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Abstract

Stochastic Differential Equations (SDE) are often used to model the stochastic dynamics of biological systems.
Unfortunately, rare but biologically interesting behaviors (e.g., oncogenesis) can be difficult to observe in stochastic
models. Consequently, the analysis of behaviors of SDE models using numerical simulations can be challenging.
We introduce a method for solving the following problem: given a SDE model and a high-level behavioral
specification about the dynamics of the model, algorithmically decide whether the model satisfies the specification.
While there are a number of techniques for addressing this problem for discrete-state stochastic models, the
analysis of SDE and other continuous-state models has received less attention. Our proposed solution uses a
combination of Bayesian sequential hypothesis testing, non-identically distributed samples, and Girsanov’s theorem
for change of measures to examine rare behaviors. We use our algorithm to analyze two SDE models of tumor
dynamics. Our use of non-identically distributed samples sampling contributes to the state of the art in statistical
verification and model checking of stochastic models by providing an effective means for exposing rare events in
SDEs, while retaining the ability to compute bounds on the probability that those events occur.

Background
The dynamics of biological systems are largely driven by
stochastic processes and subject to random external per-
turbations. The consequences of such random processes
are often investigated through the development and ana-
lysis of stochastic models (e.g., [1-4]). Unfortunately, the
validation and analysis of stochastic models can be very
challenging [5,6], especially when the model is intended
to investigate rare, but biologically significant behaviors
(e.g., oncogenesis). The goal of this paper is to introduce
an algorithm for examining such rare behaviors in Sto-
chastic Differential Equation (SDE) models. The algo-
rithm takes as input the SDE model, M , and a high-

level description of a dynamical behavior, j (e.g., a for-
mula in temporal logic). It then computes a statistically
rigorous bound on the probability that the given model
exhibits the stated behavior using a combination of
biased sampling and Bayesian Statistical Model Check-
ing [7,8].
Existing methods for validating and analyzing stochas-

tic models often require extensive Monte Carlo sam-
pling of independent trajectories to verify that the
model is consistent with known data, and to character-
ize the model’s expected behavior under various initial
conditions. Sampling strategies are either unbiased or
biased. Unbiased sampling strategies draw trajectories
according to the probability distribution implied by the
model, and are thus not well-suited to investigating rare
behaviors. For example, if the actual probability that the
model will exhibit a given behavior is 10-10, then the
expected number of samples need to see such behaviors
is about 1010 (See Figure 1). Biased sampling strategies,
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in contrast, can be used to increase the probability of
observing rare events, at the expense of distorting the
underlying probability distribution/measure. If the
change of measure is well-characterized (as in impor-
tance sampling), these distortions can be corrected
when computing properties of the distribution.
Our method uses a combination of biased sampling

and sequential hypothesis testing [9,10] to estimate the
probability that the model satisfies the property. Briefly,
the algorithm randomly perturbs the computational
model prior to generating each sample in order to expose
rare but interesting behaviors. These perturbations cause
a change of measure. We note that in the context of
SDEs, a change of measure is itself a stochastic process
and so importance sampling, which assumes that the
change of measure with respect to the biased distribution
is known, cannot be used. Our technique does not
require us to know the exact magnitudes of the changes
of measure, nor the Radon-Nikodym derivatives [11].
Instead, it ensures that that the geometric average of
these derivatives is bounded. This is a much weaker
assumption than is required by importance sampling, but
we will show that it is sufficient for the purposes of
obtaining bounds via sequential hypothesis testing.

Related work
Our method performs statistical model checking using
hypothesis testing [12,13], which has been used pre-
viously to analyze in a variety of domains (e.g.,
[14-19,19]), including computational biology (e.g.,

[7,8,20-22]). There are two key differences between the
method in this paper and existing methods. First, exist-
ing methods generate independently and identically dis-
tributed (i.i.d.) samples. Our method, in contrast,
generates independent but non-identically distributed
(non-i.i.d.) samples. It does so to expose rare behaviors.
Second, whereas most existing methods for statistical
model checking use classical statistics, our method
employs Bayesian statistics [23,24]. We have previously
shown that Bayesian statistics confers advantages in the
context of statistical verification in terms of efficiency
and flexibility [7,8,19,25].

Methods
Our method draws on concepts from several different
fields. We begin by briefly surveying the semantics of
stochastic differential equations, a language for formally
specifying dynamic behaviors, Girsanov’s theorem on
change of measures, and results on consistency and con-
centration of Bayesian posteriors.

Stochastic differential equation models
A stochastic differential equation (SDE) [26,27] is a dif-
ferential equation in which some of the terms evolve
according to Brownian Motion [28]. A typical SDE is of
the following form:

dX = b(t, Xt)dt + v(t, Xt)dWt

where X is a system variable, b is a Riemann integr-
able function, v is an Itō integrable function, and W is

Figure 1 Observing rare behaviors in i.i.d. sampling is challenging. A toy model with a one low-probability state. An unbiased sampling
algorithm may require billions of samples in order to observe the ‘bad’ state. Statistical algorithms based on i.i.d. algorithms are not suitable for
analyzing such models with rare interesting behaviors.
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Brownian Motion. The Brownian Motion W is a contin-
uous-time stochastic process satisfying the following
three conditions:

1. W0 = 0
2. Wt is continuous (almost surely).
3. Wt has independent normally distributed
increments:

• Wt - Ws and Wt’ - Ws’ are independent if 0 ≤ s
<t <s’ <t’.
• Wt − Ws ∼ N (0, t − s) , where N (0, t − s)
denotes the normal distribution with mean 0 and
variance t - s. Note that the symbol ~ is used to
indicate “is distributed as“.

Consider the time between 0 and t as divided into m
discrete steps 0, t1, t2 ... tm = t. The solution to a sto-
chastic differential equation is the limit of the following
discrete difference equation, as m goes to infinity:

Xtk+1 − Xtk = b(tk, Xtk) (tk+1 − tk)

+ v(tk, Xtk)(Wtk+1 − Wtk)

In what follows, M will refer to a system of stochas-
tic differential equations. We note that a system of sto-
chastic differential equations comes equipped with an
inherent probability space and a natural probability
measure μ. Our algorithm repeatedly and randomly per-
turbs the probability measure of the Brownian motion
in the model M which, in turn, changes the underlying
measure in an effort to expose rare behaviors. These
changes can be characterized using Girsanov’s Theorem.
Girsanov’s theorem for perturbing stochastic differential
equation models
Given a process {θt | 0 ≤ t ≤ T} satisfying the Novikov
condition [29], such as an SDE, the following exponen-
tial martingale Zt defines the change from measure P to
new measure P̂ :

Zt = exp(−
∫ t

0
θudWu−

∫ t

0
θ2
u du/2)

Here, Zt is the Radon-Nikodym derivative of P̂ with
respect to P for t <T. The Brownian motion Ŵt under

P̂ is given by: Ŵt = Wt +
∫ t
0 θudu . The non-stochastic

component of the stochastic differential equation is not
affected by change of measures. Thus, a change of mea-
sure for SDEs is a stochastic process (unlike importance
sampling for explicit probability distributions).

Specifying dynamic behaviors
Next, we define a formalism for encoding high-level
behavioral specification that our algorithm will test
against M .

Definition 1 (Adapted Finitely Monitorable). Let s be
a finite-length trace from the stochastic differential
equation M . A specification j is said to be adapted
finitely monitorable (AFM) if it is possible to decide
whether s satisfies j, denoted j ⊨ j.
Certain AFM specifications can be expressed as for-

mulas in Bounded Linear Temporal Logic (BLTL)
[30-32]. Informally, BLTL formulas can capture the
ordering of events.
Definition 2 (Probabilistic Adapted Finitely Monitor-

able). A specification j is said to be probabilistic
adapted finitely monitorable (PAFM) if it is possible to
(deterministically or probabilistically) decide whether
M satisfies j with probability at least θ, denoted
M � P≥θ (φ) .
Some common examples of PAFM specifications

include Probabilistic Bounded Linear Temporal Logic
(PBLTL) (e.g., see [19]) and Continuous Specification
Logic. Note that temporal logic is only one means for
constructing specifications; other formalisms can also be
used, like Statecharts [33,34].
Semantics of bounded linear temporal logic (BLTL)
We define the semantics of BLTL with respect to the
paths of M . Let s = (s0, Δ0), (s1, Δ1),... be a sampled
execution of the model along states s0, s1,... with dura-
tions Δ0, Δ1, .. . Î ℝ. We denote the path starting at
state i by si (in particular, s0 denotes the original
execution s). The value of the state variable x in s at
the state i is denoted by V (s, i, x). The semantics of
BLTL is defined as follows:

1. sk ⊨ x ~ v if and only if V(s, k, x) ~ v, where v Î
ℝ and ~ Î {>, <, =}.
2. sk ⊨ j1 ∨j2 if and only if sk ⊨ j1 or sk ⊨ j2.
3. sk ⊨ j1 ∧ j2 if and only if sk ⊨ j1 and sk ⊨ j2;
4. sk ⊨ ¬j1 if and only if sk ⊨ j1 does not hold.
5. sk ⊨ j1U

tj2 if and only if there exists i Î N such
that: (a) 0 ≤ Σ0 ≤ l <iΔk+l≤ t; (b) sk+i⊨ j2; and (c) for
each 0 ≤ j < i, sk+j⊨ j1;

Statistical model validation
Our algorithm performs statistical model checking using
Bayesian sequential hypothesis testing [23] on non-i.i.d.
samples. The statistical model checking problem is to
decide whether a model M satisfies a probabilistic
adapted finitely monitorable formula j with probability
at least θ. That is, whether M � P≥θ (φ) where θ Î (0,
1).
Sequential hypothesis testing
Let r be the (unknown but fixed) probability of the
model satisfying j. We can now re-state the statistical
model checking problem as deciding between the two
composite hypotheses: H0 : r ≽ θ and H1 : r < θ. Here,
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the null hypothesis H0 indicates that M satisfies the
AFM formula j with probability at least θ, while the
alternate hypothesis H1 denotes that M satisfies the
AFM formula j with probability less than θ.
Definition 3 (Type I and II errors). A Type I error is

an error where the hypothesis test asserts that the null
hypothesis H0 is false, when in fact H0 is true. Conver-
sely, a Type II error is an error where the hypothesis
test asserts that the null hypothesis H0 is true, when in
fact H0 is false.
The basic idea behind any statistical model checking

algorithm based on sequential hypothesis testing is to
iteratively sample traces from the stochastic process.
Each trace is then evaluated with a trace verifier [32],
which determines whether the trace satisfies the specifi-
cation i.e. si ⊨ j. This is always feasible because the spe-
cifications used are adapted and finitely monitorable.
Two accumulators keep track of the total number of
traces sampled, and the number of satisfying traces,
respectively. The procedure continues until there is
enough information to reject either H0 or H1.
Bayesian sequential hypothesis testing
Recall that for any finite trace si of the system and an
Adapted Finitely Monitorable (AFM) formula j, we can
decide whether si satisfies j. Therefore, we can define a
random variable Xi denoting the outcome of si ⊨ j.
Thus, Xi is a Bernoulli random variable with probability
mass function f (xi|ρ) = ρxi(1 − ρ)1−xi , where xi = 1 if
and only if si ⊨q j, otherwise xi = 0.
Bayesian statistics requires that prior probability distri-

butions be specified for the unknown quantity, which is
r in our case. Thus we will model the unknown quan-
tity as a random variable u with prior density g(u). The
prior probability distribution is usually based on our
previous experiences and beliefs about the system. Non-
informative or objective prior probability distribution
[35] can be used when nothing is known about the
probability of the system satisfying the AFM formula.
Suppose we have a sequence of independent random

variables X1,..., Xn defined as above, and let d = (x1,...,
xn) denote a sample of those variables.
Definition 4. The Bayes factor B of sample d and

hypotheses H0 and H1 is B =
P(d|H0)
P(d|H1)

.

The Bayes factor may be used as a measure of relative
confidence in H0 vs. H1, as proposed by Jeffreys [36].
The Bayes factor is the ratio of two likelihoods:

B =

∫ 1
θ
f (x1|u) · · · f (xn|u) · g(u)du∫ θ

0 f (x1|u) · · · f (xn|u) · g(u)du
. (1)

We note that the Bayes factor depends on both the
data d and on the prior g, so it may be considered a

measure of confidence in H0 vs. H1 provided by the data
x1,..., xn, and “weighted” by the prior g.
Non-i.i.d. Bayesian sequential hypothesis testing
Traditional methods for hypothesis testing, including
those outlined in the previous two subsection*s, assume
that the samples are drawn i.i.d.. In this section* we show
that non-i.i.d. samples can also be used, provided that cer-
tain conditions hold. In particular, if one can bound the
change in measure associated with the non-identical sam-
pling, one can can also bound the Type I and Type II
errors under a change of measure. Our algorithm bounds
the change of measure, and thus the error.
We begin by reviewing some fundamental concepts

from Bayesian statistics including KL divergence, KL
support, affinity, and δ-separation, and then restate an
important result on the concentration of Bayesian pos-
teriors [35,37].
Definition 5 (Kullback-Leibler (KL) Divergence). Given

a parameterized family of probability distributions {fθ},
the Kullback-Leibler (KL) divergence K(θ0, θ) between
the distributions corresponding to two parameters θ and
θ0 is: K (θ0, θ) = Eθ0 [fθ /fθ0 ] . Note that Eθ0 is the expecta-
tion computed under the probability measure fθ0 .
Definition 6 (KL Neighborhood). Given a parameter-

ized family of probability distributions {fθ}, the KL
neighborhood Kε (θ0) of a parameter value θ0 is given by
the set {θ : K (θ0, θ) < ε}.
Definition 7 (KL Support). A point θ0 is said to be in

the KL support of a prior Π if and only if for all ε >0, Π
(Kε (θ0)) >0.
Definition 8 (Affinity). The affinity Aff(f, g) between

any two densities is defined as Aff(f , g) =
∫ √

fgdμ .
Definition 9 (Strong δ-Separation). Let A ⊂ [0, 1] and

δ >0. The set A and the point θ0 are said to be strongly
δ-separated if and only if for any proper probability dis-
tribution v on A, Aff(fθ0 ,

∫
A fθ(x1)v(dθ)) < δ .

Given these definitions, it can be shown that the Baye-
sian posterior concentrates exponentially under certain
technical conditions [35,37].
Bounding errors under a change of measure
Next, we develop the machinery needed to compute
bounds on the Type-I/Type-II errors for a testing strat-
egy based on non-i.i.d. samples.
A stochastic differential equation model M is natu-

rally associated with a probability measure μ. Our non-i.
i.d. sampling strategy can be thought of as the assign-
ment of a set of probability measures μ1, μ2,... to M .
Each unique sample si is associated with an implied
probability measure μi and is generated from M under
μi in an i.i.d. manner. Our proofs require that all the
implied probability measures are equivalent. That is, an
event is possible (resp. impossible) under a probability
measure if and only if it is possible (resp. impossible)
under the original probability measure μ.
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We use the following result regarding change of mea-
sures. Suppose a given behavior, say j, holds on the ori-
ginal model with an (unknown) probability r.

P(ρ < θ0|Xi) =

∫ θ0
0 pμ(Xi|u) g(u) du∫ 1
0 pμ(Xi|u) g(u) du

Here, Xi is a Bernoulli random variable denoting the
event that ith sample satisfies the given behavior j. Note
that the Xi s must be independent of one another. Now,
we can rewrite the above expression as:

P (ρ < θ0|Xi) =

∫ θ0
0

pμ(Xi|u)
pμi(Xi|u)pμi(Xi|u)g(u) du

∫ 1
0

pμ(Xi|u)
pμi(Xi|u)pμi(Xi|u)g(u) du

Note that the term pμi(Xi|u)denotes the probability of
observing the event Xi under the modified probability
measure μi if the unknown probability r were u. In
order to ensure the independence assumption, the new
probability measures μi are chosen independently of one
another. The ratio

pμi(Xi|u)
pμ(Xi|u) is the implied Radon-Niko-

dym derivative for the change of measure between two
equivalent probability measures. Suppose, the testing
strategy has made n observations X1, X2,... Xn. Then,

P (ρ < θ0|X) =

∫ θ0
0

n∏
i=1

pμ(Xi|u)
pμi(Xi|u)pμi(Xi|u) g(u) du

∫ 1
0

n∏
i=1

pμ(Xi|u)
pμi(Xi|u)pμi(Xi|u) g(u) du

A sampling algorithm can compute pμi(Xi|u) by
drawing independent samples from a stochastic differen-
tial equation model under the new “modified” probabil-
ity measure. We note that it is not easy to compute the
change of measure pμi (Xi|u)

pμ(Xi|u) algebraically or numerically.
However, our algorithm does not need to compute this
quantity explicitly. It simply establishes bounds on it.
Consider the following expression that is computable

without knowing the implied Radon-Nikodym derivative
or change of measure explicitly.

Q (ρ < θ0|Xi) =

∫ θ0
0 pμi(Xi|u) g(u) du∫ 1
0 pμi(Xi|u) g(u) du

Now, we can rewrite the above expression as:

Q (ρ < θ0|Xi) =

∫ θ0
0

pμi(Xi|u)
pμ(Xi|u) pμ(Xi|u) g(u) du

∫ 1
0

pμi(Xi|u)
pμ(Xi|u) pμ(Xi|u) g(u) du

Our result will exploit the fact that we do not allow
our testing or sampling procedures to have arbitrary
implied Radon-Nikodym derivatives. This is reasonable
as no statistical guarantees should be available for an
intelligently designed but adversarial test procedure that
(say) tries to avoid sampling from the given behavior.
Suppose that the implied Radon-Nikodym derivative
always lies between a constant c and another constant
1/c. That is, the change of measure does not distort the
probabilities of observable events by more than a factor
of c. Then, we observe that:

Q (ρ < θ0|Xi) ≤
∫ θ0
0 cpμ(Xi|u) g(u) du∫ 1
0

1
c
pμ(Xi|u) g(u) du

= c2P(ρ < θ0|Xi)

Furthermore,

Q (ρ < θ0|Xi) ≥ 1
c2
P (ρ < θ0|Xi).

Thus, by allowing the sampling algorithm to change
measures by at most c, we have changed the posterior
probability of observing a behavior by at most c2.
Example: Suppose, the testing strategy has made n

observations X1, X2,... Xn. Then,

Q (ρ < θ0|X) =

∫ θ0
0

n∏
i=1

pμi(Xi|u)
pμ(Xi|u) pμ(Xi|u) g(u) du

∫ 1
0

n∏
i=1

pμi(Xi|u)
pμ(Xi|u) pμ(Xi|u) g(u) du

≤

∫ θ0
0 cn

n∏
i=1

(pμ(Xi|u)) g(u) du
∫ 1
0

1
cn

n∏
i=1

(pμ(Xi|u)) g(u) du
= c2nP (ρ < θ0|X1, X2, . . .Xn)

Similarly,

Q (ρ < θ0|X) ≥ 1
c2n

∫ θ0
0

n∏
i=1

(pμ(Xi|u)) g(u) du
∫ 1
0

n∏
i=1

(pμ(Xi|u)) g(u) du

=
1
c2n

P (ρ < θ0|X1, . . .Xn)

Termination conditions for non-i.i.d. sampling
Traditional (i.e., i.i.d.) Bayesian Sequential Hypothesis
Testing is guaranteed to terminate. That is, only a finite
number of samples are required before the test selects
one of the hypotheses. We now consider the conditions
under which a Bayesian Sequential Hypothesis Testing
based procedure using non-i.i.d. samples will terminate.
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To do this, we first need to show that the posterior
probability distribution will concentrate on a particular
value as we see more an more samples from the model.
To consider the conditions under which our algorithm

will terminate after observing n samples, note that the
factor introduced due to the change of measure c2n can
outweigh the gain made by the concentration of the
probability measure e-nb. This is not surprising because
our construction thus far does not force the test not to
bias against a sample in an intelligent way. That is, a
maliciously designed testing procedure could simply
avoid the error prone regions of the design. To address
this, we define the notion of a fair testing strategy that
does not engage in such malicious sampling.
Definition 10. A testing strategy is h-fair (h ≥ 1) if

and only if the geometric average of the implied Radon-
Nikodym derivatives over a number of samples is within
a constant factor h of unity, i.e.,

1
η

≤ n

√√√√ n∏
i=1

pμi(Xi|u)
pμ(Xi|u) ≤ η

Note that a fair test strategy does not need to sample
from the underlying distribution in an i.i.d. manner.
However, it must guarantee that the probability of
observing the given behavior in a large number of
observations is not altered substantially by the non-i.i.d.
sampling. Intuitively, we want to make sure that we bias
for each sample as many times as we bias against it.
Our main result shows that such a long term neutrality
is sufficient to generate statistical guarantees on an
otherwise non-i.i.d. testing procedure.
Definition 11. An h-fair test is said to be eventually

fair if and only if 1 ≤ h4 <eb, where b is the constant in
the exponential posterior concentration theorem.
The notion of a eventually fair test corresponds to a

testing strategy that is not malicious or adversarial, and
is making an honest attempt to sample from all the
events in the long run.

Algorithm
Finally, we present our Statistical Verification algo-
rithm (See Figure 2) in terms of a generic non-i.i.d.
testing procedure sampling with random “implied”
change of measures. Our algorithm is relatively simple
and generalizes our previous Bayesian Statistical verifi-
cation algorithm [8] to non-i.i.d. samples using change
of measures. The algorithm draws non-i.i.d. samples
from the stochastic differential equation under ran-
domly chosen probability measures. The algorithm
ensures that the implied change of measure is bounded
so as to make the testing approach fair. The variable n
denotes the number of samples obtained so far and x

denoted the number of samples that satisfy the AFM
specification j. Based upon the samples observed, we
compute the Bayes Factor under the new probability
measures. We know that the Bayes Factor so computed
is within a factor of the original Bayes Factor under
the natural probability measure. Hence, the algorithm
divides the Bayes Factor by the factor h2n if the Bayes
Factor is larger than one. If the Bayes Factor is less
than one, the algorithm multiplies the Bayes Factor by
the factor h2n.

Results and discussion
We applied our algorithm to two SDE models of tumor
dynamics from the literature. The first model is a single
dimensional stochastic differential equation for the
influence of chemotherapy on cancer cells, and the sec-
ond model is a pair of SDEs that describe an immuno-
genic tumor.

Lefever and Garay model
Lefever and Garay [38] studied the growth of tumors
under immune surveillance and chemotherapy using the
following stochastic differential equation:

dx
dt

= r0x (1 − x
K
) − βx2

1 + x2
+ x(1 − x

K
) A0cos (ωt)

+ x (1 − x
K
)Wt

Here, x is the amount of tumor cells, A0cos(ωt)
denotes the influence of a periodic chemotherapy treat-
ment, r0 is the linear per capita birth rate of cancer
cells, K is the carrying capacity of the environment, and
b represents the influence of the immune cells. Note
that Wt is the standard Brownian Motion, and default
model parameters were those used in [38]..
We demonstrate our algorithm on a simple property

of the model. Namely, starting with a tumor consisting
of a billion cells, is there at least a 1% chance that the
tumor could increase to one hundred billion cells under
under immune surveillance and chemotherapy. The fol-
lowing BLTL specification captures the behavioral speci-
fication:

Pr≥0.01(F10(x> 1011))

Figure 3 contrasts the number of samples needed to
decide whether the model satisfies the property using i.i.
d. and non-i.i.d.. As expected, the number of samples
required increases linearly in the logarithm of the Bayes
factor regardless of whether i.i.d. or non-i.i.d. sampling
is used. However, non-i.i.d. sampling always requires
fewer samples than i.i.d. sampling. Moreover, the differ-
ence between the number of samples increases with the
Bayes factor. That is, the lines are diverging.
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Figure 2 Non-i.i.d. Statistical Verification Algorithm. The figure illustrated the non-i.i.d. Bayesian model validation algorithm. The algorithm
builds upon Girsanov’s theorem on change of measure and Bayesian model validation.

Figure 3 Comparison of i.i.d. and non-i.i.d. sampling. Non-i.i.d. vs i.i.d. sampling based verification for the Lefever and Garay model.
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We note that there are circumstances when our algo-
rithm may require more samples than one based on i.i.
d. sampling. This will happen when the property being
tested has relatively high probability. For example, we
tested the property that the probability of eradicating
the tumor is at most 1%. The i.i.d. algorithm required
1374 samples to deny this possibility while the non-i.i.d.
algorithm required 1526 samples. Thus, our algorithm is
best used to examine rare behaviors.

Nonlinear immunogenic tumor model
The second model we analyze studies immunogenic
tumor growth [39,40]. Unlike the previous model, the
immunogenic tumor model explicitly tracks the
dynamics of the immune cells (variable x) in response to
the tumor cells (variable y). The SDEs are as follows:

dx(t) = (a1 − a2x (t) + a3x (t)y(t)) dt
+ (b11(x(t) − x1) + b12(y(t) − y1)) dW1(t)

dy(t) = (b1y(t) (1 − b2y(t)) − x(t)y(t)) dt
+ (b21(x(t) − x1) + b22(y(t) − y1)) dW2(t)

The parameters x1 an y1 denote the stochastic equili-
brium point of the model. Briefly, the model assumes
that the amount of noise increases with the distance to
the equilibrium point.

For this model, we considered the following property:
starting from 0.1 units each of tumor and immune cells,
is there at least a 1% chance that the number of tumor
cells could increase to 3.3 units. The property can be
encoded into the following BLTL specification:

Pr≥0.01(F10(x > 3.3))

Default model parameters were those used in [39]. Fig-
ure 4 contrasts the number of samples needed to decide
whether the model satisfies the property using i.i.d. and
non-i.i.d.. The same trends are observed as in the pre-
vious model. That is, our algorithm requires fewer sam-
ples than i.i.d. hypothesis testing, and that the difference
between these methods increases with the Bayes factor.
We also considered the property that the number of

tumor cells increases to 4.0 units. We evaluated whether
this property is true with probability at least 0.000005
under a Bayes Factor of 100, 000. The i.i.d. sampling
algorithm did not produce an answer even after obser-
ving 10, 000 samples. The non-i.i.d. model validation
algorithm answered affirmatively after observing 6, 736
samples. Once again, the real impact of the proposed
algorithm lies in uncovering rare behaviors and bound-
ing their probability of occurrence.

Figure 4 Comparison of i.i.d. and non-i.i.d. sampling. Non-i.i.d. vs i.i.d. Sampling based verification for the nonlinear Immunogenic tumor
model.
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Discussion
Our results confirm that non-i.i.d. sampling reduces the
number of samples required in the context of hypothesis
testing – when the property under consideration is rare.
Moreover, the benefits of non-i.i.d. sampling increase
with the rarity of the property, as confirmed by the
divergence of the lines in Figures 2 and 3. We note,
however, that if the property isn’t rare then a non-i.i.d.
sampling strategy will actually require a larger number
of samples than an i.i.d. strategy. Thus, our algorithm is
only appropriate for investigating rare behaviors.

Conclusions
We have introduced the first algorithm for verifying
properties of stochastic differential equations using
sequential hypothesis testing. Our technique combines
Bayesian statistical model checking and non-i.i.d. sam-
pling and provides guarantees in terms of termination,
and the number of samples needed to achieve those
bounds. The method is most suitable when the behavior
of interest is the exception and not the norm.
The present paper only considers SDEs with indepen-

dent Brownian noise. We believe that these results can
be extended to handle SDEs with certain kinds of corre-
lated noise. Another interesting direction for future
work is the extension of these method to stochastic par-
tial differential equations, which are used to model spa-
tially inhomogeneous processes. Such analysis methods
could be used, for example, to investigate properties
concerning spatial properties of tumors, the propagation
of electrical waves in cardiac tissue, or more generally,
to the diffusion processes observed in nature.
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