 (1.76%)
T-A1-A2 9 (1.06%) 49 (8.67%)
T-A2-A1 13 (1.54%) 0 (0%)

Comparison between BioDRB and BioCause with respect to various measures.
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PTS, enzyme IIAGIc of the PTS, adenylate cyclase
and cyclic AMP receptor protein, respectively.] 4,1
Ann2[Mlc is a global regulator of carbohydrate
metabolism and controls several genes involved in
sugar utilization.] 4,42 Therefore, it seemed possible
that Mlc also affects the virulence of Salmonella.

This is due to the fact that Mlc is closely related func-
tionally to the mentioned list of genes (pts, crr, cya and
crp). On the one hand, the first sentence provides a more
detailed explanation of the cause without mentioning Mlc,
together with the observation of the attenuation of viru-
lence. On the other hand, the second sentence mentions
Mlc and the genes in general, but it is not linked to the vir-
ulence of Salmonella. Thus, the final decision in this case
has the first sentence as the cause, since it includes the
virulence of Salmonella and the genes that produce it.
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Comparison to the BioDRB
As we have mentioned earlier, the BioDRB contains 542
purely causal relations, as well as 23 relations which are a
mixture of causality and other discourse relations. Since
the BioDRB and BioCause have similar sizes, we per-
formed a comparison with respect to some of the previous
characteristics. The results are included in Table 9. As can
be seen, the BioDRB corpus contains a greater number
of implicit relations than BioCause. Furthermore, whilst
the explicit trigger length is shorter, causal relations in the
BioDRB have generally longer cause and effect arguments.
The major difference in the order of arguments consists in
the lack of the A1-A2-T pattern in BioCause and the lack
of the T-A2-A1 pattern in the BioDRB.

With regard to the distributions of lengths and dis-
tances, these are roughly similar in shape when plotted
against each other. Figure 15 contains the distributions
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Figure 15 Comparison between BioCause and BioDRB. Comparison of the distributions of trigger lengths, first argument lengths, second
argument lengths and distance between arguments between the BioCause and BioDRB corpora. The distance between arguments is given using a
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of trigger lengths, first argument lengths, second argu-
ment lengths and distance between arguments between
the BioCause and BioDRB corpora. The distribution of
the distance between arguments is given using a logarith-
mic scale in order to provide a better view of the graph
for small values. It can be noticed that the first three
figures are consistent with the data in Table 9: in BioCause,
the triggers are slightly longer, whilst the arguments are
slightly shorter.

Considering these similarities and differences, we con-
sider the BioCause and BioDRB corpora as complement-
ing each other. Thus, a future combination of these two
resources could prove useful for training a machine learn-
ing system capable of recognising causality.

Conclusions

We have designed and described an annotation scheme
for biomedical causality. This scheme captures relevant
information regarding causality as it is expressed in
biomedical scientific articles, which is of key importance
in many text mining tasks undertaken by biologists and
biochemists. The scheme is designed to be portable,
in order to allow integration with the various differ-
ent schemes for named entity and event annotation that
are currently in existence. Furthermore, the scheme is
reusable and extensible, making it possible to apply it to
different datasets and to extend it if necessary.

Moreover, we have produced BioCause, a gold stan-
dard corpus in which documents from existing bio-event
corpora have been manually annotated according to our
causality annotation scheme. The annotation was per-
formed by two biomedical experts with extensive expe-
rience in producing resources for text mining purposes.
We reported a high inter-annotator agreement rate, using
both exact match and relaxed match evaluation criteria.

Finally, we have conducted an analysis of the nature of
causality as it is expressed in biomedical research articles
by examining the annotated corpus. We have described
the characteristics of causal triggers and their argu-
ments, looking at distributions of length, frequency and
distance.

This corpus will serve as a useful resource for the devel-
opment of automatic causality recognition systems in the
biomedical domain.
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