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Abstract

Background: The maximal sensitivity for local alignments makes the Smith-Waterman algorithm a popular choice
for protein sequence database search based on pairwise alignment. However, the algorithm is compute-intensive
due to a quadratic time complexity. Corresponding runtimes are further compounded by the rapid growth of
sequence databases.

Results: We present CUDASW++ 3.0, a fast Smith-Waterman protein database search algorithm, which couples CPU
and GPU SIMD instructions and carries out concurrent CPU and GPU computations. For the CPU computation, this
algorithm employs SSE-based vector execution units as accelerators. For the GPU computation, we have investigated
for the first time a GPU SIMD parallelization, which employs CUDA PTX SIMD video instructions to gain more data
parallelism beyond the SIMT execution model. Moreover, sequence alignment workloads are automatically distributed
over CPUs and GPUs based on their respective compute capabilities. Evaluation on the Swiss-Prot database shows that
CUDASW++ 3.0 gains a performance improvement over CUDASW++ 2.0 up to 2.9 and 3.2, with a maximum
performance of 119.0 and 185.6 GCUPS, on a single-GPU GeForce GTX 680 and a dual-GPU GeForce GTX 690 graphics
card, respectively. In addition, our algorithm has demonstrated significant speedups over other top-performing tools:
SWIPE and BLAST+.

Conclusions: CUDASW++ 3.0 is written in CUDA C++ and PTX assembly languages, targeting GPUs based on the
Kepler architecture. This algorithm obtains significant speedups over its predecessor: CUDASW++ 2.0, by benefiting
from the use of CPU and GPU SIMD instructions as well as the concurrent execution on CPUs and GPUs. The source
code and the simulated data are available at http://cudasw.sourceforge.net.
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Background
The Smith-Waterman (SW) algorithm [1,2] is a dynamic-
programming-based approach to identify optimal local
alignments of biological sequence pairs. Due to its maximal
sensitivity for local alignments, this algorithm is a funda-
mental operation in bioinformatics, including biological
sequence database search, multiple sequence alignment
[3,4] and next-generation sequencing read alignment [5,6].
In biological sequence database search, the similarities
between sequences can be inferred from optimal local
alignment scores calculated by the SW algorithm. To
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calculate optimal local alignment scores, the SW algorithm
has a linear space complexity and a quadratic time com-
plexity. However, this quadratic time complexity makes the
SW algorithm computationally demanding for large-scale
sequence database search. This is further compounded by
the rapid growth of sequence databases.
Therefore, several heuristics such as FASTA [7] and

BLAST [8,9] have been proposed to accelerate the se-
quence database search, but not guaranteeing to discover
optimal local alignments. These heuristics usually produce
considerably good results, but might fail to detect some
distantly related sequences due to the loss of sensitivity.
Hence, it has great significance to accelerate the SW algo-
rithm so as to maintain optimal results. Consequently, a lot
of efforts have been made to parallelize this computation
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on high-performance computing architectures ranging
from loosely-coupled to tightly-coupled ones. Architecture
examples include clouds [10], clusters [10] and accelerators
[11]. Recent acceleration approaches focus on the use of
field programmable gate arrays (FPGAs), single instruction
multiple data (SIMD) vector execution units on CPUs,
multi-core Cell Broadband Engine (Cell/BE), and many-
core general-purpose GPUs, especially based on the com-
pute unified device architecture (CUDA)-enabled GPUs.
For FPGAs, some approaches based on linear systolic

arrays and custom instructions have been proposed.
Oliver et al. [12,13] constructed a linear systolic array on
a standard Virtex II FPGA board to perform the SW algo-
rithm with affine gap penalties. Li et al. [14] designed cus-
tom instructions to support massively parallel computing
of the SW algorithm on an Altera Stratix EP1S40 FPGA.
For SIMD vector execution units on CPUs, most ef-

forts have been concentrated on intra-task parallelization
that accelerates the alignment of a single sequence pair.
Intra-task parallelization approaches can be generally
classified into two computational patterns: (i) SIMD vec-
tors parallel to minor diagonals in the alignment matrix
[15], and (ii) SIMD vectors parallel to the query se-
quence by means of either a sequential [16] or a striped
layout [17]. The former pattern is runtime independent of
scoring schemes, but has complicated data management
and limited speedups. The latter pattern proves to be
faster, but is runtime sensitive to scoring schemes. Besides
intra-task parallelization, some approaches based on inter-
task parallelization have also been investigated [18,19].
Unlike intra-task parallelization, the inter-task para-

llelization computes multiple alignments in parallel in a
SIMD vector. The major advantages of this para-
llelization are the independence between alignments in
SIMD vectors and the runtime independence of scoring
schemes. These two parallelization approaches provide a
general framework for other architectures with SIMD
vector execution units, such as Cell/BEs and general-
purpose GPUs. Cell/BE is a heterogeneous multi-core
architecture comprised of one general-purpose power
processor element and eight synergistic processing ele-
ments that serve as SIMD accelerators. On Cell/BEs,
several approaches have been implemented [20–22], all
of which are designed based on the striped approach
[17]. For general-purpose GPUs, Liu et al. [23] developed an
initial OpenGL-based implementation. With the emergence
of CUDA programming model, several implementations
targeting different generations of CUDA-enabled GPU archi-
tectures [24–29] have been developed using CUDA, among
which CUDASW++ 2.0 [26] is one of the fastest.
In this paper, we present CUDASW++ 3.0, which yields

faster SW protein database search by coupling CPU and
GPU SIMD instructions and conducting concurrent CPU
and GPU computations. Similar approaches of coupling
CPU and GPU computation have been investigated in [30]
and [31] for phylogeny-aware alignment kernel and short-
read alignment, respectively. To balance the runtimes of
CPU and GPU computations, we have dynamically dis-
tributed all sequence alignment workloads over CPUs
and GPUs, as per their compute power. For the compu-
tation on CPUs, we have employed the streaming SIMD
extensions (SSE)-based vector execution units and multi-
threading to speed up the SW algorithm. For the compu-
tation on GPUs, for the first time, we have investigated a
GPU SIMD parallelization approach using PTX SIMD
video instructions. Using the PTX SIMD instructions, we
can obtain more data parallelism on GPUs beyond the sin-
gle instruction multiple thread (SIMT) execution model
implemented such as in CUDASW++ 2.0.
We have evaluated the performance of CUDASW++ 3.0

and three other top-performing algorithms: CUDASW++
2.0, SWIPE [19] and BLAST+ [32] using both the Swiss-
Prot protein database and a simulated database comprised
of equal-length sequences. Two Kepler-based graphics
cards, namely GeForce GTX 680 (GTX680) and GeForce
GTX 690 (GTX690), have been used for all evaluations of
our algorithm. On a GTX680 (GTX690), CUDASW++ 3.0
achieves a maximal performance improvement of 2.9 (3.2)
times over CUDASW++ 2.0 using the Swiss-Prot database
and of 2.2 (2.3) times using the simulated database.
Furthermore, our algorithm gains an average performance
of 109.4 (169.7) billion cell updates per second (GCUPS),
with a maximum of 119.0 (185.6) GCUPS, on the Swiss-
Prot database and an average performance of 118.0 (196.2)
GCUPS, with a maximum of 121.6 (204.7) GCUPS, on the
simulated database. In addition, CUDASW++ 3.0 demon-
strated significant speedups on average over SWIPE and
BLAST+.

The Smith-Waterman algorithm
Given a sequence S, define S[i] to denote the ith residue
of S, and Si to denote the prefix of S ending at position i.
Given two sequences S and T, the recurrence of the SW
algorithm with affine gap penalties is defined as

Hi;j ¼ max Hi�1;j�1 þM S i½ �;T j½ �ð Þ; Ei;j; Fi;j; 0
� �

Ei;j ¼ max Ei�1;j � β;Hi�1;j � α
� �

Fi;j ¼ max Fi;j�1 � β;Hi;j�1 � α
� � ð1Þ

where Hi,j, Ei,j and Fi,j represent the local alignment score
of two prefixes Si and Tj with S[i] aligned to T[j], S[i]
aligned to a gap and T[j] aligned to a gap, respectively. M
is the scoring matrix which defines the substitution scores
between residues, α is the sum of the gap open and exten-
sion penalties, and β is the gap extension penalty. The re-
currence is initialized as Hi,0 = H0,j = E0,j = Fi,0 = 0 for
0≤i≤|S| and 0≤j≤|T|. The optimal local alignment score is
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the maximal alignment score in the alignment matrix H
and can be calculated in linear space.

GPU architecture
CUDA-enabled GPUs have evolved into highly parallel
many-core processors with tremendous compute power
and very high memory bandwidth. They are especially
well-suited to address computational problems with high
data parallelism and arithmetic density. A CUDA-enabled
GPU can be conceptualized as a fully configurable array of
scalar processors (SPs). These SPs are further organized
into a set of streaming multiprocessors (SMs) under three
architecture generations: Tesla [33], Fermi [34] and Kepler
[35]. Since our algorithm targets the newest Kepler archi-
tecture, it is fundamental to understand the features of the
underlying hardware and the associated parallel program-
ming model.
For the Kepler architecture, each SM comprises 192

CUDA SP cores sharing a configurable 64 KB on-chip
memory. The on-chip memory can be configured at
runtime as 48 KB shared-memory with 16 KB L1 cache,
32 KB shared-memory with 32 KB L1 cache, or 16 KB
shared-memory with 48 KB L1 cache, for each CUDA ker-
nel. This architecture has a local memory size of 512 KB
per thread and has a L1/L2 cache hierarchy with a size-
configurable L1 cache per SM and a dedicated unified L2
cache of size up to 1,536 KB. However, L1 caching in Kep-
ler is reserved only for local memory accesses such as
register spills and stack data. Global memory loads can
only be cached in L2 cache and the 48 KB read-only data
cache [36]. Same as all previous architectures, threads
launched onto a GPU are scheduled in groups of 32 paral-
lel threads, called warps, in SIMT fashion.
To facilitate general-purpose data-parallel computing,

CUDA-enabled GPUs have introduced PTX, a low-level
parallel thread execution virtual machine and instruction
set architecture (ISA) [37]. PTX provides a stable program-
ming model and ISA that spans multiple GPU generations.
For the Kepler architecture, SIMD video instructions are
introduced in PTX, which operate either on pairs of 16-bit
values or quads of 8-bit values. These SIMD instructions
expose more data parallelism of GPUs and provide an op-
portunity for us to achieve higher speed for data-parallel
compute-intensive problems. In this paper, we have ex-
plored PTX SIMD instructions to further accelerate the
SW algorithm on Kepler-based GPUs.

Methods
Program outline
CUDASW++ 3.0 gains high speed by benefiting from
the use of CPU and GPU SIMD instructions as well as
the concurrent CPU and GPU computations. Our algo-
rithm generally works in four stages: (i) distribution of
workloads over CPUs and GPUs according to their
compute power; (ii) concurrent CPU and GPU computa-
tions; (iii) re-computation of all alignments that have
exceeded the 8-bit accuracy using CPU 8-lane 16-bit
SIMD instructions; and (iv) sorting of all alignment scores
in descending order and output the results. Figure 1 illus-
trates the workflow of our algorithm. In our algorithm, all
subject sequences are pre-sorted in ascending order of se-
quence length.

Workload distribution
Our workload distribution in Stage (i) balances the
runtimes between the CPU and GPU SIMD computa-
tion. Hence, the compute power of CPUs and GPUs
should be taken into consideration in order to generalize
our approach to different hardware configurations. Our
distribution policy calculates a rate R of the number of
residues from the database assigned to GPUs, which is
calculated as

R ¼ NGfG
NGfG þ NCfC=C

ð2Þ

where fC and fG are the core frequencies of CPUs
and GPUs, NC and NG are the number of CPU cores
(i.e. threads) and the number of GPU SMs, and C is a
constant derived from empirical evaluations, i.e. 3.2 and
5.1 for the query profile and its variant, respectively. When
using multiple GPUs, our algorithm assumes that they
have the same compute power and will calculate NG by
summing up the number of SMs on all GPUs.
After obtaining R, we calculate the number NR of resi-

dues assigned to GPUs as R times the total number of
residues in the database. Subsequently, all subject se-
quences assigned to GPUs can be determined by sum-
ming the sequence lengths in ascending order until it
reaches NR. All other subject sequences will be distrib-
uted to CPUs.

CPU SIMD computation
In Stage (ii), the CPU SIMD computation consists of
two steps. First, we compute the SW algorithm by split-
ting an SSE vector to 16 lanes with 8-bit lane width. This
allows aligning a query in parallel to 16 subject se-
quences following the inter-task parallelization model.
Secondly, we re-compute all alignments, whose scores
have overflow potential, using 8-lane SSE vectors with
16-bit lane width. We determine an alignment to have
overflow potential by comparing its score with a score
limit calculated by subtracting from 128 the maximum
substitution score in the scoring matrix. If the score ≥
the score limit, the alignment is deemed to have an over-
flow potential and thus requires re-computation. Our
approach is based on the open-source SWIPE and more
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Figure 1 Program workflow of CUDASW++ 3.0.
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details about the specific implementation of the SSE-
based SW algorithm can be obtained from [19].
In our algorithm, users are allowed to use multiple

threads to conduct the CPU SIMD computation. Since
the workload (i.e. subject sequences assigned to CPUs) is
known beforehand, we calculate the total number of resi-
dues in all assigned subject sequences and (nearly) equally
distribute all residues over all threads using a sequence as
a unit. This distribution aims to make each thread hold
(roughly) the same number of residues, but not necessarily
receiving the same number of subject sequences.
GPU SIMD computation
Core PTX SIMD assemblies
We have implemented the recurrence in Equation (1) with
PTX SIMD assembly instructions. The code consists of
ten assembly instructions for the recurrence and one in-
struction for obtaining the optimal local alignment score.
Figure 2 shows the PTX SIMD assembly instructions.
The figure shows that every instruction operates on

quads of 8-bit signed values, corresponding to four inde-
pendent alignments. Variables h, n and he represent the
alignment score vectors corresponding to matrix H,
where h denotes the score vector of the four current
cells, n the score vector of the four diagonal neighbours
and he the score vector of the four upper neighbours.
Variables e and f represent the score vectors correspon-
ding to the matrices E and F respectively, and S stores
Figure 2 Code in CUDA PTX SIMD assemblies.
the current maximum alignment scores. For additions
and subtractions, saturation instructions have been used
to clamp the values to their appropriate signed ranges.

CUDA-enabled parallelization
For quad-lane SIMD computing on GPUs, four adjacent
subject sequences (in the pre-sorted list as mentioned
above) are assigned to a single thread, with each vector
lane corresponding to each sequence. To facilitate data
fetches for SIMD vectors, a two-dimensional sequence
profile of size 4×l will be created for four sequences,
where l is the maximum length of the four sequences. In
a sequence profile, each row is a quad-lane residue vec-
tor represented as an integer data type, and is created by
packing four residues of the same index in their corre-
sponding sequences with each residue occupying 8 bits.
To reduce the number of texture fetches, we have fur-
ther packed four successive residue vectors using a uint4
vector data type for each sequence profile. Thus, we can
realize four residue vectors for four subject sequences by
a single texture fetch. Using a profile as a unit, we store
all profiles in the texture memory following the same
layout as in CUDASW++ 2.0.
For the linear-space SW algorithm, we require two

intermediate buffers to store one row for matrices H and
E (in our case) respectively. Instead of global memory,
we have allocated them in local memory. Since the
Kepler architecture has 512 KB per-thread local mem-
ory, theoretically we can support subject sequences as
long as 65,536 on GPUs. Our algorithm sets the max-
imum subject sequence length to be 3,072 by default,
but allows users to configure it at compile time because
the two intermediate buffers have to be statically allo-
cated in local memory.
The sequence length deviation generally causes run-

time imbalance between threads, which in return can
waste GPU compute power. In this regard, we have de-
veloped two CUDA kernels based on two parallelization
approaches: static scheduling and dynamic scheduling.
These two kernels are invoked at runtime based on the
sequence length deviation of the database. For both ap-
proaches, we compute the total number of thread blocks
from the total number of sequence profiles, which is
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constructed from the workload assigned to the GPU.
Since each thread has its own intermediate buffers, the
static scheduling parallelization launches all thread
blocks onto the GPU at the same time, which is com-
mon for launching a CUDA kernel. The parallelization
will rely on the CUDA runtime system to maximize the
utilization of computational resources of GPUs. Besides
the CUDA runtime system, the dynamic scheduling
approach attempts to intervene with the scheduling of
thread blocks on GPUs. This parallelization launches a
small set of thread blocks of size NT to carry out the
whole computation, regardless of the assigned workload.
NT is defined as:

NT ¼ 2NSM � NMRT

NTPB
ð3Þ

where NSM is the number of SMs, NMRT is the ma-
ximum number of resident threads per SM supported by
the GPU, and NTPB is the number of threads per thread
block configured by the user. The dynamic scheduling
parallelization works as follows. All sequence profiles are
organized into sequence profile blocks, each of which
has as many sequence profiles as the number of threads
in a thread block. Subsequently, NT thread blocks are
launched to perform the computation, where a thread
block processes a sequence profile block at a time.
When a thread block finishes its current computation,
this thread block will dynamically obtain an unprocessed
profile block. This operation is done by the atomic
addition function atomicAdd() on global memory, which
increments the index of global profile blocks. In our al-
gorithm, both static scheduling and dynamic scheduling
have used a thread block size of 64.
Our evaluation has found that dynamic scheduling

performs slightly better than static scheduling when
using the Swiss-Prot database (with large sequence
length deviation), whereas the latter seems slightly better
in the ideal case where all sequences are of equal
lengths. Based on the above observations, we have de-
cided to employ the static scheduling approach for data-
bases with very small sequence length deviation (by
default when the standard deviation does not exceed 1%
of the mean) and the dynamic scheduling approach for
all others.

Query profile variant
Given a query S defined over an alphabet Σ, a query
profile is defined as a numerical string set P = {Pr | r є
Σ}, where Pr is a numeric string comprised of substitu-
tion scores required for aligning the whole query to any
residue in Σ. The space complexity of the query profile
can be calculated as O(|S|×|Σ|). In our algorithm we
have employed the sequential-layout query profile [16],
which defines the ith element of Pr as M(r, S[i]), 1≤i≤|S|.
The query profile is stored in texture memory and has
been packed in the same way as in CUDASW++ 2.0 to
reduce the number of texture fetches.
To facilitate GPU SIMD parallelization, we have de-

rived a variant of a query profile. By enumerating all res-
idues in Σ, we define a query profile variant as a
numerical set V = {Vr | 0≤ r<|Σ|K} of |Σ|K entries, where
Vr is a vector of K substitution scores and r is an integer
corresponding to the permutation of any K residues in
Σ. Vr stores all substitution score vectors for aligning
the whole query to the K residues corresponding to r.
The space complexity of a query profile variant can be
calculated as O(|S|×|Σ|K). Like the query profile, this
variant is also stored in texture memory. When K = 4,
each element of Vr can be directly used in our quad-
lane SIMD computation. However, the memory foot-
print is considerable even for short protein queries (this
pressure can be significantly alleviated for DNA se-
quences due to their small alphabet size), and will cause
more texture cache misses as the query length increases.
In order to improve speed for long queries, our algo-
rithm therefore uses K=2. We represent each element of
Vr using the short integer data type, since the range of
the char data type is generally large enough to store a
substitution score. Figure 3 shows an example query
profile variant using K=2. Similar to the query profile,
the variant has also been packed by representing four
consecutive elements of each Vr using the short4 data
type. In this way, the variant can reduce the number of
texture fetches by half compared to the query profile.
On the other hand, to compute each cell vector (see
Figure 2), we have to extract and concatenate the substi-
tution scores, from either query profile or the variant, to
generate a substitution score vector. This requires some
additional bitwise operations in our implementation. In
this case, we can save six bitwise operations for each cell
vector by using the variant, instead of the query profile.
This makes great sense in terms of speed, considering
that each cell vector requires only several assembly in-
structions as shown in Figure 2.
Our algorithm employs both the query profile and its

variant. In general, for short queries, more performance
gains can be realized from the query profile variant be-
cause it can reduce the number of texture fetches by
half and use fewer bitwise operations per cell as men-
tioned above. However, for longer queries, a query pro-
file becomes superior due to its much smaller memory
footprint and less texture cache miss. Thus, we have cal-
culated a query length threshold Q to decide whether to
use the query profile or the variant. For the Kepler
architecture, texture fetches are cached by the afore-
mentioned read-only cache and L2 cache. Since the L2
cache is usually much larger than the read-only cache,



···

· ··

Query sequence
q1 q2 q3 q4 q5 q6 q7 q8

1 1 2 2 3 3 - 1 5 5 0 0 1 1 1 1

1 3 2 1 3 0 1

1

3 5 2 0 2 1 1 1 3

0 3 3 1 4 1 4 2 2 0 3 2 0 2 2 1

0 0 3 3 4 4 4 4 2 2 3 3 0 0 2 2

AA

AB

ZY

ZZ

··· Vr AA

E
ncoded residues

···

···

· ··

·· · Vr ZY

Figure 3 An example query profile variant using K=2. Operation a||b means concatenating 8-bit substitution scores a and b to form a short
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we have estimated Q from the L2 cache size as

Q ¼ L2cachesize

2
Pj jK ð4Þ

The estimation is empirical and works well in practice
through our evaluations. Q is used in the dynamic sched-
uling parallelization to cope with more general databases.
For static scheduling which is only applied to databases
with small sequence length deviations, we have found that
a query profile variant usually leads to superior speed.

Results and discussion
Experimental design
We used the GCUPS metric to measure the performance
of the following algorithms: CUDASW++ 3.0 (v3.0.14),
CUDASW++ 2.0 (v2.0.10), SWIPE (v2.0.5) and BLAST+
(v2.2.27). We used 20 protein queries of lengths ranging
from 144 to 5,478 to search against two protein databases:
the Swiss-Prot database (release 2012_11) and a simulated
database of equal-length sequences. The accession num-
bers of all queries are: P02232, P05013, P14942, P07-
327, P01008, P03435, P42357, P21177, Q38941, P27895,
P07756, P04775, P19096, P28167, P0C6B8, P20930, P08519,
Q7TMA5, P33450, and Q9UKN1, listed in the ascending
order of sequence length. The Swiss-Prot database con-
sists of 191,240,745 amino acids in 538,585 sequences
and has the largest sequence length 35,213. The simu-
lated database comprises 200,000 sequences with each
sequence of length 3,000, containing 600,000,000 amino
acids in total.
All tests were conducted on a personal computer with

an Intel i7 2700K quad-core 3.5 GHz CPU and 16 GB
memory, running the Linux operating system (Ubuntu
12.04). All GPU-based tests are carried out on the afore-
mentioned GTX680 and GTX690 graphics cards. GTX680
has a single GPU that contains 8 SMs (1,536 SPs and a
clock rate of 1.06 GHz) and 2 GB memory. GTX690 con-
sists of two GPUs, each of which contains 8 SMs (1,536
SPs and a clock rate of 1.02 GHz) and 2 GB memory. We
turned off the error correcting code on both graphics cards
and conducted all single-GPU evaluations on GTX680 as
well as all dual-GPU evaluations on GTX690. For all tests,
the wall clock times were used to compute the GCUPS
performance of all evaluated algorithms.
The CUDASW++ 3.0, CUDASW++ 2.0 and SWIPE al-

gorithms used the default scoring schemes due to their
runtime independence of scoring schemes. BLAST+ used
the scoring matrices BLOSUM62 (BL62) and BLOSUM50
(BL50), with the default gap open and extension penalties.
We used four CPU threads for the CUDASW++ 3.0,
SWIPE and BLAST+ algorithms, and used other parame-
ters “-b 0 -v 0” for SWIPE and “-num_alignment 0” for
BLAST+, respectively. CUDA toolkit 4.2 was used to
compile CUDASW++ 2.0 and CUDASW++ 3.0.

Evaluation on the Swiss-Prot database
We first compared the performance of all evaluated al-
gorithms by searching the 20 queries against the Swiss-
Prot database. Figure 4 illustrates the performance of all
evaluated algorithms for varying query lengths. For the
Swiss-Prot database, CUDASW++ 3.0 employs the dy-
namic scheduling approach for all queries. On GTX680
(GTX690), CUDASW++ 3.0 yields an average perform-
ance of 109.4 (169.7) GCUPS, with a maximum of 119.0
(185.6) GCUPS. Highest performance is realized by short
queries of lengths <400 due to the use of the query pro-
file variant. In addition, a sudden performance drop can
be observed as the curve moves to query length ≥400.
This is because our CUDA kernel switches to the use of
the query profile for longer queries, giving up the query
profile variant.
Both CUDASW++ 2.0 and SWIPE achieve nearly con-

stant performance for all queries. CUDASW++ 2.0 has an
average performance of 44.8 (77.9) GCUPS on GTX680
(GTX690), while SWIPE yields an average performance of
45.0 GCUPS using 4 threads. CUDASW++ 3.0 is superior
to both CUDASW++ 2.0 and SWIPE for every query, even
if only using a single GPU. CUDADSW++ 3.0 on GTX
680 (GTX690) runs on average 2.4× (2.2×) faster than
CUDASW++ 2.0 and 2.4 × (3.8×) faster than SWIPE, while
gaining a maximum speedup of 2.9 (3.2) over CUDASW++
2.0 and 3.2 (5.0) over SWIPE. BLAST+ shows performance
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fluctuations for different queries, especially in the case of
BL62. Furthermore, BLAST+ is runtime sensitive to the
scoring scheme used. It runs on average 3.4× faster using
BL62 than BL50. On GTX690, CUDASW++ 3.0 is always
superior to BLAST+ for each case, where the former
achieves an average speedup of 2.4 and 7.8 (and a max-
imum of 3.8 and 11.1) over the latter using BL62 and BL50,
respectively. On GTX680, CUDASW++ 3.0 outperforms
BLAST+ using BL50 for all queries, gaining an average
speedup of 5.1 and a maximum of 7.2. Compared to
BLAST+ using BL62, CUDASW++ 3.0 gains an average
speedup of 1.6 and a maximum of 2.4. However, our algo-
rithm has a lower performance for two queries with the fol-
lowing accession numbers: P08519 and Q7TMA5.

Evaluation on a simulated database
In addition, we have employed the aforementioned sim-
ulated database to compare all algorithms. On this data-
base, we can avoid the computation waste of CPU and
GPU SIMD instructions as all alignments in all lanes will
Figure 5 Performance comparisons on the simulated database.
be completed at the same time, and can also avoid the
computational imbalance between threads within a warp
and a thread block. Figure 5 shows the performance of
all evaluated algorithms on this simulated database.
Compared to the Swiss-Prot database, all evaluated algo-

rithms are able to improve their average performance. On
GTX680 (GTX690), CUDASW++ 3.0 achieves an average
performance of 118.0 (196.2) GCUPS and CUDASW++
2.0 of 55.2 (92.9) GCUPS. SWIPE improves its average
performance to 48.6 GCUPS and BLAST+ to 126.9 and
27.1 GCUPS using BL62 and BL50 respectively. Similar to
the Swiss-Prot database, CUDASW++ 2.0 and SWIPE
produce nearly constant performance over all queries,
while BLAST+ fluctuates. CUDASW++ 3.0 is still superior
to CUDASW++ 2.0, SWIPE and BLAST+ using BL50 in
each case. On GTX680 (GTX690), our algorithm gains an
average speedup of 2.1 (2.1) over CUDASW++ 2.0, 2.4
(4.0) over SWIPE and 4.6 (7.6) over BLAST+ using BL50.
Compared to BLAST+ using BL62, CUDASW++ 3.0 on
GTX690 is superior for all queries except for the largest
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one, for which BLAST+ has a performance burst of up to
254.2 GCUPS. On average, CUDASW++ 3.0 on GTX680
can be considered on par with BLAST+ using BL62, but
on GTX690 runs 1.7× faster.

Other evaluations
In addition to the performance based on hybrid CPU-
GPU parallelism, we have evaluated the performance of
GPU-only CUDASW++ 3.0 by disabling CPU threads. By
default, the GPU computation only supports subject se-
quences of lengths ≤3072 (as mentioned above) due to the
limited GPU device memory. Longer subject sequences
(>3072 residues) are distributed to the CPU. Hence, for
this evaluation we created a new sub-database by extrac-
ting all sequences of lengths ≤3072 from the Swiss-Prot
database. This new sub-database consists of 99.88% se-
quences and 98.41% amino acids of the original Swiss-
Prot database. Using this sub-database, CUDASW++ 2.0
will only conduct the inter-task parallelization stage be-
cause all sequence lengths are ≤3072. In addition, we have
Figure 7 Relative performance of CPU SIMD computation to GPU SIM
disabled Stage (iv), which re-computes the very few align-
ments with indicative overflows on CPUs.
Figure 6 shows the performance comparison between

GPU-only CUDASW++ 3.0 and CUDASW++ 2.0 on the
single-GPU GTX680. Due to the large sequence length
deviation of the sub-database, the dynamic scheduling
approach is automatically selected by CUDASW++ 3.0
for all queries. Similar to the case of using the original
Swiss-Prot database, we have also observed a perform-
ance drop because of the switch from the query profile
variant to the query profile. From the figure, GPU-only
CUDASW++ 3.0 is superior to the CUDASW++ 2.0 for
all queries, yielding an average speedup of 1.2 and a
maximum speedup of 1.6. In addition, CUDASW++ 3.0
realized an average performance of 68.3 GCUPS and a
maximum performance of 83.3 GCUPS, for all queries.
Finally, we have evaluated the relative performance of

CPU computation to GPU computation in Stage (ii), by
searching all queries against the Swiss-Prot database on
the GTX680. We have measured the runtimes of both the
D computation.
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CPU and GPU computation and then calculate their per-
formance from their respective workload and runtime.
Figure 7 shows the performance ratio of the CPU to CPU
computation in terms of runtime and GCUPS. From the
figure, we can see that the runtime ratios of the CPU to
GPU computation slightly fluctuate around 1.0 for all
queries. This reflects that our workload distribution be-
tween the CPU and GPU computation are well balanced.
In addition, for longer queries of lengths >400, the per-
formance ratio of the CPU to GPU computation has also
reached roughly stable values (about 1:2 on average).

Conclusions
In this paper, we have presented CUDASW++ 3.0, a faster
SW protein database search algorithm, which gains high
speed by coupling CPU and GPU SIMD instructions and
carrying out concurrent CPU and GPU computations.
For the first time, we have investigated a GPU SIMD
parallelization based on CUDA PTX SIMD video instruc-
tions. This parallelization enables us to gain more data
parallelism beyond the SIMT execution model on CUDA-
enabled GPUs. Performance evaluation reveals that our
algorithm gains significant speedups over three other
top-performing algorithms: CUDASW++ 2.0, SWIPE and
BLAST+. On the popular Swiss-Prot database, our algo-
rithm on GTX680 (GTX690) yields a speedup of up to 2.9
(3.2) over CUDASW++ 2.0, up to 3.2 (5.0) over SWIPE
using 4 threads, and up to 7.2 (11.1) over BLAST+ with
BL50 using 4 threads. With Hyper-Threading enabled, the
performance of both SWIPE and BLAST+ against the
Swiss-Prot database improves, albeit insignificantly. On
average, compared to the aforementioned performance
with 4 threads, the Hyper-Threading functionality can im-
prove the performance by 12.8% and 34.0% for SWIPE
and BLAST+ respectively, by using 8 threads. Despite
designed for the SW protein database search, our algo-
rithm has also presented a general computing framework
for heterogeneous computing with CUDA-enabled GPUs
and is expected to make contributions to other research
problems.
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