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Abstract

Background: Machine learning techniques are becoming useful as an alternative approach to conventional
medical diagnosis or prognosis as they are good for handling noisy and incomplete data, and significant results can
be attained despite a small sample size. Traditionally, clinicians make prognostic decisions based on
clinicopathologic markers. However, it is not easy for the most skilful clinician to come out with an accurate
prognosis by using these markers alone. Thus, there is a need to use genomic markers to improve the accuracy of
prognosis. The main aim of this research is to apply a hybrid of feature selection and machine learning methods in
oral cancer prognosis based on the parameters of the correlation of clinicopathologic and genomic markers.

Results: In the first stage of this research, five feature selection methods have been proposed and experimented
on the oral cancer prognosis dataset. In the second stage, the model with the features selected from each feature
selection methods are tested on the proposed classifiers. Four types of classifiers are chosen; these are namely,
ANFIS, artificial neural network, support vector machine and logistic regression. A k-fold cross-validation is
implemented on all types of classifiers due to the small sample size. The hybrid model of ReliefF-GA-ANFIS with
3-input features of drink, invasion and p63 achieved the best accuracy (accuracy = 93.81%; AUC = 0.90) for the oral
cancer prognosis.

Conclusions: The results revealed that the prognosis is superior with the presence of both clinicopathologic and
genomic markers. The selected features can be investigated further to validate the potential of becoming as
significant prognostic signature in the oral cancer studies.
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Background
Various machine learning methods have been applied in
the diagnosis or prognosis of cancer research, such as,
artificial neural networks, fuzzy logic, genetic algorithm,
support vector machine and other hybrid techniques
[1,2]. From the medical perspective, diagnosis is to iden-
tify a disease by its signs and symptoms while prognosis
is to predict the outcome of the disease and the status of
the patient, whether the patient will survive or recover
from the disease or vice versa. In some studies, the
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researchers have proven that machine learning methods
could generate more accurate diagnosis or prognosis as
compared to traditional statistical methods [2].
Usually, clinicopathologic data or genomic data are

used in researches either involving diagnosis or that with
respect to prognosis. Currently, there are some researches
that have shown that prognosis results are more accur-
ate when using both clinicopathologic and genomic
data. Examples of these are the works in [3] in diffuse
large B-cell lymphoma (DLBCL) cancer, the works in
[4,5] in breast cancer, [6-10] in oral cancer, and [11] in
bladder cancer. However, the number of published arti-
cles on researches that combine both clinicopathologic
and genomic data are few as compared to that using
only clinicopathologic data [2]. In the oral cancer
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Figure 1 Framework for oral cancer prognostic model.
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domain, [6] used machine learning techniques in the
oral cancer susceptibility studies. They proposed a hy-
brid adaptive system inspired from learning classifier
system, decision trees and statistical hypothesis testing.
The dataset includes both demographic data and 11
types of genes. Their results showed that the proposed
algorithm outperformed the other algorithms of Naive
Bayes, C4.5, neural network and XCS (Evolution of
Holland’s Learning Classifier). However, they did not
validate their results against the traditional statistical
methods. [7] focused on the 5-year overall survival in a
group of oral squamous cell carcinoma (OSCC) patients
and investigated the effects of demographic data, clin-
ical data and genomic data, and human papillomavirus
on the prognostic outcome. They used the statistical
methods for the prediction and their results showed that
the 5-year overall survival was 28.6% and highlighted
the influence of p53 immunoexpression, age and ana-
tomic localization on OCSS prognosis. However, in this
research, no machine learning methods were used and
compared. Another oral cancer research that was done
by [8,9] was in the oral cancer reoccurrence. Bayesian
network was used and compared with ANN, SVM,
decision tree, and random forests. They used multitude
of heterogeneous data which included clinical, imaging,
tissue and blood genomic data. They built a separate
classifier for different types of data and combined the
best performing classification schemes. They claimed
that they had achieved an accuracy of 100% with the
combination of all types of data and proved that the
prediction accuracy was the best when using all types of
data. However, more than 70 markers were required for
their final combined classifier.
For the genomic domain, [12] showed that p63 over

expression associates with poor prognosis in oral cancer.
Their study showed that cases with diffuse p63 expres-
sion were more aggressive and poorly differentiated and
related to a poorer prognosis, these findings supporting
the use of p63 as an additional marker for diagnostic use
in oral SCC. In [13], immunohistochemical analysis of
protein expression for p53, p63 and p73 was performed
for 40 samples of well-differentiated human buccal
squamous-cell carcinomas, with 10 specimens of normal
buccal mucosa employed as controls. Their results indi-
cated that both p73 and p63 may be involved in the de-
velopment of human buccal squamous-cell carcinoma,
perhaps in concert with p53. Similar results were
obtained by [14], they have showed that in head and
neck squamous carcinomas (HNSC), p63 was the most
frequently expressed (94.7%), followed by p73 (68.4%)
and p53 (52.6%). Their study indicated that p63 and p73
expression may represent an early event in HNSC
tumorigenesis and p73 and p63 may function as onco-
genes in the development of these tumors.
In this research, an oral cancer prognostic model is
developed. This research used real-world oral cancer
dataset which is collected locally at the Oral Cancer
Research and Coordinating Centre (OCRCC), Faculty of
Dentistry, University of Malaya, Malaysia. The model
takes both clinicopathologic and genomic data in order
to investigate the impact of each marker or combination
of markers to the accuracy of the prognosis of oral
cancer. Five feature selection methods are proposed with
the objectives to reduce the number of input variables to
avoid over-fitting and to find out an optimum feature
subset for oral cancer prognosis. This is followed by the
classification procedures which are used to classify the
status of the patient after 1–3 years of diagnosis (alive or
dead). Four classification methods, from both machine
learning and statistical methods, are tested and com-
pared. The objective of this research is to prove that the
prognosis is better by using both types of clinicopatho-
logic and genomic markers, and to identify the key
markers for oral cancer prognosis using the hybrid of
feature selection and machine learning methods.

Methods
The framework for the oral cancer prognostic model is
shown in Figure 1. Clinicopathologic variables from the
OCRCC database and genomic variables from Immuno-
histochemistry (IHC) staining are fed into the model.
Basically, there are three main parts for the oral cancer
prognostic model, which are wet-laboratory testing for



Table 2 Description and membership function for
clinicopathologic and genomic variables

(a) Clinicopathologic variables

Name Description Name & parameters of
membership function

Age Age at diagnosis 1 - 40–50, 2 - >50-60, 3 - >60-70,
4 - >70

Eth Ethnicity 1 - Malay, 2 - Chinese, 3 - Indian

Gen Gender 1 - Male, 2 - Female

Smoke Smoking habit 1 - Yes, 2 - No

Drink Alcohol drinking habit 1 - Yes, 2 - No

Chew Quid chewing habit 1 - Yes, 2 - No

Site Primary site of tumor 1 - Buccal mucosa, 2 - tongue

3 - floor, 4 - others

Subtype Subtype and
differentiation for SCC

1 - Well differentiated

2 - moderate differentiated

3 - poorly differentiated

Inv Depth of Invasion front 1 - Non-cohesive, 2 - cohesive

Node Neck nodes 1 - Negative, 2 - positive

PT Pathological tumor
staging

1 - T1, 2 - T2, 3 - T3, 4 - T4

PN Pathological lymph
nodes

1 - N0, 2- N1, 3- N2A, 4- N2B

Stage Overall stage 1 - I, 2 - II, 3 - III, 4 - IV

Size Size of tumor 1 - 0-2 cm, 2 - >2-4 cm,
3 - >4-6 cm, 4 - >6 cm

Treat Type of treatment 1 - Surgery only

2 - Surgery + Radiotherapy

3 - Surgery + Chemotherapy

(b) Genomic variables

Name Description Name and parameters of
membership function

p53 Tumor suppressor gene 1 - negative, 2 - positive

p63 Tumor suppressor gene 1 - negative, 2 - positive
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genomic variables, feature selection methods and the
classification models. This research was approved by
Medical Ethics Committee, Faculty of Dentistry, Univer-
sity of Malaya.

Clinicopathologic data
A total of 31 oral cancer cases were selected from the
Malaysian Oral Cancer Database and Tissue Bank System
(MOCDTBS) coordinated by the Oral Cancer Research
and Coordinating Centre (OCRCC), Faculty of Dentistry,
University of Malaya. The selection was based on the
completeness of the clinicopathologic data, the availability
of tissues and the availability of data (some data were not
available for use due to medical confidentiality problems).
The selected cases were based on the oral cancer cases

seen in the Faculty of Dentistry, University of Malaya and
Hospital Tunku Ampuan Rahimah, Klang, a Malaysian
government hospital, from the year 2003 to 2007. These
cases were diagnosed and followed up and the data were
recorded in the standardised forms prepared by the
MOCDTBS. Later, MOCDTBS transcribed all the data
from paper to an electronic version and stored in the data-
base. All the cases selected were diagnosed as squamous
cell carcinomas (SCC). Table 1 shows the 1 to 3-year sur-
vival for these 31 cases.
Basically, three types of data are available for each oral

cancer case, namely, social demographic data (risk factors,
ethnicity, age, occupation, marital status and others), clin-
ical data (type of lesion, size of lesion, primary site, clinical
neck node and etc.), and pathological data (pathological
TNM, neck node metastasis, bone invasion, tumour thick-
ness and etc.). Pathological data were obtained from the
biopsy reports before and after surgical procedures. In this
research, we referred to the clinical and pathological data
as clinicopathologic data. Based on the discussions with
two oral cancer clinicians, Prof. Rosnah Binti Zain and
Dr Thomas George Kallarakkal, 15 key variables had
been identified as important prognostic factors of oral
cancer. The selected clinicopathologic variables are
listed in Table 2(a).
Table 1 1-year, 2-year and 3-year survival

Duration of follow-up Survival No %

1-year Survive 27 87.1

Dead 4 12.9

Lost of follow-up 0 0.0

2-year Survive 19 61.3

Dead 10 32.3

Lost of follow-up 2 6.5

3-year Survive 17 54.8

Dead 11 38.7

Lost of follow-up 3 9.7
Genomic data
Two genomic variables had been identified through the
literature studies and discussions with oral pathologists,
from the Department of Oral Pathology and Oral Medi-
cine and Periodontology, Faculty of Dentistry, University
of Malaya. Both of these variables are tumour suppressor
genes, namely, p53 and p63. p53 is the most frequently
associated marker in the head and neck cancers [7,15].
p53 is called the “Guardian of the genome”, it is import-
ant in maintaining genomic stability, progression of cell
cycle, cellular differentiation, DNA repair and apoptosis.
It is difficult to demonstrate p53 protein in normal
tissues using immunohistochemistry procedures due to
its high catabolic rate; however mutated p53 exhibits a
much lower catabolic rate and accumulates in the cells
[15]. In addition, p63 gene, a homolog of the p53 is
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Figure 2 Procedures for IHC results analysis and scoring.
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located in chromosome 3q21-29, and its amplification
has been associated with prognostic outcome in oral
cancer [11,16]. The p63 gene is highly expressed in the
basal or progenitor layers of many epithelial tissues.
The cases selected were the same as in the clinico-

pathologic data. Immunohistochemistry (IHC) staining
was performed on the selected formalin-fixed paraffin
embedded oral cancer tissues to obtain the results for
the selected genomic variables. The archival formalin-
fixed paraffin embedded tissues were obtained from
the Oral Pathology Diagnostic Laboratory, Faculty of
Dentistry, University of Malaya. The tissues containing
the tumour were cored and re-embedded and made into
Tissue Macroarray blocks (TMaA). A total of 4-μm-thick
sections of the resulting TMaA blocks were cut and placed
on the poly-L-lysine-coated glass slides for IHC staining.
The samples were mounted on the glass slides and ready
for IHC staining. In this research, the Dako REAL™
EnVision™ Detection Kit was used. In total, 15 TMaA
slides with 31 oral cancer cases were stained. Two types of
antibodies were used namely Monoclonal Mouse Anti-
Human p53 protein, clone 318-6-11 for p53 and Monoclo-
nal Mouse Anti-Human p63 protein, clone 4A4 for p63.
The results of the staining were analyzed and the images

were captured by using an image analyzer system which
included Nikon Eclipse E400 Microscope with CFI plan
Fluor 40X objective for measurements, QImaging Evo-
lution digital colour cooled camera with 5.0 megapixels,
a personal computer (Pentium 4, 2.5Ghz, 2GB RAM)
and MediaCybernatics Image Pro Plus version 6.3 image
analysis software. Each slide was first examined under
the microscope with lower objective, that is, the 4X ob-
jective. Cases were considered sufficient for evaluation if
there were tumour cells presented in the sections. Next,
the slide was divided into 20 grid cells and numbered ac-
cordingly from left to right. A simple randomization pro-
gram was used to generate random numbers. For each
case, five tumour representative areas were selected. If the
number falls on the non-tumour representative area, the
next number (cell) was chosen until all five areas were se-
lected. Next, the five selected areas were examined under
the microscope using a higher objective, that is, the 40X
objective and the images were captured. The percentage
of the positive nuclear cells for each area was counted and
the average for five areas was calculated. The staining re-
sult is considered positive if there is more than 10% posi-
tive nuclear stained, in accordance with the practice used
in the previous studies [7,17]. Figure 2 shows the flowchart
for the IHC results analysis and scoring process. The re-
sults obtained from the IHC staining are combined with
the clinicopathologic variables and served as the inputs
for the feature selection module. The combined dataset is
further divided into two groups, which are Group 1
with clinicopathologic variables (15 variables) only and
Group 2 with both of the clinicopathologic and genomic
variables (17 variables). We need to emphasize that the
genomic variables were obtained from the same corre-
sponding cases from which the clinicopathologic variables
(Group 1) were obtained. Thus, if the clinicopathologic
variables were that of Case 1, then, the genomic variables
were from the same case.

Feature selection
In this research, the purpose of feature selection is to
find an optimal number of features for the small sample
of oral cancer prognosis data. Five feature selection
methods have been selected and compared, which are,
Pearson’s correlation coefficient (CC) [18], and Relief-F
[19] as the filter approach, genetic algorithm (GA) [20,21]
as the wrapper approach, CC-GA and ReliefF-GA as the
hybrid approach.

Genetic algorithm (GA)
In the feature subset selection problem, a solution is a
specific feature subset that can be encoded as a string of
binary digits (bits). Each feature is represented by binary
digits of 0 or 1. For example, in the oral cancer progno-
sis dataset, if the solution is a 011001000010000 string
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of 15 binary digits, it indicates that features 2, 3, 6, and
11 are selected as the feature subset [21]. The initial
population is generated randomly to select a subset of
variables. In this proposed GA feature selection method,
if the features are all different, the subset is included in
the initial population. If not, it is regenerated until an
initial population with the desired size for the feature
subset (n-input model) is created.
The fitness function used in this method is a classifier

to discriminate between two groups, which are alive and
dead after 3-year of diagnosis. The mean square error
rate of the classification is calculated using a 5-fold
cross-validation. The fitness function is the final mean
square error rate obtained. The subset of variables with
the lowest error rate is selected. Figure 3 shows the flow-
chart and the criteria used for the GA feature selection
approach.

Pearson’s correlation coefficient (CC)
Pearson’s correlation coefficient, r, is use to see if the
values of two variables are associated. In this research, r
is calculated and ranked for each of the feature input
and the one with the highest r is selected. For example,
for the 3-input model, the top three inputs with the
highest r value are selected. This is repeated for the n-
input models for both Group 1 and Group 2.

Relief-F
Relief-F is the extension to the original Relief algorithm,
which is able to deal with noisy and incomplete datasets
as well as multi-class problems. The key idea of Relief is
to estimate attributes according to how well their values
distinguish among instances that are near to each other
[18]. In this research, each feature input is ranked and
weighted using the k-nearest neighbours classification, in
which k = 1. The top features with large positive weights
are selected for both groups of dataset.

Pearson’s correlation coefficient and genetic algorithm
(CC-GA)
This is the hybrid feature selection approach which con-
sists of two stages: first, it is a filter approach which cal-
culates the correlation coefficient, r, and second, it is a
wrapper approach of GA. In the first stage, 10 features
with the highest r are selected and fed into the second
stage of the GA approach. The procedures of the GA are
the same as that described in the previous section.

Relief-F and genetic algorithm (ReliefF-GA)
This hybrid feature selection approach consists of two
stages: first, it is the filter approach of Relief-F, and sec-
ond, it is a wrapper approach of GA. In the first stage,
10 features with the highest weights are selected and fed
into the second stage of the GA approach. In the second
stage, n-input is selected for both Group 1 and Group 2.

Selection of n-input models
Before the implementation of the feature selection
method, a simple GA was run to find out the optimal
number of inputs (n-input model) from the 17 inputs of
clinicopathologic and genomic data. The number of
inputs with lower mean square error rate was chosen.



Table 3 Mean square error rate for n-input model

Group 1 Group 2

1-input 0.3881 0.3626

2-input 0.4193 0.2903

3-input 0.3871 0.2581

4-input 0.3871 0.2903

5-input 0.3871 0.3226

6-input 0.3871 0.3548

7-input 0.4571 0.3548

8-input 0.4839 0.4194

9-input 0.5161 0.4516
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The error rate for each n-input model is shown in
Table 3, which shows that for Group 1, there are four
models with the lowest error rate of 0.3871, which are
the 3-input, 4-input, 5-input, and 6-input model. Mean-
while, for Group 2, the model with the lowest error rate
is the 3-input model with an error rate of 0.2581. In this
case, for comparison purposes, the number of inputs
between 3-input to 7-input are chosen. Hence n is set as
n = 3, 4, 5, 6, 7 for the feature selection methods.
Classification
Next, the data with n selected features are fed into the
classification models. The final output is the classifica-
tion accuracy for oral cancer prognosis, which classifies
the patients as alive or dead after subsequent years of
diagnosis with the optimum feature of subset. Four clas-
sification methods were experimented with and their
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Figure 4 ANFIS rules for a 3-input model.
results were subsequently compared, these are ANFIS,
artificial neural network (ANN), support vector machine
and logistic regression.
In order to obtain accurate estimate results, cross-

validation (CV) was used. CV provides an unbiased esti-
mation, however CV presents high variance with small
samples in some studies [22]. In this research, a 5-fold
cross-validation was implemented with each of the
classifiers. 5-fold cross-validation was chosen over the
commonly use 10-fold cross-validation due to the small
sample size; hence, it will leave more instances for valid-
ation and has lower variance [23]. In 5-fold cross-
validation, the 31 samples of oral cancer prognosis data
were divided into 5 subsets of equal size and trained for
5 times, each time leaving out a sample as validation
data.
Adaptive neuro-fuzzy inference system (ANFIS)
ANFIS implements the Takagi-Sugeno fuzzy inference
system. The details for ANFIS can be found in [24,25]
respectively.
In the input layer, the number of input is defined by n,

with n = 3, 4, 5, 6, 7. In the input membership (inputmf)
layer, the number of membership function is defined by
mi, with i = 2, 3, 4. The rules generated are based on the
number of input and the number of input membership
functions, and it is represented as (m2

n1 x m3
n2 x m4

n3)
rules, in which n1, n2, and n3 represent the number of
input with mi membership functions respectively, and
n1 + n2 + n3 = n. For example, in the ANFIS with 3-input,
x, y, and z, in which input x has 2 membership func-
tions, input y has 2 membership functions, and input z
has 4 membership functions, hence the number of rules



Table 4 Feature subset selected for group 1

Method Feature subset selected

GA

3-input Gen,Smo,PN

4-input Dri,Inv,PN,Size
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generated is (22 × 30× 41) = 16 rules, as shown in
Figure 4.
The rules generated are the output membership func-

tions which will be computed as the summation of the
contribution from each rule towards the overall output.
The output is the survival condition, either alive or dead
after 3-year of diagnosis. The output is set as 1 for dead
and −1 for alive; the pseudo-code is as below:

if output ≥ 0
then set output = 1, classify as dead

else output < 0,
then set output = −1, classify as alive

The membership functions were obtained according to
the categorical variables that has been set through the
discussions with two oral cancer clinicians as mentioned
in section Clinicopathologic Data. The type of member-
ship function used was the Gaussian and the name and
parameters of membership functions for each input vari-
able are shown in Table 2(a) for the clinicopathologic
variables and 2(b) for the genomic variables. Each
ANFIS was run for 5 epochs for the optimum result.
5-input Dri,Node,PT,PN,Size

6-input Age,Gen,Smo,Inv,PT,Size

7-input Age,Eth,Chew,Inv,Node,PN,Size

CC

3-input Age,Inv,PN

4-input Age,Gen,Inv,PN

5-input Age,Gen,Inv,PN,Size

6-input Age,Gen,Inv,PN,Sta,Size

7-input Age,Gen,Dri,Inv,PN,Sta,Size

ReliefF

3-input Eth,Dri,Sta
Artificial neural network (ANN)
The ANN employed in this research is the multi-layered
feed forward (FF) neural network, which is the most
common type of ANN [26]. The FF neural network was
trained using the Levenberg-Marquardt algorithm. In
this research, one hidden layer with five neurons
(achieved the best results) was used and FF neural net-
work was run for 5 epochs (achieved the best results).
The training stopped when there was no improvement
on the mean squared error for the validation set.
4-input Age,Eth,Dri,Sta

5-input Age,Eth,Dri,Sta,Tre

6-input Age,Eth,Gen,Dri,Sta,Tre

7-input Age,Eth,Gen,Dri,PT,Sta,Tre

CC-GA

3-input PT,PN,Sta

4-input Dri,Inv,PN,Size

5-input Age,Gen,Inv,PN,Size
Support vector machine (SVM)
For the purpose of this research, a widely used SVM tool
which is LIBSVM [27] was used. There are 2 steps
involved in the LIBSVM; (1) the dataset was trained to
obtain a model and (2) the model was used to predict
the information for the testing dataset. The details for
LIBSVM can be found in [27,28] respectively. Linear
kernel was used in this research.
6-input Gen,Dri,Node,PT,PN,Sta

7-input Gen,Dri,Chew,Inv,Node,PN,Size

ReliefF-GA

3-input Gen,Inv,Node

4-input Gen,Dri,Inv,Node

5-input Gen,Dri,Inv,Node,PT

6-input Eth,Gen,Dri,Inv,Node,PT

7-input Age,Eth,Gen,Smo,Dri,Node,Tre
Logistic regression (LR)
Logistic regression (LR) was selected as the benchmark
test for the statistical method. LR is the most commonly
used statistical method for the prediction of diagnosis
and prognosis in medical research. LR is the prediction
of a relationship between the response variable y and the
input variables xi [29]. In this research, multiple logistic
regression is used.
Experiment
The oral cancer dataset with 3-year prognosis is used in
this experiment. First, the oral cancer prognosis dataset
was divided into two groups; Group 1 consisted of clini-
copathologic variables only (15 variables) and Group 2
consisted of clinicopathologic and genomic variables (17
variables). Next, feature selection methods were
implemented on both groups to select the key features
for the n-input model. Lastly, the classifiers with 5-fold
cross-validation were tested on the n-input model. The
results obtained from the 5-fold cross-validation were
averaged in order to produce the overall performance of
the algorithm. The measures used to compare the per-
formance of the proposed methods were sensitivity, spe-
cificity, accuracy and area under the Receiver Operating
Characteristic (ROC) curve (AUC).
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Results
Group 1 (clinicopathologic variables)
Table 4 shows the features selected for the proposed fea-
ture selection methods for Group 1. Next, the n-input
models generated from each feature selection methods
were tested with the proposed classification methods.
Table 5 shows the classification results for ANFIS, ANN,
SVM and LR.
From Table 5, it can be seen that ANFIS with the CC-4

-input model, obtained the best accuracy of 74.76% and an
AUC of 0.70. For the ANN results, the model with the
highest accuracy is the ReliefF-GA-5-input model with an
accuracy of 56.76% and an AUC of 0.58. Whereas, for the
SVM classifier, the models with the best accuracy are
ReliefF-GA-3-input to 6-input models with an accuracy of
64.29% and an AUC of 0.50. As for LR classification, the
best model is the CC-GA-6-input model with an accuracy
of 70.95% and an AUC of 0.72. The results obtained from
both ANN and SVM showed low accuracy (56.76% &
64.29% respectively) and low AUC (0.58 and 0.50 respect-
ively), hence, indicated that these two are not the suitable
classifiers to use for Group 1.
Table 5 Classification accuracy and AUC for group 1

Feature
selection

3-input 4-input

% AUC % AUC

ANFIS

GA 70.95 0.66 67.42 0.61

CC 58.10 0.53 74.76 0.70

ReliefF 61.43 0.53 50.59 0.50

CC-GA 44.76 0.44 67.62 0.57

ReliefF-GA 67.14 0.55 60.48 0.59

ANN

GA 45.52 0.53 52.43 0.53

CC 54.48 0.61 53.57 0.59

ReliefF 51.52 0.48 41.62 0.47

CC-GA 49.24 0.51 49.48 0.52

ReliefF-GA 50.24 0.55 52.86 0.59

SVM

GA 60.95 0.53 61.43 0.51

CC 60.95 0.53 60.95 0.53

ReliefF 54.29 0.44 50.95 0.42

CC-GA 63.81 0.55 61.43 0.51

ReliefF-GA 64.29 0.50 64.29 0.50

LR

GA 64.29 0.56 67.62 0.60

CC 64.29 0.56 60.48 0.57

ReliefF 50.59 0.44 50.59 0.44

CC-GA 67.62 0.57 67.62 0.60

ReliefF-GA 54.29 0.54 51.43 0.52
Group 2 (clinicopathologic and genomic variables)
The same experiments were carried out on Group 2,
which is the combination of clinicopathologic and gen-
omic variables. The selected features for each n-input
model are listed in Table 6. Table 6 shows that almost all
the feature selection methods included the genomic
variable as one of the key features, except for the
ReliefF-3-input and ReliefF-4-input.
For Group 2 using the ANFIS classification (Table 7),

there are five models with an accuracy of above 70%,
these are namely, GA-3-input, CC-GA-3-input, CC-GA-
4-input, ReliefF-GA-3-input and ReliefF-GA-4-input.
The best results were obtained from the ReliefF-GA-3-
input and ReliefF-GA-4-input with an accuracy of
93.81% and an AUC of 0.90 and the features selected for
the ReliefF-GA-3-input are drink, invasion, and p63
while the features selected for the ReliefF-GA-4-input
are drink, invasion, treatment and p63 (refer Table 6).
As shown in Table 7, the FF neural network together

with the ReliefF-GA-3-input model achieved the best re-
sult with an accuracy of 84.62% and an AUC of 0.83. For
SVM classification, the classification results are generally
5-input 6-input 7-input

% AUC % AUC % AUC

64.76 0.63 58.57 0.55 57.62 0.54

51.43 0.43 57.62 0.50 64.29 0.58

58.10 0.50 64.29 0.54 64.29 0.54

63.81 0.55 64.29 0.54 57.62 0.52

67.62 0.59 51.90 0.47 64.76 0.57

45.05 0.47 48.38 0.52 45.33 0.50

51.29 0.58 51.29 0.51 52.33 0.53

46.05 0.49 46.05 0.48 44.10 0.48

46.67 0.49 48.29 0.49 50.48 0.51

56.76 0.58 47.00 0.51 50.05 0.54

58.10 0.48 58.10 0.46 61.43 0.49

58.10 0.46 51.43 0.41 51.43 0.41

51.43 0.42 48.10 0.40 50.95 0.45

58.10 0.46 58.10 0.48 58.10 0.49

64.29 0.50 64.29 0.50 54.76 0.46

64.76 0.55 68.10 0.64 64.29 0.60

67.62 0.61 67.62 0.61 64.29 0.58

48.10 0.39 41.43 0.34 44.29 0.39

61.43 0.51 70.95 0.72 64.76 0.67

61.43 0.62 47.62 0.55 48.10 0.51



Table 6 Feature subset selected for group 2

Method Feature subset selected

GA

3-input Inv,Node,p63

4-input Gen,Inv,Size,p53

5-input Age,PT,PN,Size,p53

6-input Age,PT,PN,Size,Tre,p53

7-input Age,Eth,Smo,PT,PN,Size,p53

CC

3-input Inv,PN,p63

4-input Age,Inv,PN,p63

5-input Age,Gen,Inv,PN,p63

6-input Age,Gen,Inv,PN,Size,p63

7-input Age,Gen,Inv,PN,Size,p53,p63

ReliefF

3-input Age,Eth,Dri

4-input Age,Eth,Dri,Tre

5-input Age,Eth,Dri,Tre,p53

6-input Age,Eth,Dri,Tre,p53,p63

7-input Age,Eth,Gen,Dri,Tre,p53,p63

CC-GA

3-input Inv,Node,p63

4-input Gen,Inv,Size,p53

5-input Age,Dri,PN,Size,p53

6-input Gen,Inv,Node,PN,Size,p53

7-input Gen,Dri,Inv,Node,PN,Size,p53

ReliefF-GA

3-input Dri,Inv,p63

4-input Dri,Inv,Tre,p63

5-input Age,Gen,Smo,Dri,p63

6-input Age,Gen,Smo,Dri,Inv,p63

7-input Age,Eth,Inv,Sta,Tre,p53,p63
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better in Group 2 when compared to Group 1 (Table 5)
with some exceptions (GA-3-input, GA-7-input, CC-
GA-4-input, ReliefF-5-input and ReliefF-7-input). The
best accuracy in Group 2 is obtained by the GA-3-input,
CC-GA-3-input, ReliefF-GA-3-input, and ReliefF-GA-5-
input with an accuracy of 74.76% and an AUC of 0.70.
Whereas, for LR classification in Group 2, GA-3-input,
CC-GA-3-input, ReliefF-GA-3-input and ReliefF-GA-4-
input achieved the best classification accuracy of 74.76%
and an AUC of 0.70.

Comparison of the results for group 1 and group 2
This section discusses and compares the results gener-
ated from different classification methods for both
Group 1 and Group 2. Table 8 summarizes the best
accuracy for the n-input model based on the feature
selection method for Group 1 and Group 2. The sum-
mary is also depicted in the graph as shown in Figure 5
and Figure 6 respectively.
For Group 1 (Figure 5), the correlation coefficient

(CC) feature selection method performed better than the
other methods with the highest accuracy of 74.76% in
the 4-input model. There are three models that achieved
accuracies of above 70%; the other two are GA-3-input
and CC-GA-6-input. ReliefF feature selection method
obtained the worst results when compared to the other
methods
As regards to Group 2 (Figure 6), the ReliefF-GA fea-

ture selection method outperformed the others in all the
n-input models, with the highest accuracy of 93.81%.
There are ten models with accuracies above 70% as
shown in Table 8; this confirms that Group 2 which
includes genomic variables achieved higher accuracy
with feature selection methods. In addition, most of the
models with higher accuracy are the lower input models
with 3 or 4-input only.
Next, Table 9 lists the best accuracy by classification

method and the graphs are depicted in Figures 7 and 8
for both Group 1 and Group 2 respectively.
From Figure 7, ANFIS performed the best in Group 1

when compared to other classification methods for all
types of feature selection methods except CC-GA
method. All the classification methods performed worst
in ReliefF feature selection method except for ANN.
ANN had the lowest accuracy rate if compared to other
methods.
Whereas, in Group 2 as shown in Figure 8, ANFIS

outperformed the other classification methods except in
CC feature selection method. The best accuracy is
achieved by ANFIS in ReliefF-GA method with the
accuracy of 93.81% (Table 9). In general, all classification
methods performed better in CC-GA and ReliefF-GA
hybrid feature selection methods except for SVM and
LR. As with Group 1, ANN had the lowest classification
rate except in ReliefF-GA method. Overall, the perform-
ance of the classification method is better in Group 2 as
compared to Group 1. Table 10 summarizes the best
models with their selected features for both Group 1
and Group 2. All the models with the accuracy of 70%
and above are selected.
From Table 10, the models with the highest accuracy

are ReliefF-GA-3-input and ReliefF-GA-4-input from
Group 2 with ANFIS classification, the accuracy is
93.81% and AUC of 0.90. The features selected are
Drink, Invasion and p63 and Drink, Invasion, Treatment,
and p63 respectively. This is followed by the ReliefF-
GA-3-input model from Group 2 with ANN classifica-
tion, with the accuracy of 84.62% and AUC of 0.83. Most
of the best models are generated from the ReliefF-GA
feature selection method; this proves that the features



Table 7 Classification accuracy and AUC for group 2

Feature
selection

3-input 4-input 5-input 6-input 7-input

% AUC % AUC % AUC % AUC % AUC

ANFIS

GA 74.76 0.74 67.62 0.70 41.90 0.40 58.57 0.58 35.71 0.36

CC 58.10 0.48 58.10 0.52 51.90 0.48 48.57 0.46 61.90 0.59

ReliefF 54.29 0.47 44.29 0.38 48.10 0.53 67.14 0.62 67.14 0.62

CC-GA 74.76 0.70 70.48 0.71 54.76 0.57 61.43 0.61 64.29 0.65

ReliefF-GA 93.81 0.90 93.81 0.90 65.71 0.63 64.76 0.62 68.10 0.67

ANN

GA 45.14 0.50 51.48 0.55 45.81 0.49 46.14 0.50 47.71 0.51

CC 46.24 0.46 49.38 0.49 46.14 0.50 57.38 0.58 55.48 0.57

ReliefF 40.62 0.48 43.24 0.49 47.71 0.50 49.48 0.51 48.76 0.50

CC-GA 49.38 0.52 53.90 0.60 47.05 0.52 44.76 0.48 55.19 0.57

ReliefF-GA 84.62 0.83 73.38 0.75 48.00 0.52 51.57 0.53 45.86 0.47

SVM

GA 74.76 0.70 54.76 0.51 70.95 0.65 60.95 0.55 50.95 0.42

CC 64.76 0.55 64.76 0.55 64.76 0.55 67.62 0.56 67.62 0.62

ReliefF 54.29 0.44 54.29 0.44 44.29 0.36 48.10 0.46 34.76 0.28

CC-GA 74.76 0.70 54.76 0.51 61.43 0.50 58.10 0.54 61.43 0.57

ReliefF-GA 74.76 0.70 71.43 0.68 74.76 0.70 74.43 0.66 54.76 0.53

LR

GA 74.76 0.70 63.81 0.64 67.14 0.57 54.76 0.43 54.29 0.47

CC 71.43 0.67 71.43 0.67 61.43 0.59 68.10 0.65 61.43 0.59

ReliefF 50.59 0.45 48.10 0.39 48.10 0.41 44.76 0.43 41.43 0.41

CC-GA 74.76 0.70 63.81 0.64 60.48 0.61 64.29 0.63 60.48 0.54

ReliefF-GA 74.76 0.70 74.76 0.70 71.43 0.68 58.10 0.55 61.43 0.60

Chang et al. BMC Bioinformatics 2013, 14:170 Page 10 of 15
http://www.biomedcentral.com/1471-2105/14/170
selected by this method are the optimum features for
the oral cancer prognosis dataset.

Discussions
The results shown meets the objective of this research,
namely, the classification performance is much better
with the existence of genomic variables in Group 2.
From the results in Table 10, the best feature selection
method for oral cancer prognosis is ReliefF-GA with
ANFIS classification. This shows that the ANFIS is the
Table 8 Best accuracy for n-input model based on feature sel

Feature
selection
method

Group 1

n-input model

3 4 5 6 7

GA 70.95 67.62 64.76 68.10 64

CC 64.29 74.76 67.62 67.62 64

ReliefF 61.43 50.59 58.10 64.29 64

CC-GA 67.62 67.62 63.81 70.95 64

ReliefF-GA 67.14 64.29 67.62 64.29 64
most optimum classification tool for oral cancer
prognosis.
Since there are two top models with the same accur-

acy, hence, the simpler one is recommended for further
works in similar researches which is the ReliefF-GA-3-
input model with ANFIS classification, and the optimum
subset of features are Drink, Invasion and p63. These
findings confirmed that of some previous studies. Alcohol
consumption has always been considered as a risk factor
and one of the reasons for poor prognosis of oral cancer
ection method

Group 2

n-input model

3 4 5 6 7

.29 74.76 67.62 70.95 60.95 54.29

.29 71.43 71.43 64.76 68.10 67.62

.29 54.29 54.29 48.10 67.14 67.14

.76 74.76 70.48 61.43 64.29 64.29

.76 93.81 93.81 74.76 74.43 68.10
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Figure 5 Graphs for best accuracy for n-input model based on
feature selection method for Group 1.

Table 9 Best accuracy by classification method

Feature
selection
method

Group 1 Group 2

Classification method Classification method

ANFIS ANN SVM LR ANFIS ANN SVM LR

GA 70.95 52.43 61.43 68.10 74.76 51.48 74.76 74.76

CC 74.76 54.48 60.95 67.62 61.90 57.38 67.62 71.43

ReliefF 64.29 51.52 54.29 50.59 67.14 49.48 54.29 50.59

CC-GA 67.62 50.48 63.81 70.95 74.76 55.19 74.76 74.76

ReliefF-GA 67.62 56.76 64.29 61.43 93.81 84.62 74.76 74.76
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[30-33]. Walker D et al. [34] showed that the depth of in-
vasion is one of the most important predictors of lymph
node metastasis in tongue cancer. The different researches
done by [35-38], discovered a significant link between the
depth of invasion and oral cancer survival. As regards to
p63, [12-14] showed that p63 over expression associates
with poor prognosis in oral cancer.
A comparison between the current methodology and

the other methods in the literature was done and shown
in Table 11. Nevertheless, direct comparisons cannot be
performed since different datasets have been employed
in each case. In this comparison, we compared the
studies which utilized at least both types of clinical and
genomic data in oral cancer. In general, the proposed
methodology exhibits superior results compared to the
other methods except the work done by [8,9] which
claimed to achieve an accuracy of 100%. However, they
employed different classifiers for different source of data
and more than 70 markers were required for their final
combined classifier. A significant advantage of our
proposed methodology is only three optimum markers
are needed with a single classifier for both types of
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Figure 6 Graphs for best accuracy for n-input model based on
feature selection method for Group 2.
clinicopathologic and genomic data to obtain high ac-
curacy result. It is hope that the proposed methodology
is feasible to expedite oral cancer clinicians in the deci-
sion support stage and to better predict the survival rate
of the oral cancer patients based on the three markers
only.
A common problem associated with medical dataset is

small sample size. It is time consuming and costly to
obtain large amount of samples in medical research and
the samples are usually inconsistent, incomplete or noisy
in nature. The small sample size problem is more visible
in the oral cancer research since oral cancer is not one
of the top ten most common cancers in Malaysia, hence
there are not many cases. For example, in Peninsular
Malaysia, there are only 1,921 new oral cancer cases
from 2003 to 2005 [39] and 592 new oral cancer cases in
the year 2006 [40] as compared to breast cancer, where
the incidence between 2003 and 2005 is 12,209 [39] and
the incidence for 2006 is 3,591 [40]. Out of these oral
cancer cases, some patients are lost to follow-up, some
patients seek treatments in other private hospitals and
thus, their data are not available for this research.
Another reason for small sample size is caused by the
medical confidentiality problems. This can be viewed
from two aspects, namely, patients and clinicians. Some
patients do not wish to reveal any information about
their diseases to others, and are not willing to donate
45

50

55

60

65

70

75

80

85

90

95

GA CC ReliefF CC-GA ReliefF-GA

A
cc

ur
ac

y ANFIS

ANN

SVM

LR

Figure 7 Graphs for best accuracy by classification method for
Group 1.
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Figure 8 Graphs for best accuracy by classification method for
Group 2.

Table 11 Comparison between the current work and the
literature

Author Sample size Accuracy (%)

Passaro et al. [6] 124 patients, 231 controls 74-79

Oliveira et al. [7] 500 5-year survival of 28.6%

Exarchos et al. [8] 41 100

Exarchos et al. [9] 86 100

Dom et al. [10] 84 patients, 87 controls 82

Current work 31 93.81
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their tissues for research/educational purposes. As for
clinicians, some may not want to share patients’ data
with others especially those from the non-medical fields,
while some do not keep their medical records in the
correct medical form. From those available cases, some
patients’ clinicopathologic data are incomplete, some
tissues are missing due to improper management and
some are duplicated cases. Due to that, the number of
Table 10 Best models with accuracy, AUC, classification meth

Accuracy AUC

Group 1

CC-3-input 74.76 0.70

GA-3-input 70.95 0.66

CC-GA-6-input 70.95 0.73

Group 2

ReliefF-GA-3-input 93.81 0.90

ReliefF-GA-4-input 93.81 0.90

ReliefF-GA-3-input 84.62 0.83

ReliefF-GA-3-input 84.62 0.83

GA-3-input 74.76 0.74

CC-GA-3-input 74.76 0.70

CC-GA-3-input 74.76 0.70

CC-GA-3-input 74.76 0.70

ReliefF-GA-3-input 74.76 0.70

ReliefF-GA-3-input 74.76 0.70

Relief-GA-4-input 74.76 0.70

Relief-GA-5-input 74.76 0.70

Relief-GA-6-input 74.43 0.66

Relief-GA-4-input 73.38 0.75

Relief-GA-4-input 71.43 0.68

Relief-GA-5-input 71.43 0.68

CC-3-input 71.43 0.67

CC-4-input 71.43 0.67

CC-GA-4-input 70.48 0.71
cases that can actually be used for this research is very
limited.
In order to overcome the problem of small sample

size, we employed the feature selection methods on our
dataset to choose the most optimum feature subsets
based on the correlations of the input and output vari-
ables. The features selected are fed into the proposed
classifier and the results showed that the ReliefF-GA-
ANFIS prognostic model is suitable for small sample size
data with the proposed optimum feature subset of drink,
invasion and p63.
od and selected features

Classification method Selected features

ANFIS Age,Inv,PN

ANFIS PT,PN,Sta

LR Gen,Dri,Node,PT,PN,Sta

ANFIS Dri,Inv,p63

ANFIS Dri,Inv,Tre,p63

ANN Dri,Inv,p63

ANN Dri,Inv,p63

ANFIS Inv,Node,p63

ANFIS Inv,Node,p63

SVM Inv,Node,p63

LR Inv,Node,p63

SVM Dri,Inv,p63

LR Dri,Inv,p63

LR Dri,Inv,Tre,p63

SVM Age,Gen,Smo,Dri,p63

SVM Age,Gen,Smo,Dri,Inv,p63

ANN Dri,Inv,Tre,p63

SVM Dri,Inv,Tre,p63

LR Age,Gen,Smo,Dri,p63

LR Inv,PN,p63

LR Age,Inv,PN,p63

ANFIS Gen,Inv,Size,p53



Table 12 Validation test with random permutation of 3-
input model and full input model for Group 2

Models ANFIS

% AUC

Random permutation model

Age, Inv, p63 64.76 0.63

Eth, Dri, p53 57.14 0.49

PT, PN, Sta 58.10 0.51

Gen, Node, Tre 70.95 0.59

Eth, Gen, Sub 39.05 0.32

Dri, p53, p63 80.48 0.70

Age, p53, p63 67.14 0.67

Gen, Dri, Inv 54.76 0.55

Site, Inv, Size 32.86 0.28

Age, Chew, Size 48.10 0.41

Full model

Full model with ANFIS N.A.* N.A.*

Full model with NN 42.90 0.47

Full model with SVM 54.76 0.46

Full model with LR 54.76 0.59

*N.A. - Results not available due to over-fitting problem as the rule-base
generated was too large.

Table 13 Classification results for 1-year to 3-year oral
cancer prognosis

Oral cancer prognosis Accuracy (%) AUC

1-year 93.33 0.90

2-year 84.29 0.77

3-year 93.81 0.90
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Significance testing
The significance test used in this research was the
Kruskal-Wallis test. Kruskal-Wallis is a non-parametric
test to compare samples from two or more groups and
returns the p-value. For this research, we wanted to test
if there is any statistical significant difference between
the accuracy results generated for the 3-input model of
Group 2 for the different feature selection methods.
Thus, the null hypothesis is set as: H0 = There is no dif-
ference between the results of the different feature selec-
tion models. If the p-value computed from the test is
0.05 or less, the H0 is rejected, which means there is a
difference between the results of the different feature se-
lection methods. The p-value that generated was 0.0312,
which is less than 0.05, this means the H0 is rejected and
there is a significant difference between the feature se-
lection methods.

Validation testing
In this section, the best model of ReliefF-GA-3-input
model is compared with other models with a random
permutation of three inputs. The purpose is to validate
that the features selected by the ReliefF-GA method are
the optimum subset for oral cancer prognosis. In
addition, the full-input model (the model with all the 17
variables) will be tested as well in order to verify that the
reduced model can achieve the same or better results
than the full model. In this testing, the classification
method used is ANFIS due to its best performance in
the previous section and the results are tabulated in
Table 12.
Table 12 presents the results from different permuta-

tion of the 3-input models using ANFIS and that of the
full model with all the 17 variables using the different
classification methods. The three inputs are generated
randomly and the best accuracy obtained is 80.48% with
an AUC of 0.70. The features selected are Drink, p53
and p63. The results of the full model are not promising
and the results of full model using ANFIS cannot be
generated due to over-fitting problems as the rule base
generated is too large.
Finally, the selected features are tested on the oral can-

cer dataset for 1-year and 2-year with ANFIS classifica-
tion and the results are very promising with an accuracy
for 1-year prognosis of 93.33% and 2-year prognosis
observed at 84.29%, as compared to the 3-year prognosis
of 93.81%. The results are shown in Table 13.

Findings
The analyses and findings from this research are:
(i) The performance of Group 2 (clinicopathologic and

genomic variables) is better than Group 1
(clinicopathologic variables). This is in accordance
with the objective of this research, which shows that
the prognostic result is more accurate with the
combination of clinicopathologic and genomic
markers.

(ii)The model with the best accuracy is the ReliefF-GA-
3-input model with the ANFIS classification model
from Group 2 and the Kruskal-Wallis test showed a
significant difference as compared to the 3-input
model of GA, CC, ReliefF and CC-GA.

(iii)The optimum subset of features for oral cancer
prognosis is drink, invasion and p63 and this finding
is in accordance with similar studies in the
literature.

(iv)The ANFIS classification model achieved the best
accuracy in oral cancer prognosis when compared to
artificial neural network, support vector machine
and statistical method of logistic regression.

(v)The prognostic result is more accurate with fewer
inputs in comparison with the full model.

As a summary, the hybrid model of ReliefF-GA-ANFIS
with 3-input features of drink, invasion and p63
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achieved the best accuracy. Through the identification of
fewer markers for oral cancer prognosis, it is hoped that
this will aid clinicians in carrying out prognostic proce-
dures, and thus help them in making a more accurate
prognosis in a shorter time at lower costs. Furthermore,
the results of this research helps patients and their fam-
ily plan their future and lifestyle through a more reliable
prognosis.

Conclusions
In this research, we presented a prognostic system using
the hybrid of feature selection and machine learning
methods for the purpose of oral cancer prognosis based
on clinicopathologic and genomic markers. As a conclu-
sion, the hybrid model of ReliefF-GA-ANFIS resulted in
the best accuracy (accuracy = 93.81%, AUC = 0.90) with
the selected features of drink, invasion and p63. The
results proved that the prognosis is more accurate when
using the combination of clinicopathologic and genomic
markers. However, more tests and experiments needed
to be done in order to further verify the results obtained
in this research. Our future works include increasing the
sample size of the dataset by providing more medical
samples thus making it closer to the real population and
including more genomic markers in our study.
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