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Abstract

Background: Pairing of samples arises naturally in many genomic experiments; for example, gene expression in
tumour and normal tissue from the same patients. Methods for analysing high-throughput sequencing data from
such experiments are required to identify differential expression, both within paired samples and between pairs under
different experimental conditions.

Results: We develop an empirical Bayesian method based on the beta-binomial distribution to model paired data
from high-throughput sequencing experiments. We examine the performance of this method on simulated and real
data in a variety of scenarios. Our methods are implemented as part of the R baySeq package (versions 1.11.6 and
greater) available from Bioconductor (http://www.bioconductor.org).

Conclusions: We compare our approach to alternatives based on generalised linear modelling approaches and
show that our method offers significant gains in performance on simulated data. In testing on real data from oral
squamous cell carcinoma patients, we discover greater enrichment of previously identified head and neck squamous
cell carcinoma associated gene sets than has previously been achieved through a generalised linear modelling
approach, suggesting that similar gains in performance may be found in real data. Our methods thus show real and
substantial improvements in analyses of high-throughput sequencing data from paired samples.

Background
High-throughput sequencing technologies [1-4] allow the
measurement of expression of multiple genomic loci in
terms of discrete counts. A number of methods have been
developed in recent years for the detection of differen-
tial expression in high-throughput sequencing data. The
data are generally modelled using an over-dispersed Pois-
son distribution (generally the negative-binomial distri-
bution [5-7]), although the beta-binomial distribution [8]
has also been used. These methods offer relatively robust
and sensitive detection of differential expression either
through pairwise comparisons [6,7] or a model-based
approach [5].
Analysis methods for an important class of experimental

design, that involving paired data, are less well developed.
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In a paired experimental design, we are generally inter-
ested in examining how the ratio of expression between
paired counts varies, a scenario that arises naturally in
a number of important settings. For example, in onco-
logical studies we may take normal and tumour tissue
from the same patient and wish to determine whether the
ratio of gene expression differs from a one-to-one ratio
between patients within a treatment group, or whether
this ratio varies between treatment groups. Similarly, we
may wish to compare individuals pre- and post-infection
to establish how different strains of a species respond to
infection. Paired samples provide a useful approach to
such problems as even when the expression of particular
genes varies substantially between individuals, the effect
of treatment may be relatively consistent. By using paired
samples, we can account for individual-specific effects and
consequently better detect treatment effects.
Two key questions arise in analyses of paired data.

Firstly, we can examine differential expression within each
pair. That is, we are interested in distinguishing those
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data which show an approximately one-to-one ratio of
expression (after appropriate normalisation) for each pair
of counts, and those which show a consistent change
between each pair. In the examples above, this is equiva-
lent to discovering differential expression between normal
and tumour tissue, or between pre- and post-infection
cases, taking into account individual-specific effects. In
the second case, we are interested in discovering differ-
ential expression between groups of paired samples. In
our examples, this would correspond to changes in rela-
tive expression as a result of treatment. Depending on the
nature of the experiment and the data produced, either or
both of these forms of differential expression may be of
interest.
We present here an empirical Bayesian method based

on an over-dispersed binomial distribution, the beta-
binomial, for addressing the problem of detecting both
types of differential expression in paired sequencing data.
The beta-binomial distribution has previously been sug-
gested as a suitable model for the analysis of unpaired
high-throughput sequencing data [8], in which the num-
ber of reads observed at a single genomic locus is
modelled as a proportion of the total number of reads
sequenced. In contrast, we model the number of reads
observed at a single genomic locus in one member of a
pair of samples as a proportion of the number of reads
observed at that locus in both samples. Consequently, the
application and interpretation of the methods we develop
here are substantially different from those of previous
work in the analysis of high-throughput sequencing data.
Analyses that account for paired data have thus far

employed simplifying assumptions that neglect the full
structure of the data. The only published method that
has attempted the analysis of paired data is the gener-
alised linear model approach implemented in the edgeR
Bioconductor package and described in McCarthy et al
[9]. We refer to this method subsequently as the edgeR-
GLMmethod. However, this method assumes a log-linear
model for the data. This approximation may be appro-
priate for highly expressed genomic loci, but is likely
to lack precision for lowly expressed genomic loci, in
which the discrete nature of count data is particularly
pertinent to their analysis. A similar generalised linear
model approach is implemented in the DESeq Biocon-
ductor package [7], which we refer to subsequently as the
DESeq-GLM method. We compare these alternatives to
the approach developed here, and show that our approach
offers gains in performance on both simulated and
real data.

Methods
The data from high-throughput sequencing experiments
used in differential expression analysis may be thought of
as a set of tags, defining the unique reads sequenced in

the experiment, and a set of counts, giving the number
of times each tag is observed in each of the sequenced
libraries made from the samples. In many cases, the data
for individual tags is combined to give a count for a larger
genomic object. A common example is the summation
of tags that map to a gene to give a single value for that
gene’s expression. However, the same methods apply to
any genomic object whose ‘expression’ can be quantified
by high-throughput sequencing, whether that object is
a single tag, a gene, miRNA, siRNA, methylation locus,
et cetera. For each distinct genomic object, we thus have
an ordered list, or tuple, of discrete counts with the sample
order being identical in each tuple.
In analyses of paired data, we introduce the concept of

a tuple pair. Suppose that we have the count data from a
set of n samples A = {A1, · · · ,An}, paired with the sam-
ples A′ = {A′

1, · · · ,A′
n} respectively so that samples Ai

and A′
i form a sample pair. We define the observed data

for a particular tuple pair, c, as (u1c, · · · ,unc) where uic is
the count of the cth tuple for sample Ai, and the data for
the sample pairs as (u′

1c, · · · ,u′
nc) where u′

ic is the count
of the cth tuple for sample A′

i. The data for the tuple pair
can then be defined asDc = {(u1c, · · ·unc), (u′

1c, · · · ,u′
nc)}.

We adapt the methods developed for differential expres-
sion analysis in our previous work [5] as these have been
reported to show the best performance [10,11] in anal-
ysis of high-throughput sequencing data. An empirical
Bayesian approach is used to estimate the posterior prob-
abilities of each of a set of models that define patterns of
differential expression for each tuple pair.

Model definitions
In forming a set of models for the data, we consider
which patterns are biologically likely. In the simple case
of a pairwise comparison, we have count data for some
sample pairs from condition A and condition B. If we
suppose that we have two biological replicates for each
condition, then there are counts from four sequencing
libraries A1,A2,B1,B2 paired with, respectively, counts
from sequencing libraries A′

1,A′
2,B′

1,B′
2. In most cases, it

is reasonable to suppose that at least some of the tuple
pairs may be unaffected by our experimental conditions
A and B. The count data for the sample pairs in these
tuple pairs will then share the same underlying parame-
ters. However, some of the tuple pairs may be influenced
by the different experimental conditionsA and B. For such
a tuple pair, the data from the sample pairs (A1,A′

1) and
(A2,A′

2)will share a set of underlying parameters, the data
from the sample pairs (B1,B′

1) and (B2,B′
2) will share a

set of underlying parameters, but, crucially, these sets of
parameters will not be identical.
We can represent the models described in terms of

the sets of samples for which the data are equivalently
distributed under the model. Thus, the model of no
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differential expression between experimental conditions
can be represented by a single set

{(A1,A′
1), (A2,A′

2), (B1,B′
1), (B2,B′

2)}
The model for differential expression between the two
experimental conditions can similarly be represented by
the two sets

{(A1,A′
1), (A2,A′

2)}, {(B1,B′
1), (B2,B′

2)}
This set based description of the models allows great flex-
ibility in constructing multiple models that may describe
the observed data. The evaluation of the posterior likeli-
hood of such a model based on the observed data for a
single tuple pair is described below.

Posterior likelihood of a model
Consider some model M for these data defined by the
sets {E1, · · · ,Em}. If, in this model, the ith and jth sam-
ple pairs (Ai,A′

i) and (Aj,A′
j) are in the same set Eq,

then for these sample pairs, the data at tuple pair c
shares the same underlying parameters ζq, and are con-
ditionally independent given these parameters. The ζq
are in turn drawn from some underlying distribution θq.
For computational simplicity, we assume that the ζq are
independently sampled from the distribution θq for each
set Eq.
Given a model M for the data, the quantity of interest

for each tuple c is the posterior likelihood of the modelM
given the data Dc, that is

P(M | Dc) = P(Dc | M)P(M)

P(Dc)
(1)

We can then calculate P(Dc | M) by considering the
marginal likelihood

P(Dc | M) =
∏
q

∫
ζq∈θq

⎡
⎣∏
i∈Eq

P((uic,u′
ic) | ζq)

⎤
⎦P(ζq | θq)dζq

(2)

The assumption of independence of the ζq reduces
the dimensionality of the integral allowing a numerical
approximation to this integral to bemore easily calculated.
We suppose that for each θq we have a set of values�q that
are sampled from the distribution of θq. Then, following
Evans & Swartz [12]

P(Dc | M) ≈
∏
q

1
|�q|

∑
ζq∈�q

∏
i∈Eq

P((uic,u′
ic) | ζq) (3)

The task that then remains is to derive the set�q from the
data.

Beta-binomially distributed data
There are a number of possible distributions which could
be used for (uic,u′

ic) | ζq and ζq | θq. We develop our

method based on the beta-binomial distribution for the
tuple pair data, and derive an empirical distribution for
the set of underlying parameters using the whole data
set. We justify the use of the beta-binomial through the
assumption of a Poisson distribution for the number of
sequenced reads for a given tuple c from an individual
library sequenced for sample i. The Poisson distribution
has been justified as an approximation to an underlying
multinomial distribution [7] and has been shown to be
a good approximation for the variation found between
technical replicates [13].
If the count uic is Poisson distributed, and the count of

the paired library u′
ic is Poisson distributed, then condi-

tional upon the sum uic + u′
ic, uic is binomially distributed

with parameter p indicating the expected proportion of
reads belonging to the first of the sample pairs. How-
ever, biological variation will cause this proportion to vary
between biological replicates, leading to over-dispersion
in the observed data. In the absence of prior knowledge
about the nature of this over-dispersion we suggest the
beta-binomial model as the most convenient approach to
model this over-dispersion.
We suppose that the expected proportion of reads from

which uic is sampled is π . If the library scaling factors
[14,15] of samples Ai and A′

i are identical, then (ignoring
biological variation) this is sufficient to describe the distri-
bution of uic and u′

ic conditional upon their sum. However,
if the library scaling factors Li and L′

i are the non-identical
library scaling factors of samples Ai and A′

i respectively,
then the expected proportion becomes p = πLi

πLi+(1−π)L′
i
.

Using the beta-binomial as a model for over-dispersion,
we adopt the following parameterisation for the
distribution
P({uic,u′

ic}|π ,φ, Li, L′
i) = (uic + u′

ic)!
uic!u′

ic!

× B(uic + α,u′
ic + β)

B(α,β)
,φ > 0

P({uic,u′
ic}|π ,φ, Li, L′

i) = (uic + u′
ic)!

uic!u′
ic!

puic(1 − p)u
′
ic ,φ = 0

where α = p 1−φ
φ

and β = (1 − p) 1−φ
φ

. π defines the
expected proportion of reads in uic and φ ∈[ 0, 1] is a mea-
sure of the over-dispersion of the data, where φ = 0makes
the model equivalent to the binomial distribution.
The variance of the binomial distribution under this

parametrisation is (uic + u′
ic)p(1− p). The variance of the

beta-binomial distribution is (uic +u′
ic)p(1−p)(1+ (uic +

u′
ic − 1)φ), making the additional variance in the beta-

binomial distribution scale linearly with the dispersion
parameter φ for fixed uic + u′

ic and p.

Empirically derived distributions
We can derive an empirical distribution for the parame-
ters of a model M by sampling from the dataset. For each
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set of samples Eq, we would like to find an estimate of
the mean and dispersion of the distribution underlying
the data from a single tuple pair; Dc. By finding estimates
of the mean and dispersion for a large number of tuple
pairs, we create the sampling �q. The chief difficulty here
lies in properly estimating the dispersion. Suppose that
the data from a given tuple pair shows genuine differential
expression. If the model that we are testing assumes that
there is no differential expression, then the dispersion will
be substantially over-estimated for this tuple pair. Since
we do not know in advance which tuple pairs are gen-
uinely differentially expressed and which are not, we need
to consider the replicate structure of the data in order to
properly estimate the dispersions. We define the replicate
structure by considering the sets {F1, · · · Fs} where i, j ∈ Fr
if and only if sample pair (Aj,A′

j) is a replicate of sample
pair (Ai,A′

i).
Given this structure for the data, we can estimate the

dispersion of the data in a tuple pair Dc by maximum-
likelihood methods. We consider the likelihood of the
tuple pair Dc under the replicate structure to be

P(Dc | {F1, · · · Fs}) =
∏
r∈1:s

∏
i∈Fr

P({uic,u′
ic}|πrc,φc) (4)

and choose πrc and φc to maximise this likelihood. This
gives us a value for φc, the dispersion of the cth tuple pair.
In analysis of paired data, one question of interest may

be to identify tuple pairs which show a particular ratio of
expression between the sample pairs. The most usual case
will be a one-to-one ratio (after accounting for variation
in library scaling factor), indicating that there is no dif-
ferential expression of the tuple pair between the sample
pairs. To model this, we simply set the πqc as the constant
proportion of expression to be examined for all c.
Alternatively, we may wish to consider a model in which

we are not interested primarily in the value of the ratios
of expression between sample pairs, but only on whether
these ratios are similar or different amongst various exper-
imental groups defined by the sets Eq. To approximate
a distribution on the θq for such a model, we can esti-
mate the proportion πqc of reads in the first count of each
pair of samples for the tuple pair c. We achieve this by
using the value previously acquired for φc and estimating
πqc by maximum likelihood methods. For notational sim-
plicity, we define the data associated with the set Eq as
Dqc = {(uic,u′

ic) : i ∈ Eq} and consider the likelihood of
the tuple pair Dqc to be

P(Dqc | φc) =
∏
i∈Eq

P({uic,u′
ic}|πqc,φc)

We then choose πqc to maximise this likelihood for each
q. We can then form the set �q = {(πqc,φc)} by repeating
one of these processes for multiple sampled tuple pairs.
We can then calculate P(Dc|M) from Eqn. 3.

This method of estimating the dispersion assumes that
the dispersion of a tuple pair is constant across experi-
mental groups. Where the number of samples is small,
this is likely to be the best approach. Where there is an
expectation that the dispersion will be substantially differ-
ent between experimental groups, and there are adequate
numbers of replicates, theremay be advantages to estimat-
ing the dispersions individually for each of the different
sets of samples in each model, while still considering
the replicate structure within these sets. This is easily
done by restricting the data (and corresponding replicate
structure) to Dqc when estimating the dispersion in Eqn 4.

Estimation of prior probabilities of each model
A number of options are available when considering the
prior probabilities of each model P(M) required in Eqn 1.
If we can estimate these from other sources, this may pro-
vide an easy solution. However, in many cases we may not
be able to provide a reasonable estimate of prior proba-
bilities. One option is to use the iterative re-estimation of
the prior likelihoods as described in our previous work
[5]. An alternative approach, which we have found sub-
sequently to give more accurate estimates of the prior
probabilities in most cases (data not shown) is to use the
Bayesian Information Criterion (BIC). For each tuple pair
Dc we apply the BIC to select the most likely model based
on the calculated likelihoods P(Dc|M) for each model M.
This allows us to estimate the proportion of data that are
best modelled by each of the models, which can be used as
an estimate of the prior probablities of each model when
calculating P(M|Dc) for any individual tuple pair Dc.

The scaling factor P(Dc)

Finally, we need to consider the scaling factor P(Dc) in
Eqn. 1. Since the number of possible models is finite,
though potentially large, the scaling factor P(Dc) can be
determined by summing P(Dc | M)P(M) over all possi-
ble M. In practice, the number of models may be further
reduced by considering only those that are biologically
plausible.

False discovery rates from posterior likelihoods
False discovery rates can be estimated directly from the
posterior likelihoods estimated for each model. If the like-
lihood of a modelM given the observed data for tuple pair
c is pMc then the likelihood that this is not the true model
for the data is 1 − pMc . If Hm is the set of the top m tuple
pairs for the givenmodelM, the false discovery rate is thus
estimable as

∑
c∈Hm (1−pMc )

|Hm| .

Results and discussion
We use both simulated and real data to compare the beta-
binomial method described to the edgeR-GLM [9] and
DESeq-GLMmethods.
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Simulated data
We base our simulations on those described by Robinson
& Smyth [6], simulating ten thousand tuple pairs from
n sample pairs (giving 2n libraries in total). We begin
by simulating differential expression within pairings only,
that is, some of the tuples are simulated so that the rela-
tionship between the paired counts is not one-to-one.
A more complex experimental design is then simulated
by the inclusion of simulated data in which the ratio of
expression between the paired counts also differs between
experimental groups.
We assess the performance of the methods by ranking

the tuple pairs by their strength of association with each
type of differential expression and computing the true and
false positive rates using these ranked lists. For increased
robustness, we estimate the mean of these rates over one
hundred simulations under each set of conditions.
For the ith sample of a non-differentially expressed

cth tuple pair, the paired counts uic and u′
ic are simu-

lated from Poisson distributions with means λcLiQicMic
and λcL′

iQic(1 − Mic) respectively. The λc, which define
a baseline of expression for the tuple pair when scaled
by the library size, are sampled randomly from a set
of values empirically estimated by the edgeR method
[6] from a SAGE dataset consisting of both normal and
cancerous cells [16]. The Li and L′

i, representing library
scaling factors specific to each sequencing library, are
sampled from a uniform distribution between 30000 and
90000.
We simulate individual effects in the data by allowing

Qic to vary for each sample pair i as well as for each tuple
pair c. We simulate this variation by setting Qic = 2νic

where ν is sampled from a uniform distribution between
−2 and 2, allowing for up to sixteen-fold variation in
expression between sample pairs due to individual effects.
The Mic allow us to introduce differences between

experimental groups of sample pairs and between the
members of a pair, while allowing for variation between
biological replicates. They are sampled from a beta distri-
bution with shape parameters aic = μic

μic+μ′
ic

1−φc
φc

and bic =
μ′
ic

μic+μ′
ic

1−φc
φc

. In the case of a non-differentially expressed
tuple pair c, μic = μ′

ic = 1 for all i. For differentially
expressed tuple pairs, we select the values μic and μ′

ic
in various ways to simulate different types of differential
expression. The values φc, which indicates the level of dis-
persion (and hence, biological noise) are drawn from a
beta distribution with shape parameters 1, 10.
We begin by simulating the simplest case of a paired

analysis. In this scenario we are interested only in the
differences within paired counts, that is, we search for
tuple pairs which show evidence for a deviation from a
one-to-one expression ratio between the paired counts.
We simulate one thousand differentially expressed tuple

pairs. For a differentially expressed tuple pair c, μic = 2fc
andμ′

ic = 2−fc for each i, where fc is drawn from a uniform
distribution between −b and b, where b is allowed to vary.
We examined the performance of the methods on the

basis of ROC curves. Figure 1 demonstrates the perfor-
mance of the methods on simulated data for b = 1, 2 and
4 for n = 4 and 10.
For low false positive rates, the performance of the

methods is approximately equal as each identify the ‘low-
hanging fruit’, those tuple pairs showing high differential
expression with relatively low biological variation. How-
ever, for higher false positive rates the beta-binomial
method shows a clear and consistent gain in perfor-
mance over the generalised linear modelling approaches.
The DESeq-GLM in general performs better than edgeR-
GLM, especially for higher numbers of sequenced
libraries. For high library numbers, the performance
of DESeq-GLM approaches that of our beta-binomial
approach.
We next consider the more complex case where dif-

ferential expression exists both within paired counts,
and between experimental groups. This is equivalent
to an experimental set-up in which we have sample
pairs from condition A, A1, . . . ,An paired with samples
A′
1, . . . ,A′

n respectively, and sample pairs from condition
B, B1, . . . ,Bn paired with B′

1, . . . ,B′
n respectively. We want

to find not only tuple pairs that show a consistent variation
of expression from a one-to-one ratio within paired counts
across all sample pairs (as before), but also those which
show an altered ratio of expression between conditions A
and B.
We again simulate ten thousand tuple pairs. For one

thousand of these, we simulate differential expression
within paired counts as before. For a second group of one
thousand tuple pairs, we also simulate differential expres-
sion between experimental conditions. We simulate dif-
ferential expression between experimental conditions by
applying a scaling factor gc to one of the two experimen-
tal conditions. This is applied such that for a differentially
expressed tuple pair c, the data for half the sample pairs,
representing the first experimental condition, are simu-
lated using the values μic = 2fc2Iicgc and μ′

ic = 2−fc2−Iicgc .
For the remaining half of the sample pairs, represent-
ing the second experimental condition, using the values
μic = 2fc2(1−Iic)gc and μ′

ic = 2−fc2−(1−Iic)gc . Here fc is
simulated as before and gc is drawn from a uniform dis-
tribution between −d and d. Iic is an indicator variable
randomly sampled from {0, 1} for each tuple pair c indi-
cating whether the effect is assigned to the first or second
experimental condition.
Both the beta-binomial approach and the generalised

linearmodelling approaches are capable of simultaneously
detecting both types of differential expression, however,
the form of results acquired by these two approaches
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Figure 1 Comparison of methods identifying differential expression within paired counts. ROC curves showing the performance of the
beta-binomial, edgeR-GLM and DESeq-GLM methods in identifying differential expression within paired counts in simulated data for various
combinations of b, a measure of the level of differential expression, and n, the number of paired libraries.

differs. For the beta-binomial approach, posterior likeli-
hoods are calculated for each available model, and hence
only one model for each tuple pair can be assigned a high
posterior likelihood. If the true differential expression of
a tuple pair involves changes in expression ratios between
experimental groups, the model for consistent change
from a one-to-one ratio between paired counts will have
a low posterior likelihood as the change will not be

consistent across the tuple pair. For the generalised linear
modelling approaches, both a pair effect and an exper-
imental group effect, and the significance with which
these differ from zero, are calculated for each tuple pair.
Consequently, both effects can be present with high sig-
nificance even when changes in expression are driven
primarily by a change in expression ratios between exper-
imental groups.
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If those tuple pairs simulated as showing differen-
tial expression ratios between experimental groups are
treated as false positives when considering differences
from a one-to-one ratio between paired counts, this heav-
ily penalises the generalised linear model methods. If
they are treated as true positives, the generalised linear
modelling approaches are evaluated on the basis of two
thousand true positives where the beta-binomial method
is evaluated on the basis of one thousand true positives,
making performance comparisons difficult. To allow fair
comparisons between the methods, we therefore exclude
the thousand tuple pairs simulated as showing differential
expression ratios between experimental groups when cal-
culating the true and false positive rates for detection of
differences from a one-to-one ratio within paired counts.
Figure 2 shows the performance of the two methods for

the simulation studies as they attempt to discover both
differential expression within paired counts and differen-
tial expression between experimental groups for a range
of values of b, d and n.
In this more complex case, the difference between the

performance of the methods is considerably more pro-
nounced. Particularly in identifying differential expression
between experimental groups, the beta-binomial method
shows considerably better performance than that of both
generalised linear modelling approaches. In identifying
differential expression from a one-to-one ratio within
paired counts, the performance of the beta binomial
method is similar to that shown in Figure 1, where this is
the only type of differential expression present in the data.
However, the performance of the generalised linear mod-
elling approaches is substantially degraded in this more
complex scenario.
The simulated data described above are drawn from sets

of Poisson distributions whose parameters are a multi-
ple of a random variable drawn from a beta distribution.
Therefore, the simulated data have a beta-binomial dis-
tribution, the model proposed for the analysis. We can
examine the robustness of the model by considering an
alternative distribution for the simulations. Since the Pois-
son distribution is a well established model for the techni-
cal effects observed in high-throughput sequencing data
[13] we test the robustness of our method by using the
minimax distribution [17] as an alternative to the beta
distribution for the random variables Mic. The minimax
distribution is also a two-parameter distribution on (0, 1)
with density

f (x) = f (x; α̂, β̂) = α̂β̂xα̂−1(1 − xα̂)β̂−1

The moments of this distribution are given in terms of the
beta function such that

E(Xr) = β̂B(1 + 1
α̂
, β̂)

Consequently, it is not possible to establish closed-form
expressions for the parameters α̂ and β̂ in terms of
the desired mean and variance of the random variables
Mic, nor is it possible to define a dispersion parame-
ter for this distribution. In order to select parameters
for the minimax distributions used to simulate the data,
we therefore calculate the parameters for the beta dis-
tribution as described above. We then (numerically) cal-
culate the parameters of the minimax distribution such
that the mean and variance of each random variable are
identical to those which would be used in the case of
the beta distribution. This approach has the advantage
that, for given parameters of simulation, the results are
directly comparable between those data simulated using
a beta distribution and those simulated using a minimax
distribution.
Results for the application of the three methods to data

simulated using the minimax distribution are shown in
Additional file 1 (Figures S1 & S2). These results are con-
sistent with those acquired on the simulated data using the
beta distribution, suggesting that the methods we propose
are reasonably robust to the underlying distribution of the
data.

Biological data
We examine a set of paired data from a recent study of oral
squamous cell carcinoma [18]. The study includes three
patients with samples taken from tumour and matched
normal tissue. As far as possible, we duplicate the anal-
ysis conducted by McCarthy et al [9] using the edgeR-
GLMmethod to allow comparisonwith our beta-binomial
approach. Our analysis begins with the processed data
provided as supplementary material to Tuch et al [18].
We map the RefSeq identifiers included in the dataset to
gene symbols using the Bioconductor annotation pack-
age org.Hs.eg.db (version 2.7.1).We then discard data
associated with a RefSeq identifier whose gene symbol is
not identified and all but one of any duplicated gene sym-
bol, keeping the data with the greatest number of exons.
This results in paired count data for 10529 genes.
We analyse these data to find both genes displaying

a consistent fold-change between tumour and normal
tissue, and those genes which show heterogeneity in
fold-change between the paired counts belonging to the
individual patients. The patients are treated as biologi-
cal replicates for the purposes of dispersion estimation
(Eqn. 4) despite the presence of some genes displaying
patient-specific effects. In the absence of true biological
replicates, this is required in order to carry out a mean-
ingful analysis. We construct a set of models testing both
for consistent differential expression between tumour
and normal tissue and for differing ratios of expression
between individuals. We acquire posterior likelihoods for
each of these models of differential expression and hence
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Figure 2 Comparison of methods identifying differential expression within paired counts and between experimental groups. ROC curves
showing the performance of the methods in simultaneously identifying differences from a one-to-one ratio within paired counts (solid lines) and
differential expression ratios between experimental groups (dashed lines) in simulated data for various combinations of b, the level of differential
expression within paired counts, d, the level of differential expresssion between experimental groups, and n, the number of paired libraries.

can evaluate either the likelihood that each gene dis-
plays consistent differential expression between normal
and tumour samples, or the likelihood that a gene dis-
plays differential expression of any kind (by taking the
sum of the posterior likelihoods of all models describing
differential expression).
We identify 29 genes displaying a consistent ratio of dif-

ferential expression between tumour and normal samples

at a false discovery rate (FDR) of 0.05 (Additional file 1:
Table S1). This is considerably lower than the 1276 genes
reported by McCarthy et al [9] as differentially expressed
between tumour and normal tissue, reflecting the pre-
mium that our approach places on consistency of expres-
sion ratios across the samples. In examining differential
expression of any kind, we discover 2605 genes at a false
discovery rate of 0.05, indicating the heterogenous nature
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of the patients. The effect of this heterogeneity can also be
seen in an examination of previously reported genes. Of
25 genes reported by Yu et al [19] in a systematic review of
head and neck squamous cell carcinoma transcriptomics,
we find twenty that have differential expression of some
kind between normal and tumour samples with an FDR
of less than 0.05; of these, however, only two (MAL and
LAMC2) show consistent changes in ratio of expression
between normal and tumour samples at the same FDR
(Additional file 1: Table S2). This pattern is repeated in
the nine genes reported as being of particular interest
in Tuch et al [18]; we find that seven of the nine genes
have differential expression of some kind between tumour
and normal at an FDR of 0.05 but none show strong
evidence for consistent fold-changes in ratio (Additional
file 1: Table S3).
Comparisons with the highest-ranked differentially

expressed genes discovered by the edgeR-GLM approach
show a more consistent picture. Of the reported ten most
significant genes from their analysis, five are also selected
in our list of the twenty-nine genes showing consistent
differential gene expression ratios at an FDR of 0.05,
while the remainder still have an estimated likelihood of
consistent differential expression greater than 90%. Rank
correlation between the gene lists produced by the two
methods is 0.59 if the genes are ranked by the likelihood
of consistent differential expression but 0.88 if they are
ranked by the likelihood of differential expression of any
kind.
As in McCarthy et al [9], we also demonstrate the

biological relevance of the genes we identify by compar-
isons with the curated gene sets in the MSigDB database
[20]. From the twenty-nine genes identified with consis-
tent differential expression, the MSigDB gene sets iden-
tified as showing enrichment are predominantly cancer
related (Additional file 1: Tables S4 and S5); of these,
the top two sets are from two separate studies of head
and neck squamous cell carcinomas [21,22]. Comparisons
using the 2605 genes identified as showing differential
expression of any kind also show a overwhelming pre-
ponderance of cancer related gene sets (Additional file 1:
Tables S6 and S7) and identify an extremely high propor-
tion of the up and down-regulated genes from Cromer et
al [21] as well as in various subsets of genes associated
with various subclasses of head and neck squamous-cell
carcinomas [22] (subgroup E and F) and a set of hypoxia
associated genes in head and neck carcinomas [23].

Conclusions
We have presented here an empirical Bayesian approach
to analysing differential expression in paired sample high-
throughput sequencing data based on the beta-binomial
distribution. The distributions of the parameters of the
beta-binomial distribution are estimated by repeated

sampling from the observed data, and these distributions
are used to estimate posterior likelihoods for each pro-
posed model of expression for each tuple pair. Estimating
the distributions of the prior parameters in this way cre-
ates a ‘borrowing’ of information across tuple pairs, as the
posterior likelihoods for each tuple are calculated using
the observed data for all sampled tuple pairs. In analyses
with large numbers of outliers, it may be advantageous to
‘squeeze’ [24] the estimated distributions to diminish the
effects of these outliers. However, we do not consider this
approach here.
Our method is implemented as part of the software

package baySeq (versions 1.11.6 and greater). The meth-
ods are computationally intensive but readily parallelis-
able, so that a full analysis of the Tuch et al [18] data can
be carried out in approximately fifteen minutes on a single
machine with eight 2GHz processors.
As with the most successful approaches to analysis of

unpaired sequencing data [10,11], our approach for paired
data requires no transformation of the data but deals
with raw counts directly. This approach should allow for
considerably greater accuracy in the detection of differen-
tial expression between paired counts. The model-based
approach outlined here extends our previous work in
the analysis of high-throughput sequencing data [5] and
provides great flexibility in the analysis of complex exper-
imental designs, allowing for various types of differential
expression in paired data to be simultaneously identified.
A key assumption made in developing this method con-

cerns the nature of the over-dispersion between samples
caused by biological variation. In the absence of avail-
able data from which to infer the precise nature of the
over-dispersion, we have assumed for computational con-
venience that the beta distribution is a suitable model for
the biological variation in ratios of expression between
sample pairs and hence that the distribution of the count
data may be modelled with the beta-binomial. The beta
distribution is remarkably flexible and is thus likely to be
capable of accounting for the behaviour of most paired
data, although in certain circumstances this assump-
tion may fail. We note, however, that the principles of
the empirical Bayesian approach may be applied for any
underlying distribution, and so might be adapted to meet
this circumstance.
We demonstrate the performance of our methods on

both simulated and real data. In analyses of simulated data
using a range of parameters, we show considerable gains
in performance compared with two implementations
of a generalised linear modelling approach, especially
when more complex patterns of differential expression
are present in the data. The gain in performance using
our methods is particularly marked for larger numbers of
samples, a result that is likely to be increasingly important
as the cost of sequencing experiments declines, allowing
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larger studies. This gain in performance is also found
when the minimax distribution [17] is used in the simula-
tions, suggesting that our methods are reasonably robust
to the underlying distributions that may be present in
biological systems.
The analysis of the biological data from Tuch et al [18]

demonstrates that similarly good results can be attained
in real-world scenarios. There is a fairly strong correla-
tion between our results and those from the edgeR-GLM
approach [9], particularly for the highest ranked genes.
This not surprising; those genes showing the largest and
most consistent levels of differential expression will be
readily identified by any method. However, the analysis of
enrichment of those genes identified by the beta-binomial
method in curated gene sets from MSigDB identifies not
only an overwhelming preponderance of cancer related
genes but also those specifically related to head and neck
squamous carcinomas. These results compare favourably
with those reported inMcCarthy et al [9], which, although
also showing enrichment in primarily cancer-related sets,
do not show the same level of association with head
and neck squamous carcinoma gene sets. More detailed
comparisons using real data are desirable, but at present
no well validated data exists on which to make such
comparisons.
The comparison of paired mRNA-Seq samples is a

major application for our method. However, there are
other key applications. In particular, paired data arise nat-
urally in studies of epigenetic markers, such as chromatin
and methylation marks, where the prevalance of a par-
ticular marker is compared to a baseline measurement
for each marker. Our method is, therefore, likely to have
wide applicability not only in cancer and other areas of
medicine but also in fundamental life science research.

Additional file

Additional file 1: Supplementary Figures and Tables. Figure S1: ROC
curves showing the performance of the beta-binomial, edgeR-GLM and
DESeq-GLM methods in identifying differential expression within paired
counts in data simulated using the minimax distribution to simulate
biological variation. Simulations are carried out for various combinations of
b, a measure of the level of differential expression, and n, the number of
paired libraries. Figure S2: ROC curves showing the performance of the
beta-binomial, edgeR-GLM and DESeq-GLM methods in simultaneously
identifying differential expression from a one-to-one ratio within paired
counts (solid lines) and differential expression between experimental
groups (dashed lines) in data simulated using the minimax distribution to
simulate biological variation. Simulations are carried out for various
combinations of b, a measure of the level of differential expression within
paired counts, d, the level of differential expression between experimental
groups, and n, the number of paired libraries. Table S1: The top
twenty-nine genes (FDR < 0.05) showing consistent ratios within patients
of differential expression between normal and tumour samples. Table S2:
The twenty-five genes identified by Yu et al (2008) as being of interest in a
systematic review of head and neck squamous cell carcinoma transcripts,
as ranked by their likelihood of showing differential expression of any kind
in the Tuch et al (2010) data. Table S3: The nine genes identified by Tuch

et al (2010) as being of particular interest, as ranked by their likelihood of
showing differential expression of any kind. Table S4: Gene sets showing
enrichment (p < 0.01) in the eight up-regulated in tumour genes showing
consistent differential expression at FDR > 0.05. Head and neck squamous
cell carcinoma gene sets are highlighted. Table S5: Gene sets showing
enrichment (p < 0.01) in the twenty-one down-regulated in tumour genes
showing consistent differential expression at FDR > 0.05. Head and neck
squamous cell carcinoma gene sets are highlighted. Table S6: Gene sets
showing enrichment (top fifty) in the 2033 down-regulated in tumour
genes showing any differential expression at FDR > 0.05. Head and neck
squamous cell carcinoma gene sets are highlighted. Table S7: Gene sets
showing enrichment (top fifty) in the 572 up-regulated in tumour genes
showing any differential expression at FDR > 0.05. Head and neck
squamous cell carcinoma gene sets are highlighted.
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