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Abstract

Background: Two-channel (or two-color) microarrays are cost-effective platforms for comparative analysis of gene
expression. They are traditionally analysed in terms of the log-ratios (M-values) of the two channel intensities at each
spot, but this analysis does not use all the information available in the separate channel observations. Mixed models
have been proposed to analyse intensities from the two channels as separate observations, but such models can be
complex to use and the gain in efficiency over the log-ratio analysis is difficult to quantify. Mixed models yield test
statistics for the null distributions can be specified only approximately, and some approaches do not borrow strength
between genes.

Results: This article reformulates the mixed model to clarify the relationship with the traditional log-ratio analysis, to
facilitate information borrowing between genes, and to obtain an exact distributional theory for the resulting test
statistics. The mixed model is transformed to operate on the M-values and A-values (average log-expression for each
spot) instead of on the log-expression values. The log-ratio analysis is shown to ignore information contained in the
A-values. The relative efficiency of the log-ratio analysis is shown to depend on the size of the intraspot correlation. A
new separate channel analysis method is proposed that assumes a constant intra-spot correlation coefficient across
all genes. This approach permits the mixed model to be transformed into an ordinary linear model, allowing the data
analysis to use a well-understood empirical Bayes analysis pipeline for linear modeling of microarray data. This yields
statistically powerful test statistics that have an exact distributional theory. The log-ratio, mixed model and common
correlation methods are compared using three case studies. The results show that separate channel analyses that
borrow strength between genes are more powerful than log-ratio analyses. The common correlation analysis is the
most powerful of all.

Conclusions: The common correlation method proposed in this article for separate-channel analysis of two-channel
microarray data is no more difficult to apply in practice than the traditional log-ratio analysis. It provides an intuitive
and powerful means to conduct analyses and make comparisons that might otherwise not be possible.

Keywords: Loop design, Unconnected design, Reference design, Intraclass correlation, False discovery rate, Power,
Efficiency

Background
Microarrays have been the most popular technology for
genome-wide profiling of gene expression for the past 15
years. The earliest microarrays used two channels, with
two RNA samples separately labeled and competitively
hybridized to the same array, as a means of controlling
inter-probe variability [1]. Despite the rise of one channel
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microarrays and other expression profiling technologies,
two-channel arrays, also known as two-color arrays, con-
tinue to be a cost-effective platform for assessing relative
gene expression. The use of two channels is more effi-
cient than one channel for many comparative experiments
[2,3]. Microarrays constructed from EST libraries may
also be most effective when used with two channels. For
species with few genomic resources a common strategy
for differential expression studies is to use EST libraries
or high throughput sequencing methods to obtain par-
tial transcriptome information and then use the resulting
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transcripts to develop microarray probes. For example,
[4] developed a Nimblegen microarray to investigate dis-
ease resistance in apple and [5] used a custom microarray
to assess differential gene expression in diseases of a
marine flatfish. Bay LK, 2009 [6] used a custom spot-
ted cDNA array to assess differential expression between
populations of a reef-building coral.
The traditional andmost common approach to the anal-

ysis of two-channel gene expression microarrays is to
summarize the intensity values in terms of the log-ratios
of the two channel intensities for each probe on each array
[7]. Most papers on the statistical analysis of two-channel
microarrays have also taken this general approach [8,9].
Expression levels measured by neighboring spots on the
same array have been shown to be highly correlated [10].
Observations of the two channels from the same physical
spot are expected to be even more highly correlated. The
practice of analyzing log-ratios in effect takes advantage
of this correlation, as the variance of the log-ratio should
be smaller than the sum of the variances of two individual
positively correlated log-intensity values.
It has been argued however that log-ratio analyses are

not fully efficient in that they do not use all the informa-
tion available in the data [11-13]. A number of papers have
popularized the idea of analyzing the individual channel
intensities as separate observations [14-17]. One approach
is to an estimate a random effect for each microarray spot
to account for the correlation between the two channels
[16,17]. This approach can be implemented by fitting a
mixed model, a linear model with both fixed and ran-
dom effects, to the expression data for each gene [16,17].
Separate channel analysis has been used to analyze exper-
iments for which two channels were available for some
arrays and only one channel for others [18]. Separate-
channel approaches to the normalization of two-channel
microarray data have also been discussed [19].
Apart from other efficiency gains, separate channel

analysis gives the possibility of comparing treatment con-
ditions that are not connected in a two-color exper-
imental design [15]. A two-channel microarray design
is said to be connected if every pairwise comparison
among treatments can be expressed as a difference of log-
ratios. For example, reference designs and loop designs
are connected [14]. Unconnected designs contain islands
of arrays with treatments that are unlinked by hybridiza-
tion to the same arrays. For example, if an experiment
includes 4 treatments B, C, D and E with treatments B
and C always hybridized together and treatments D and
E always hybridized together, there is no way to com-
pare treatments B and D using the log-ratio approach.
Separate channel models are necessary to analyze such
unconnected designs.
A number of papers have shown that the two chan-

nel intensities from each spot are usefully represented

in terms of the log-ratio (M-value) and the average log-
intensity over the two channels (A-value) for each spot
[20,21]. This article reinterprets the M and A-values in
terms of within and between spot contrasts. The use-
fulness of this partition is shown to arise in good part
from the fact that the M and A-values for a given spot
are statistically independent even though the individual
log-intensities are highly correlated.
This article goes on to reformulate the mixed model

approach in terms of the M and A-values. This approach
not only presents an efficient algorithm for estimating the
mixed model but also elucidates the difference between
the traditional log-ratio based approach and the analysis
of separate-channels. Use of the M-values alone for the
analysis is shown to discard the between-spot informa-
tion. The separate-channel approach amounts to recov-
ering information from the between-spot error stratum,
i.e., from comparisons among theA-values. The efficiency
gains of separate-channel analysis are quantified in terms
of the intra-spot correlation.
The idea of regularized statistical methods that borrow

strength between genomic features is an important recur-
ring theme in genomic data analysis. Statistical research
has shown that, across a wide range of multi-parameter
problems, improvements in parameter estimation can be
made by combining information across the datasets used
to estimate the individual parameters [22,23]. This prin-
ciple is especially important for microarray data analysis
with tens of thousands of probe-wise variances to be
estimated, and the idea has led to a number of popular
regularized microarray methods [24-26]. Regularization
of variance components has also been shown to be ben-
eficial for mixed model analyses of microarray data [17].
The article introduces a simple but effective regularization
for the spotwise random effects by forcing the intra-spot
correlation to be a constant value across all genes in the
study. The genewise variances are subsequently regular-
ized using a conjugate empirical Bayes procedure [26].
The treatment of the intra-spot correlation as a global
parameter leads to a number of important advantages.
The global estimator is very precise, so the intra-spot
correlation can be treated as a known parameter at the
individual gene level. The permits the mixed model to be
transformed into a form suitable for entry into the well-
established empirical Bayes analysis pipeline of the limma
package [26]. Unlike previous mixed model approaches,
this approach leads to test statistics with exact para-
metric distributions under the null hypothesis, even for
experiments with small numbers of samples [26].
The method proposed in this article for separate-

channel analysis is no more difficult to apply in practice
than the traditional log-ratio analysis and provides an
intuitive and powerful means to make comparisons that
might otherwise not be possible. The separate channel
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tests of differential expression are shown to be more sta-
tistically powerful than those from the log-ratio approach,
leading to reductions in both false discovery and false
nondiscovery rates. This article includes several cases
studies, which demonstrate the advantages of the separate
channel approach and the performance of the proposed
regularization approach for the intra-spot correlation and
the genewise variances.

Results and discussion
Intra-spot correlation
Suppose that a gene expression experiment has been con-
ducted in which 2n RNA samples have been hybridized to
n two-channelmicroarrays, each printed with the same set
of P probes. In general, there may be more than one spot
on each microarray for the same probe DNA sequence
[27], but we will suppose here that all spots are to be
treated as if they correspond to independent probes. Note
we use “probe” here to refer to the cDNA sequence used in
the array design and “spot” to refer to the physical feature
printed onto each array. Two-color microarrays yield two
intensities values for each spot, one for each channel. Fol-
lowing usual practice, we will call the shorter wave-length
channel “green” and the other “red”. Most image analysis
softwares yield a foreground and a background intensity
for each channel for each spot. We will assume that the
foreground intensities have been background corrected,
normalized and log-transformed to yield log2 intensities.
Write ygi1 and ygi2 for the green and red channel log-
intensities, respectively, for probe g on array i. We will
assume that there are no missing values, that is, a finite
ygic is available for all gic. In particular, all the background-
corrected intensities are assumed to be positive so that
the log-intensities are properly defined, as can be ensured
by a variety of model-based background correction strate-
gies [28]. The log-intensities are assumed to be normally
distributed,

ygic ∼ N(μgic, σ 2
g ) (1)

whereμgic is an unknownmean that depends on the probe
and the treatment conditions applied to channel c on array
i. The unknown σ 2

g is probe-specific but common across
arrays for each probe.
We can view each physical spot on each array as a

block giving rise to two observations, one for each chan-
nel. While it is reasonable to treat log-intensities observed
on different arrays as independent, two observations from
the same physical feature of the same array must almost
inevitably be highly correlated. Hence we assume ygic and
yg′i′c′ are independent if i �= i′ but that

corr(ygi1, ygi2) = ρg

where ρg is the unknown intra-spot correlation. We
expect ρg to be positive to reflect the fact that the two

channel observations share any characteristics local to
that spot on that array [19].

The separate channel linear model
Probewise linear models provide a flexible and powerful
approach to microarray data analysis [12,16]. We assume
that the true mean log-expression values μgic can be
represented by a linear model

μgic = xTicβg

where the design vector xic indicates which treatment
conditions are applied to the RNA sample hybridized to
channel c of array i, and βg is an unknown vector of coef-
ficients representing population mean log-intensities or
log-fold-changes between the treatment conditions. Often
xic is a vector of zeros and ones. In matrix notation, the
linear model may be written

E(yg) = Xβg

where yg is the 2n-vector of ygic values for probe g and X
is the design matrix with rows xic.
The covariance matrix Var(yg) is block diagonal, with

diagonal elements equal to σ 2
g and off-diagonal elements

either zero or equal to ρgσ 2
g for pairs of observations from

the same spot. If an estimate of ρg is available, then the
linear model coefficient vector βg can be estimated from
the data by generalized least squares,

β̂g =
(
XTC−1

g X
)−1

XTC−1
g yg

where Cg is the correlation matrix obtained by dividing
the variances out of Var(yg).

Estimating the intra-spot correlation by mixedmodels
One approach to the separate channel linear model is to
treat it as a mixed model with each spot a randomized
block of size two [12,16]. The mixed linear model can be
represented as

ygic = μgic + bgi + εgic

where bgi is the spot effect for probe g on array i and εgic
is a residual error term. The spot and residual effects are
both random, with bgi ∼ N(0, σ 2

bg) and εgic ∼ N(0, σ 2
eg).

Here σ 2
bg is the variance component for spot-level vari-

ation or, equivalently, for array to array variation. The
marginal variance for ygic is

σ 2
g = σ 2

gb + σ 2
ge

and the intra-spot correlation is

ρg =
σ 2
gb

σ 2
gb + σ 2

ge
.

The mixed linear model obviously assumes that ρg ≥ 0,
because σ 2

gb cannot be negative. A typical mixed model
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analysis will obtain REML estimators [29] for σ 2
bg and σ 2

eg ,
leading to an estimate for ρg as above, and hence to a
generalized least squares estimator for βg . Obviously the
mixed model constrains the intra-spot correlation to be
positive.
Fitting mixed models of this form has been used as the

basis for two-channel microarray data analysis, although
the test statistics have complex distributions that can-
not be derived exactly [16,17]. In this article, we will
reformulate the mixed model in order to obtain an exact
distributional theory for empirical Bayes test statistics,
and in order to clarify the relationship between the mixed
model and the traditional log-ratio analysis of microarray
data.

Spot-wise means and differences
Following [20,21], writeMgi = ygi2 − ygi1 for the log-ratio
of red to green intensity for spot gi and Agi = (ygi2 +
ygi1)/2 for the average log-intensity for the spot. These
quantities were originally proposed for their use in nor-
malization and quality assurance graphics, with “M” and
“A” as mnemonics for Minus and Add respectively. Here
we make use of these same quantities as part of a formal
statistical analysis.
A key observation is that Mgi and Agi are uncorrelated.

They represent independent contrasts of the correlated
observations ygi2 and ygi1. In terms of the above mixed
model, Mgi can be interpreted as a within-spot contrast,
whereas any comparison of the A-values represents a
between-spot contrast. The variances are given by

var(Mgi) = σ 2
Mg = 2σ 2

g (1 − ρg)

and

var(Agi) = σ 2
Ag = σ 2

g (1 + ρg)/2.

We see that the variance of M decreases with the intra-
spot correlation whereas that of A increases. Note in fact
that

1
2
log

4σ 2
Ag

σ 2
Mg

= tanh(ρg),

so that ρg can be estimated from the ratio of the two
variances.

Estimating the intra-spot correlation from theM-value and
A-values
We now transform the mixed model for y into a model for
the M-values and A-values. This has the effect of trans-
forming the mixed model, in which the observations are
not independent but all have the same variance, into a
model in which all the observations are independent but
the variances are unequal.
WriteMg = (Mg1, . . . ,Mgn)T and Ag = (Ag1, . . . ,Agn)T

for the vectors ofM and A-values respectively for probe g.

Note that these vectors are linearly related to yg through
Mg = CT

Myg and Ag = CT
Ayg with transformation matrices

CT
M = (−1, 1) ⊗ In and CT

A = (1/2, 1/2) ⊗ In. Also write
zTg = (Mg , Ag)T for the combined 2n-vector of M and
A-values. Then zg satisfies the linear model

E(zg) = Zβg

where Z is the related to the previous design matrix by
Z = (CM CA)TX.
The linear model for zg is heteroscedastic, because

the first n values of zg have variance σ 2
Mg , whereas the

remaining n values have variance σ 2
Ag . The model can be

fitted using an efficient REML algorithm designed for het-
eroscedastic regression models [30]. This yields REML
estimators σ̂ 2

Mg and σ̂ 2
Ag from which an estimate of ρg

can be obtained. This regression approach is more gen-
eral than the mixed model approach described above in
that the estimated intra-spot correlation can take negative
as well as positive values. The REML estimators σ̂ 2

Mg and
σ̂ 2
Ag can be shown to follow approximate chisquare distri-

butions with fractional degrees of freedom dMg and dAg
respectively (see Methods).

Estimating the common intra-spot correlation
The intra-spot correlation ρg arises from the technical
design of two channel arrays rather than from biological
variation or from characteristics of the RNA sources being
compared. It is therefore reasonable to assume that the
intra-spot correlation will be relatively consistent across
the probes. This leads to the argument that the correlation
estimators ρ̂g may be pooled between probes, an approach
similar to that used by [27] when treating within-array
replicate probes. From this point, we assume therefore
that the intra-spot correlations are equal across probes,
ρg = ρ for all g.
If the data from different probes were statistically inde-

pendent, then the REML estimator of τ = tanh−1(ρ)

would be

τ̂ = 1
2
log

4
∑G

g=1 σ̂ 2
Ag∑G

g=1 σ̂ 2
Mg

. (2)

Although theoretically efficient under the independence
assumption, this estimator is not robust against outliers.
A more robust estimator can be constructed by obtain-

ing probe-wise estimates of τ . The individual probe ver-
sion of equation (2) is

τ̂g = 1
2
log

4σ̂ 2
Ag

σ̂ 2
Mg

.

It is shown in Methods that τ̂g is a biased estimator of τ ,
but with a constant bias that can be computed from the
degrees of freedom for σ 2

Ag and σ 2
Mg . The bias correction

term is similar to the analogous term derived in [27].
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A trimmedmean of the bias-corrected τ̂g across all probes
then provides a suitably robust estimator of τ and hence
of ρ = tanh(τ ). Our software implementation trims 15%
of the probes from each tail by default.

Common correlation inference reduces to ordinary linear
modeling
The pooled estimator ρ̂ = tanh(τ̂ ) is estimated from all
the probes on the microarray, typically tens of thousands
of probes, and hence can be considered to be a highly pre-
cise estimator on which each individual probe has little
influence. A consequence of this is that ρ̂ can be treated
as known when undertaking inference about each indi-
vidual probe. In particular, the heteroscedastic regression
model for M and A-values described above can be trans-
formed to an ordinary homoscedastic regressionmodel by
rescaling all the M-values by {2(1 − ρ̂)}1/2 and all the A-
values by {(1 + ρ̂)/2}1/2. This leads to a re-scaled version
z∗g of zg and a re-scaled version Z∗ of the design matrix
Z. The estimator of βg finally is the ordinary least squares
estimator

β̂g =
(
Z∗TZ∗)−1

Z∗Tz∗g .

In this way, the common correlation model permits us
to undertake a separate channel analysis without incur-
ring the inferential complexities of mixed models or
heteroscedastic regression. Once the common intra-spot
correlation is estimated, the separate channel analysis can
utilize the established framework of linear modeling for
microarray data [26]. In particular, empirical Bayes meth-
ods can be used to borrow strength between probes,
leading to moderated t-statistics with exact distributions,
as previously used for log-ratio analysis or for one-channel
microarrays [26]. Details are given in Methods.

Efficiency gains for separate channels over log-ratios
Recovering information from the A-values
This section considers the relative efficiency gains of
separate-channel versus log-ratio analysis for some com-
monly used designs. Efficiency is considered on a gene by
gene level, so the subscript g is suppressed in this section.
Our reformulation of separate channel analysis in terms

of M and A-values clarifies the relationship with log-
ratio analysis, because the traditional log-ratio analysis
is exactly equivalent to the M-value analysis. In other
words the log-ratio analysis is equivalent to ignoring the
second set of n observations in the heteroscedastic regres-
sion described above. The extra information recovered
in the separate-channel approach compared to analysis
of the log-ratios corresponds exactly to the information
contained in the A-values about the treatment effects of
interest. Recovering this information in general improves
our power to detect treatment differences.

Paired design
The simplest comparativemicroarray experiment has only
2 treatments and only biological replication. On each
array, one channel is hybridized to a sample from each
treatment. In this case there is no information gained
from recovering intra-probe information. Both the log-
ratio and the separate channel approaches yield the same
t-statistic (the paired t-test) for testing for differential
expression for a given probe.

Common reference design
The second simplest design also has only 2 treatments (say
B and C) and only biological replication. However, one
channel on each array is hybridized to a common refer-
ence sample R, which is usually a technical replicate from
a large RNA pool, while the other channel is used for a
sample from one of the 2 treatments of interest. Suppose
that there are n/2 arrays comparing B with the reference
and n/2 comparing C with the reference. We will assume
that the reference is always labeled green, but the analy-
sis below is readily modified to accommodate dye-swap or
dye-balanced designs, in which B and Cmay be hybridized
with either label.
Consider the analysis for a given probe. Let M̄B be the

mean of theM-values for the arrays hybridized with B and
M̄C be the mean of theM-values for the arrays hybridized
with C. Define ĀB and ĀC similarly. Then the laws of
probability for sums and differences of random variables
give:

M̄B ∼ N(βB − βR, 4σ 2(1 − ρ)/n)

M̄C ∼ N(βC − βR, 4σ 2(1 − ρ)/n)

ĀB ∼ N(βB/2 + βR/2, σ 2(1 + ρ)/n)

ĀC ∼ N(βC/2 + βR/2, σ 2(1 + ρ)/n)

where βB, βC and βR are the log-expression values for the
probe in RNA samples B,C and R respectively.Write γ for
the log-ratio of interest, βB − βC . The M-values yield the
estimator

γ̂M = M̄B − M̄C

with variance

varγ̂M = 8σ 2(1 − ρ)/n

The A-values yield the estimator

γ̂A = 2(ĀB − ĀC)

with variance

varγ̂A = 8σ 2(1 + ρ)/n

The statistical (Fisher) information provided by the
M-values is 1/varγ̂M while that from the A-values is
1/varγ̂A.Taking the ratio of these two variances shows that
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the extra information provided by the A-values relative to
that provided by theM-values is

1 − ρ

1 + ρ
.

If ρ is close to one, then the added information is close to
zero and the log-ratio analysis is nearly fully efficient. If ρ

is small, however, then the A-values can contribute nearly
as much information as theM-values, effectively doubling
the statistical information that is used.
These formulas also allow us to explore the efficiency of

the common reference design itself. Suppose that, instead
of hybridizing the reference sample to each array, one
channel of each array had been left empty. In that case,
the log-fold-change βB − βC would be estimated using a
one channel analysis with variance 4σ 2/n. Comparing this
with varγ̂M shows that the use of competitive hybridiza-
tions with a common reference improves the precision of
the experiment if and only if the intra-spot correlation is
greater than 0.5, assuming that the usual log-ratio analy-
sis is performed. When the intra-spot correlation is less
than 0.5, subtracting the reference from each M-values
increases the variance of the observation rather than
decreasing it. On the other hand, when a separate channel
analysis is used, the use of the common reference channel
always improves the precision of the experiment relative
to not observing the reference channel at all. By using all
the information available, the separate channel analysis
restores the intuition that adding extra observations to a
data set should not worsen the results.

Unconnected designs
Separate channel analysis is most useful in the case of
unconnected designs for which some comparisons cannot
be made through the M-values. Suppose that n/2 arrays
are hybridized with RNA from sources B and C and n/2
arrays are hybridized with sources D and E. Then the com-
parisons B versus C and D versus E can be made using
M-values but B or C vs D or E can not. Let M̄BC be the
mean of theM-values for the arrays hybridized with B and
C and M̄DE be the mean of the M-values for the arrays
hybridized with D and E. Similarly for ĀBC and ĀDE . Then

M̄BC ∼ N(βB − βC , 4σ 2(1 − ρ)/n)

M̄DE ∼ N(βD − βE , 4σ 2(1 − ρ)/n)

ĀBC ∼ N(βB/2 + βC/2, σ 2(1 + ρ)/n)

ĀDE ∼ N(βD/2 + βE/2, σ 2(1 + ρ)/n)

where βB, βC , βD and βE are the log-expression values for
the probe in RNA samples B, C, D and E respectively. Let
γ = βB − βC be the population mean log-ratio between
B and C for a given probe and let δ = βB − βD be
the population mean log-ratio between B and D for the
same probe. The A-values provide no information about

γ so the mixed model approach yields the same estimate
and t-statistic as theM-value linear model approach. This
estimator is simply

γ̂ = M̄BC

with variance

varγ̂ = 4σ 2(1 − ρ)/n.

The M-values provided no information about δ mean-
ing that theM-value approach is unable to estimate δ. The
combinedM and A-value approach yields the estimator

γ̂ = M̄BC/2 − M̄DE/2 + ĀBC − ĀDE

for δ with variance

varγ̂ = 4σ 2/n

Notice that the relative efficiency of δ̂ versus γ̂ is 1 −
ρ. This represents the reduced efficiency of making an
indirect contrast between arrays versus a direct contrast
between channel hybridized to the same arrays.
As a published example of an unconnected design, con-

sider the experiment of [15]. Jin et al. [15] considered gene
expression differences by gender and age (1 and 6 weeks)
in two genotypes of Drosophila melanogaster. Each array
had a single combination of gender and genotype with
both ages in the different channels. Thus this is a paired
design in the agemain effect, and this is the only effect that
can be tested using the log-ratio analysis. Instead a mixed
model separate channel analysis was used to analyze the
design as a 2 × 2 × 2 factorial design.

Size of efficiency gains in practice
As noted above, there are two extreme cases in which
the efficiency gain from separate channel analysis is either
zero or 100%. For the simplest two-color experiment in
which two treatments are competitively hybridized on the
same arrays, and probe-specific dye-effects are absent,
then the log-ratios are fully efficient and there is no infor-
mation to be gained from a separate channel analysis. The
other extreme is that in which unconnected treatments
are to be compared. In that case the log-ratios contain
no information, and the information gained from sepa-
rate channel analysis is 100% (or infinity relative to the
log-ratio information).
For all other designs, the efficiency gain from separate

channel analysis depends on the size of the intra-spot cor-
relation. The intra-spot correlation measures the propor-
tion of total variability arising from technical variability of
arrays. Generally speaking, the more biological variabil-
ity there is relative to technical inter-array variability in
an experiment, the lower the intra-spot correlation and
the greater the information gain. The titration experiment
(see second case study) provides an example of an exper-
iment with technical replication only. In this case, all the
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variation is technical in nature and the intra-spot correla-
tion is very high at 0.95. The ApoAI knockout experiment
(see first case study) is conducted on genetically identical
mice. This experiment has a moderate degree of biological
variability and yields an intermediate intra-spot correla-
tion of 0.85. The California poppy data (third case study)
shows a greater degree of biological variability and yields a
relatively low intra-spot correlation of 0.65. For a common
reference design, the relative efficiency gain from separate
channel analysis with these three intra-spot correlation
scenarios would be 2%, 8% and 21% respectively. Note
that an efficiency gain of 21% achieves the same improve-
ment in precision as increasing the number of biological
samples and arrays by the same percentage.

Case studies
Analysis pipeline
This section considers three case studies. The ApoAI
knockout data is from academic spotted arrays while
the titration example used commercial Agilent arrays.
The California poppy study used custom Agilent arrays
designed from a shallowly sequenced transcriptome.
Unless otherwise noted, all analyses were undertaken
using the limma software package [10].
The intensity data were background corrected and

normalized prior to differential expression analysis as
described in Methods. Briefly, M-values were loess
normalized [20] using normalizeWithinArrays
while A-values were quantile normalized [31] using
normalizeBetweenArrays. This pipeline normalizes
both the M-values and the A-values in a way that agrees
with the usual M-value normalization for a traditional
log-ratio analysis. The log-ratio and separate channel
analyses used the same pre-processed data in each case to
ensure the analyses are directly comparable.
Linear modeling used the lmFit function for log-

ratio analyses and the intraspotCorrelation and
lmscFit functions for separate channel analysis. In all
cases the eBayes function was used to construct empiri-
cal Bayes moderated t-statistics and p-values [26].

ApoAI knockout experiment - a 2 sample common
reference design
The apolipoprotein AI gene (known as either Apoa1 or
ApoAI) is known to play a pivotal role in high den-
sity lipoprotein (HDL) metabolism. Mice which have the
ApoAI gene knocked out have very low HDL cholesterol
levels. Callow MJ, 2000 [32] discusses an experiment to
determine how ApoAI deficiency affects the action of
other genes in the liver, with the idea that this will help
determine the molecular pathways through which ApoAI
operates. A common reference design was used with 16
arrays, 8 wild-type and 8 knock-out mouse liver samples
labeled with Cy5 and a common reference sample, created

by pooling RNA from the 8 wild-type mice labeled with
Cy3. Samples were hybridized to a custom spotted cDNA
microarray with 6384 probes.
Both log-ratio and separate channel analyses were con-

ducted to find genes differentially expressed in the ApoAI
samples as compared to wild-type. The intra-probe corre-
lation was estimated to be 84.9%, suggesting an efficiency
gain of 8% for the separate channel over the log-ratio
analysis.
Figure 1 relates the p-values from the two analyses in a

scatterplot on a log10 scale. Both analyses assign very low
p-values to the same top eight genes, but the p-values from
the separate channel analysis are several orders of mag-
nitude lower than those from the log-ratio analysis. The
separate channel analysis also detects more differentially
expressed genes than the log-ratio approach at any false
discovery rate (FDR) greater than 0.05 (Table 1).
The qvalue package [33] implements Storey’s 2003

method [34] for estimating positive FDRs (q-values) and
for estimating the total proportion of probes that are not
differentially expressed (π0). The log-ratio and separate
channel analyses yielded similar values for π̂0 (86% and
88% respectively). This suggests that there are actually
over 700 probes that are truly differentially expressed but
were not detected at conventional FDR levels because of
small fold changes or high variability. As expected, the
separate channel approach shows a gain in power and is
able to detect more of these probes. At the same time,
the fact that π̂0 does not decrease for the separate chan-
nel analysis shows that the separate channel analysis is not

Figure 1 ApoAI data log10(p-values). log10(p-values) from the
separate channel plotted against the log10(p-values) from the log
ratio analysis for the ApoAI data. The p-values for the two methods
are correlated, but the p-values from the separate channel analysis
are smaller.
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Table 1 Number of significant genes for the ApoAI
knockout experiment

FDR Log-ratio Separate channel

0.01 8 8

0.05 8 8

0.10 8 15

0.25 9 53

The second and third columns show the number of genes declared differently
expressed at various FDR levels by the log-ratio and separate channel analyses
respectively. FDRs were estimated using the qvalue package. The separate
channel analysis detects more significant genes.

on average decreasing the p-values of non-differentially
expressed genes.
The results in Table 1 are for qvalue FDRs that incor-

porate the estimate of π0. The nonadaptive Benjamini and
Hochberg FDR estimator [35] gives similar results but is
slightly more conservative. If Benjamini and Hochberg
FDRs are used, the number of probes detected by the sep-
arate channel method decrease slightly to 13 and 44 at
FDRs 0.1 and 0.25 respectively.

Titration data - a multi-treatment common reference
design
Two cell lines with very different gene expression pro-
files were used to prepare a titration series of mRNA as
a test of microarray technologies [2]. The two cell lines
were MCF7, a cell line derived from breast epithelial can-
cer cells, and Jurkat, derived from T cell leukemia cells.
RNA samples from the two cell lines were mixed in a titra-
tion series with 0%, 50%, 76%, 88%, 94%, and 100% MCF7
mRNA. Eachmixture was labeled with both red and green
and hybridized to 2 arrays. A separate 0% MCF7 sample
was used as a reference on each array, in a dye-swap ref-
erence design. The data analyzed here were hybridized
to Agilent commercial human arrays. The data are avail-
able at [36]. After normalization and filtering of very low
expressing genes as described in Methods, 17985 spots
were used in the analysis.
The analysis was performed as a comparison of each

sample with the control sample with 0% MCF7. We
expect that the number of genes detected as differentially
expressed should increase with the percentage ofMCF7 in
the sample. Four analysis methods are compared: log-ratio
analysis using limma [10] and three separate channel
analyses: the ordinary linear mixed model as in [16] com-
puted with lme [37], the common correlation separate
channel method implemented in limma and the variance
component shrinkage method implemented in maanova
[17].
The ordinary mixed model [16] is the classical model

for analysis of variance in an incomplete random block
design. It includes a block (spot) effect, or equivalently an

intra-spot correlation, and an error variance computed for
each gene. In the context ofmicroarray data analysis, it has
the disadvantage of not borrowing information between
probes, so the analysis of each probe relies solely on the
data for that probe.
For maanova we used the linear mixed model with

array as a random effect, and used the “Fs” option with
tabulated p-values to estimate the differential expres-
sion p-values. This option imposes shrinkage of the
gene-wise mean squared error similar to the method
in limma as well as shrinkage of the gene-wise esti-
mate of the random spot variance. However, there are
two important differences between maanova and the
common correlation separate channel analysis imple-
mented in limma. Firstly, maanovamoderates the gene-
wise estimate of the spot effect, while the common
correlation model imposes a common value ρ for the
intra-spot correlation for all genes and models the spot
variance σ 2

gb for gene g as σ 2
gb = σ 2

geρ/(1 − ρ).
Because the common correlation model estimates the
common intra-spot correlation ρ from the (typically)
thousands of spots on the arrays, it is treated as a known
constant. Hence the common correlation model adjusts
only for the estimation of σ 2

ge yielding larger error degrees
of freedom. As well, because the implementation of the
common correlation model in limma uses an empiri-
cal Bayes estimator for σ 2

ge, the posterior error degrees
of freedom are used for evaluating p-values. maanova
uses an empirical method of shrinkage of the estimates
of both σ 2

gb and σ 2
ge which does not provide a degrees of

freedom adjustment. Instead maanova has an option to
compute the permutation null distribution of test statis-
tic. However, in this analysis we chose to use the tabulated
p-values, which use the usual ANOVA degrees of free-
dom. These match the degrees of freedom for the tests
performed in the mixed model and adjust for estimation
of both σ 2

gb and σ 2
ge.

Figure 2 displays the number of genes significant at
estimated FDR less than 0.01 using the Benjamini and
Hochberg method [35]. The separate channel analysis dis-
covers the most significant genes at all levels of dilution,
followed by the log-ratio analysis. The other two analyses
have less power. However, all 4 analyses agree on 14774
genes over all levels of dilution above 0. The conclusion
is similar if we consider a false discovery rate less than
0.05 for the significance cut-off. While we might expect all
the separate channel analyses to outperform the log-ratio
analysis, the large intra-spot correlation of 0.95 assures
high relative efficiency of the log-ratio analysis with an
efficiency loss of less than 2.6%. Hence, the differences in
power among the methods is due to both the additional
information from recovery of inter-spot information and
the variance regularization. To highlight this, the curve for
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Figure 2 Number of significant genes for titration data. The
number of significant genes increases with percent MCF7 for all
analysis methods (Benjamini and Hochberg FDR< 0.01). The separate
channel analysis makes the most discoveries at each dilution. The
log-ratio method with variance shrinkage is the next most powerful.
The linear mixed model which is uses a genewise variance estimator
is more powerful than the log-ratio method with genewise variance
estimator, but not as powerful as either of the methods using variance
regularization. For these data, maanova is the least powerful.

the log-ratio analysis with variance computed genewise
without regularization is also plotted. As expected, it lies
below the curve for the separate channel analysis using the
mixed model.
Of the 8923 genes found significant by the separate

channel analysis at 50% dilution and FDR< 0.01, 8354
(94%) are found significant at all higher dilutions and
only 134 (1.5%) are found only at this dilution, which
corresponds well to the estimated false discovery rate.
By contrast, the next most powerful method, the log-ratio
method, finds only 7591 significant genes at 50% dilution
and FDR< 0.01.
To see the comparative results in more detail,

Figure 3 shows the empirical cumulative distribu-
tion function of the log10 of the p-values for some
of the comparisons. Curves farther to the left indi-
cate smaller p-values and hence more powerful tests.
For each method, the power of the tests increases as
the percentage of MCF7 in the sample increases. In the
interests of clarity, we show only a few of the curves.
The two black lines are the common correlation sepa-
rate channel analyses at 50% MCF7 (right-most curve)
and 100% MCF7 (left-most curve). The remaining curves
are for the 100% MCF7 comparison. The log-ratio anal-
ysis, which also uses variance regularization, is the most
powerful among the remaining methods, but is only
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Figure 3 Cumulative distributions of p-values for the titration
data. The empirical cumulative distribution function of the
log10(p-values) for the titration data using four analysis methods. The
separate channel p-values are shown in black at 100% and 50% MCF7.
The other methods are shown at 100% only. This shows that the
separate channel analysis at 50% MCF7 is more powerful than the
other methods at 100% MCF7. The log-ratio analysis with variance
regularization is more powerful than maanova and the mixed
model, but less powerful than the separate channel analysis with
variance regularization, although the estimated efficiency gain for the
latter is only 2.5%.

about as powerful as the separate channel analysis at 50%
MCF7. The log-ratio analysis without variance regulariza-
tion yields a curve that is almost indistinguishable from
the mixed model. The correlation among the p-values
for any pair of methods for the 100% MCF7 treatment is
over 93%.
Figure 4 shows the estimated proportion π0 of nondif-

ferentially expressing genes using the method of Storey
[34] as a function of the percentage of MCF7 in the sam-
ple for the four analysis methods. Note that the true set
of differentially expressing genes does not depend on the
percentage dilution (except of course for 0%) so that dif-
ferences in the estimate of π0 among the dilution levels is
simply due to differences in detection power due to the
increasing effect size induced by the dilution. We see that
the estimate of π0 decreases as the percentage of MCF7
in the sample increases, for all analysis methods. The esti-
mates of π0 at each level of dilution are very similar for all
four analysis methods, varying by less than 2% except at
the 0% dilution.
We expect π0 = 1 at the 0% dilution, because the

comparison is pure Jurkat vs Jurkat, but the estimates
actually ranged from 0.87 (for the mixed model) to
0.93 (for maanova). While this cannot be explained on
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Figure 4 Estimated π0 for the titration data. Estimated proportion
of non-differentially expressed probes as a function of percent dilution
for four different analysis methods. The x-axis gives the proportion of
MCF7 RNA in the samples at each dilution, the remainder being Jurkat
RNA. Each dilution is compared back to pure Jurkat samples. There is
very little difference among the estimates for the four methods.

biological grounds, it is possible that some unknown
technical effects in handling the arrays introduced some
subtle batch effects. Figure 5 displays the unadjusted p-
values computed by each of the 4 methods for the 0%
MCF7 comparison. The excess of small p-values accounts
for the low estimates of π0. For this comparison, the
separate channel method gives 2 significant genes at
1% FDR and 29 at 2% FDR. While this is implausi-
ble from the biological point of view, all of the analysis
methods indicate that π0 ≤ 0.93 as discussed above,
indicating that there may be some unexplained techni-
cal effects inducing differential expression among these
samples.

California poppy data - a double loop design
For an evolutionary study of gene expression in plant
organs, tissues from 8 above ground organs were col-
lected from California poppy in 4 biological replicates
[38]. The mRNAwas labeled so that 2 biological replicates
of each tissue were labeled with each dye, and the sam-
ples were hybridized to custom Agilent microarrays with
6446 unique poppy probes in a double loop design. The
experiment is described in detail in [38] and is illustrated
in Figure 6. The design was selected to optimize the pair-
wise comparisons between certain tissues, while keeping
the power of all pairwise comparisons as close as pos-
sible with 16 arrays and maintaining balance among the
biological replicates.

The estimated intraclass correlation for this experi-
ment is 65.2%. The relative efficiency of the comparisons
depends on their relative locations on the double loop in
Figure 6 [11].
Table 2 displays the number of differentially expressed

genes detected for the leaf versus sepal and leaf versus
carpel comparisons using log-ratios and separate channel
analyses. In Figure 6, leaf tissue is in position A, sepal in
position B and carpel in position E. The separate chan-
nel analysis detects substantially more significant genes
for all comparisons and all FDR cutoffs. Almost all genes
detected by the log-ratio approach were also detected by
the separate channel method. At FDR < 0.01, all but
10 of the 668 genes detected as differentially expressed
for leaf versus sepal comparison by the log-ratio analy-
sis were also found by the separate channel analysis. For
the leaf vs carpel comparison, all but 1 of the 132 genes
found by log-ratio analysis were also found by the separate
channel analysis. At the same time, the separate channel
analysis does not decrease the estimate of π0, suggesting
that it is not decreasing the p-values of non-differentially
expressed genes.

Conclusions
Two-channel microarrays continue to provide cost-
effective platforms for whole-genome studies. Technolog-
ical advances in printing and hybridization have greatly
reduced the technical variance associated with microarray
studies, while greatly increasing the number of features
and reducing cost. Improvements in the statistical analysis
of two-channel microarray data further improves cost-
effectiveness by improving both sensitivity and specificity
especially for small sample sizes.
This study has demonstrated the improvement in effi-

ciency of differential expression analysis that can be
achieved for most designs through the use of separate
channel analysis. The separate channel analysis can be
used to perform comparisons between treatments that
may not be possible using log-ratio analysis in uncon-
nected designs. By reparametrizing in terms of spotwise
means and differences, the extra information in the sepa-
rate channel analysis was shown to be that recovered from
the A-values about the treatment conditions. The insight
that the M and A-values are statistically independent
throws some light on why they have been useful quantities
for normalization and plotting purposes of two-channel
data.
A common correlation estimation strategy has been

proposed for the separate channel model, achieving con-
siderable simplification as well as further gains in effi-
ciency by stabilizing the intra-spot correlation estimates.
The common intra-spot correlation is more readily inter-
preted than a set of varying probe-wise estimates, and
yields a greater theoretical understanding of how much
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Figure 5 P-values for the control treatment of the titration data. For the control treatment (0% MCF7) the 100% of the genes should express
nondifferentially. However, for all four analysis methods, the histogram of p-values shows an excess of small p-values indicative of differential
expression.

information is gained from the separate channel analysis.
The analysis shows that the efficiency gains are greatest
when the intra-spot correlation is small, and this in turn
occurs when biological variation is large. In other words,
the gain in efficiency is greatest when it is most needed,
when biological variation is large.
The common intra-spot correlation strategy is anal-

ogous to a common inter-spot correlation strategy
proposed previously for combining information across
multiple probes for the same gene on the same array
[27]. The common correlation strategy can be viewed
as an extreme form of shrinkage estimation in which
the prior information about an individual probe g is
reduced to a point mass at the common value. The cur-
rent usage applies the same idea to observations from
the same spot instead of from different spots in the
same array.
Experiments with modest numbers of biological repli-

cates produce variance estimators that are very unreliable
on an individual probe-wise basis, so it is important to
borrow strength between genes to achieve good statisti-
cal power and false discovery control on a genome-wide

basis. The common intra-spot correlation approach pro-
posed here facilitates the use of empirical Bayes test
statistics with an exact distributional theory in small
samples [26]. This approach cannot usually be applied
to mixed models with multiple variance components,
because the variance component estimators are not inde-
pendent and do not follow scaled chisquare distributions.
General methods to shrink variance components using
James-Stein type estimation have been proposed by Cui
et al [17], and these offer an alternative route to regular-
ized separate channel analysis. The resulting test statistics
do not however have known null distributions in small
samples, leading Cui et al [17] to suggest the use of
permutation analysis to establish the null distributions.
The common correlation approach of this article pro-
vides a more convenient strategy for complex multi-factor
experiments.
The separate channel analysis reduces exactly to the

log-ratio analysis of [26] if array is included as a factor in
the linear model and the intra-spot correlation is set to
zero. This exhibits the fact that the log-ratio analysis uses
only within-array information while the separate channel



Smyth and Altman BMC Bioinformatics 2013, 14:165 Page 12 of 15
http://www.biomedcentral.com/1471-2105/14/165

C

B

A

H

G

F

E

D

Figure 6 The double loop design for the poppy experiment. The
double loop design for the poppy experiment. Each letter represents
a tissue. Each edge represents a microarray. The head of the arrow
represents the red channel and the tail represents the green. Each
tissue is represented by 4 samples on 4 arrays.

analysis recovers information from between-array
variation.
Another possible approach that we have explored is

to apply empirical Bayes squeezing to the M and A-
value variances σ̂ 2

Mg and σ̂ 2
Ag . Unlike the usual variance

components σ̂ 2
eg and σ̂ 2

bg , the M-A variance components
are approximately independent and chisquare distributed,
and this is exact if the mixed model is balanced, in which
case the M-A components are scaled versions of the
within and between spot mean squares. Nevertheless the
common correlation model, with its aggressive regular-
ization of the intra-spot correlations, appears to be better
motivated in terms of technical design of two-channel
microarrays.
A number of real data examples with various exper-

imental designs have been used to demonstrate that

the common correlation mixed model provides a pow-
erful method for differential expression analysis that
outperforms both the log-ratio method and separate
channel analyses using the ordinary linear mixed model.

Methods
Empirical Bayes moderated t-statistics
This section briefly reviews the empirical Bayes differ-
ential expression approach implemented in the limma
software package. Suppose that probe-wise linear mod-
els have been fitted to the expression data as described in
Results. Suppose we wish to detect genes for which the
jth coefficient βgj is non-zero. This coefficient might rep-
resent for example a log-fold-change between two treat-
ment conditions. The least squares estimator β̂g is given
in Results. The ordinary t-statistic for testing the null
hypothesis that βgj = 0 is

tgj = β̂gj

sg/
√vj

where sg is the residual standard deviation for probe
g and vj is the effective sample size for estimating βgj
derived from the design matrix. In the notation used in
Results, the effective sample size vj is the jth diagonal
element of the inverse of Z∗TZ∗. Under the null hypoth-
esis, tgj follows a t-distribution on d = n − p degrees
of freedom, where p is the number of coefficients in the
linear model.
Following [25,26], an improved test can be obtained by

computing the posterior variances

s̃2g = d0s20 + d s2g
d0 + d

(3)

and moderated t-statistics

t̃gj = β̂gj

s̃g/
√vj

Under the null hypothesis, t̃gj follows a t-distribution on
d0 + d degrees of freedom. The gain in degrees of free-
dom of the moderated over the ordinary t-statistic reflects
the information which is borrowed from other probes

Table 2 Number of significant genes for the poppy data

Number of differentially expressed genes

Analysis Comparison π̂0 FDR< 0.05 FDR< 0.01

Log-ratio Leaf vs Sepal 0.52 1157 668

Separate channel Leaf vs Sepal 0.64 1331 954

Log-ratio Leaf vs Carpel 0.84 254 132

Separate channel Leaf vs Carpel 0.87 505 314

Rows give results for different tissue comparisons and different analysis methods. The column π̂0 gives the estimated proportion of probes that are not differentially
expressed between the tissue types. FDRs and π0 values were estimated using the qvalue package. The separate channel method detects more significant genes
but does not decrease π̂0 overall.
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when making inferences about an individual probe. The
moderated t-test has been shown to be superior to other
tests in comparative studies [39-41].
The hyper-parameters s0 and d0 in the prior

distribution for σ 2
g are estimated from the expres-

sion data on all G probes as described by [26].
After this step, s0 and d0 are treated as known.

Approximate degrees of freedom for theM and A-value
variances
Let h = (h1, . . . , h2n)T be the 2n-vector of leverages
that arises from fitting the heteroscedastic regression
model described in the section on the common correla-
tion model. The leverages are defined to be the diagonal
elements of the hat-matrix

Hg = Z∗ (
Z∗TZ∗)−1

Z∗T

with Z∗ defined in Results. The effective degrees of free-
dom associated with σ̂ 2

Mg and σ̂ 2
Ag are the residual degrees

of freedom associated with the Mgi and the Agi com-
ponents respectively of the regression. In terms of the
leverages, the effective degrees of freedom are dM = n −∑n

i=1 hi and dA = n−∑2n
i=n+1 hi respectively. This means

that approximately

σ̂ 2
Mg ∼ σ 2

Mgχ
2
dM/dM

σ̂ 2
Ag ∼ σ 2

Agχ
2
dA/dA

The fact that σ̂ 2
Ag and σ̂ 2

Mg follow approximate chisquare
distributions implies that σ̂ 2

Ag/σ̂
2
Mg follows a scaled F-

distribution. If we define,

τ̂g = 1
2
log

4σ̂ 2
Ag

σ̂ 2
Mg

then it follows that from [27] that

E(τ̂g) = tanh−1(ρ) + bias

with

bias = ψ(dA/2) − ψ(dM/2) + log(dA/2) − log(dM/2)

where ψ() is the digamma function. Hence (τ̂g − bias) is
approximately unbiased for τ = tanh−1 ρ.

Software implementation
The common correlation separate channel approach is
implemented in the R [42] package limma distributed as
part of the Bioconductor project [43]. The intra-spot cor-
relation is estimated by the intraspotCorrelation
function, and the separate channel linearmodel is fitted by
the function lmscFit. In other respects, separate chan-
nel analyses follow exactly the same framework as other
analyses using the limma package. The package includes
normalization methods, differential expression analysis

and output tabulation for both log-ratio and separate
channel analysis.

Case study datasets
The ApoAI knockout experiment was described by [32].
RNA samples were hybridized to academic spotted arrays
and images were quantified using SPOT. A log-ratio
analysis of the microarray data from the experiment is
described in Section 8.4.2 of the limma User’s Guide [44].
The data were pre-processed for this study as described in
the limma User’s Guide except for the addition of quan-
tile normalization of the A-values. The microarray data
are available as an R data object from the limma package
home page [45].
The titration data have been previously described by

[2]. The original study considered four microarray plat-
forms and three image analysis programs. The cur-
rent study considers only the Agilent arrays because
these were found to be the most precise of the two-
color platforms [2]. Twenty four RNA samples were
hybridized to 12 Agilent Human 1A Oligo microar-
rays printed with 22,000 oligonucleotide probes. Images
were quantified using Agilent Feature Extraction soft-
ware. Intensities were background corrected by the max-
imum likelihood normexp method [28,46] using the
backgroundCorrect function of the limma pack-
age. Intensities were global loess normalized using
normalizeWithinArrays andA-quantile normalized
using normalizeBetweenArrays. All positive con-
trol probes were filtered before background correction
and normalization. After normalization, negative control
probes and probes with average log-intensity less than the
75% quantile of the negative controls were filtered from
subsequent analysis.
The poppy data have been previously described by [38]

where the probe selection was given in detail. Due to a
complex probe design, probes were filtered prior to nor-
malization to select one representative probe per unigene
and exclude numerous control probes as described in
[38]. After filtering, the data were preprocessed by back-
ground correction using backgroundCorrect with
method=half. Intensities were global loess normalized
using normalizeWithinArrays and A-quantile nor-
malized using normalizeBetweenArrays.
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