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Abstract

Background: Calculating the electrostatic surface potential (ESP) of a biomolecule is critical towards understanding
biomolecular function. Because of its quadratic computational complexity (as a function of the number of atoms in
a molecule), there have been continual efforts to reduce its complexity either by improving the algorithm or the
underlying hardware on which the calculations are performed.

Results: We present the combined effect of (i) a multi-scale approximation algorithm, known as hierarchical charge
partitioning (HCP), when applied to the calculation of ESP and (ii) its mapping onto a graphics processing unit
(GPU). To date, most molecular modeling algorithms perform an artificial partitioning of biomolecules into a grid/
lattice on the GPU. In contrast, HCP takes advantage of the natural partitioning in biomolecules, which in turn,
better facilitates its mapping onto the GPU. Specifically, we characterize the effect of known GPU optimization
techniques like use of shared memory. In addition, we demonstrate how the cost of divergent branching on a
GPU can be amortized across algorithms like HCP in order to deliver a massive performance boon.

Conclusions: We accelerated the calculation of ESP by 25-fold solely by parallelization on the GPU. Combining
GPU and HCP, resulted in a speedup of at most 1,860-fold for our largest molecular structure. The baseline for
these speedups is an implementation that has been hand-tuned SSE-optimized and parallelized across 16 cores on
the CPU. The use of GPU does not deteriorate the accuracy of our results.

Background
Electrostatic interactions in a molecule are of utmost
importance for analyzing its structure [1-3] as well as
functional activities like ligand binding [4], complex for-
mation [5] and proton transport [6]. The calculation of
electrostatic interactions continues to be a computa-
tional bottleneck primarily because they are long-range
by nature of the 1

r potential [7]. As a consequence, effi-
cient approximation algorithms have been developed to
reduce this computational complexity (e.g., the spherical
cut-off method [8], the particle mesh Ewald (PME)
method [9], the fast multipole method [10] and the

hierarchical charge partitioning (HCP) [11]). The
approximation algorithms can be parallelized on increas-
ingly ubiquitous multi- and many-core architectures to
deliver even greater performance benefits.
Widespread adoption of general-purpose graphics pro-

cessing units (GPUs) has made them popular as accel-
erators for parallel programs [12]. The increased
popularity has been assisted by (i) phenomenal comput-
ing power, (ii) superior performance/dollar ratio, and
(iii) compelling performance/watt ratio. For example, an
8-GPU cluster, costing a few thousand dollars, can
simulate 52 ns/day of the JAC Benchmark as compared
to 46 ns/day on the Kraken supercomputer, housed at
Oak Ridge National Lab and which costs millions of
dollars [13]. The emergence of GPUs as an attractive
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high-performance computing platform is also evident
from the fact that three out of the top five fastest super-
computers on the Top500 list employ GPUs [14].
Although the use of approximation algorithms can

improve performance, they often lead to an increase in
the memory boundedness of the application. Achieving
optimum performance with a memory-bound applica-
tion is challenging due to the ‘memory wall’ [15]. The
effect of the memory wall is more severe on GPUs
because of the extremely high latency for global memory
accesses (on the order of 600 - 800 cycles). Furthermore,
for maximum performance on the GPU, execution paths
on each GPU computational unit need to be synchro-
nized. However, an important class of approximation
algorithms, i.e., multi-scale approximations result in
highly asynchronous execution paths due to the intro-
duction of a large number divergent branches, which
depend upon the relative distances between interacting
atoms.
To test these expectations, we present a hybrid

approach wherein we implement the robust multi-scale
HCP approximation algorithm in a molecular modeling
application called GEM [7] and map it onto a GPU. We
counteract the high memory boundedness of HCP by
explicitly managing the data movement, in a way that
helps us achieve significantly improved performance. In
addition, we employ the standard GPU optimization
techniques, such as coalesced memory accesses and the
use of shared memory, quantifying the effectiveness of
each optimization in our application. HCP results in
supreme performance on the GPU despite the introduc-
tion of divergent branches. This is attributed to the
reduction in memory transactions that compensates for
divergent branching.
Recently, several molecular modeling applications have

used the GPU to speed-up electrostatic computations.
Rodrigues et al. [16] and Stone et al. [17] demonstrate
that the estimation of electrostatic interactions can be
accelerated by the use of spherical cut-off method and
the GPU. In [18], Hardy et al. used a multi-scale summa-
tion method on the GPU. Each of the aforementioned
implementations artificially maps the n atoms of a mole-
cule onto a m-point lattice grid and then applies their
respective approximation algorithm. By doing so, they
reduce the time complexity of the computation from O
(nn) to O(nm). In contrast, we use HCP, which performs
approximations based on the natural partitioning of bio-
molecules. The advantage of using the natural partition-
ing is that even with the movement of atoms during
molecular dynamics simulations, the hierarchical nature
is preserved, whereas with the lattice, atoms may move in
and out of the lattice during the simulation. Our imple-
mentation realizes a maximum of 1,860-fold speedup
over a hand-tuned SSE optimized implementation on a

modern 16-core CPU, without any loss in the accuracy of
the results.

Methods
Electrostatics and the hierarchical charge partitioning
approximation
We use the Analytic Linearized Poisson-Boltzmann
(ALPB) model to perform electrostatic computations
[19]. Equation (1) computes the electrostatic potential at
a surface-point (vertex) of the molecule due to a single
point charge, q. The potential at each vertex can be
computed as the summation of potentials due to all
charges in the system. If there are P vertices, the total
surface potential can then be found as the summation
of potential at each vertex.
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Computing the potential at P vertices results in a time
complexity of O(NP) where N is the number of atoms
in the molecule. To reduce the time complexity, we
apply an approximation algorithm called hierarchical
charge partitioning (HCP), which reduces the upper
bound of computation to O(P log N).
HCP [11] exploits the natural partitioning of biomole-

cules into constituent structural components in order to
speed-up the computation of electrostatic interactions
with limited and controllable impact on accuracy. Biomo-
lecules can be systematically partitioned into multiple
molecular complexes, which consist of multiple polymer
chains or subunits and which in turn are made up of
multiple amino acid or nucleotide groups, as illustrated in
Figure 1. Atoms represent the lowest level in the hierar-
chy while the highest level depends on the problem.
Briefly, HCP works as follows. The charge distribution of
components, other than at the atomic level, is approxi-
mated by a small set of point charges. The electrostatic
effect of distant components is calculated using the smal-
ler set of point charges, while the full set of atomic
charges is used for computing electrostatic interactions
within nearby components. The distribution of charges
for each component, used in the computation, varies
depending on distance from the point in question: the
farther away the component, the fewer charges are used
to represent the component. The actual speedup from
using HCP depends on the specific hierarchical organiza-
tion of the biomolecular structure as that would govern
the number of memory accesses, computations and
divergent branches on the GPU. Under conditions con-
sistent with the hierarchical organization of realistic bio-
molecular structures, the top-down HCP algorithm
(Figure 2) scales as O(N log N), where N is the number of
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atoms in the structure. For large structures, the HCP can
be several orders of magnitude faster than the exact O
(N2) all-atom computation. A detailed description of the
HCP algorithm can be found in Anandakrishnan et. al.
[11].

GPU architecture and programming interface
For this study, we have used state-of-art NVIDIA GPUs
based on the Compute Unified Device Architecture or
CUDA framework. CUDA is a framework developed by
NVIDIA, which facilitates the implementation of gen-
eral-purpose applications on GPUs. Below is a brief
description of the NVIDIA GPU hardware architecture
and the CUDA programming interface.
NVIDIA GPUs consist of 240-512 execution units,

which are grouped into 16 and 30 streaming multipro-
cessors (SMs) on Fermi and GT200 architectures,
respectively. An overview of these architectures is
shown in Figure 3. Multiple threads on a GPU execute
the same instruction, resulting in a single instruction,
multiple thread (SIMT) architecture. This is what makes

GPU very suitable for applications that exhibit data par-
allelism, i.e., the operation on one data element is inde-
pendent of the operations on other data elements.
Therefore, it is well suited for molecular modeling
where the potential at one vertex can be computed
independently of all others.
On NVIDIA GPUs, threads are organized into groups

of 32, referred to as a warp. When threads within a
warp follow different execution paths, such as when
encountering a conditional, a divergent branch takes
place. Execution of these group of threads is serialized,
thereby, affecting performance. On a GPU, computa-
tions are much faster compared to a typical CPU, but
memory accesses and divergent branching instructions
are slower. The effect of slower memory access and
divergent branching can be mitigated by initiating thou-
sands of threads on a GPU, such that when one of the
threads is waiting on a memory access, other threads
can perform meaningful computations.
Every GPU operates in a memory space known as glo-

bal memory. Data which needs to be operated on by the

Figure 1 Illustration of the hierarchical charge partitioning (HCP) of biomolecular structures. In this illustration a biomolecular structure is
partitioned into multiple hierarchical levels components based on the natural organization of biomolecules. The charge distribution of distant
components are approximated by a small number of charges, while nearby atoms are treated exactly.
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GPU, needs to be first transferred to the GPU. This pro-
cess of transferring data to GPU memory is performed
over the PCI-e bus, making it an extremely slow pro-
cess. Therefore, memory transfers should be kept to a
minimum to obtain optimum performance. Also, acces-
sing data from the GPU global memory entails the cost
of 400-600 cycles and hence, on-chip memory should be
used to reduce global memory traffic. On the GT200
architecture, each SM contains a high-speed, 16 KB,
scratch-pad memory, known as the shared memory.
Shared memory enables extensive re-use of data,
thereby, reducing off-chip traffic. Whereas on the latest
Fermi architecture, each SM contains 64 KB of on-chip
memory, which can be either be configured as 16 KB of
shared memory and 48 KB of L1 cache or vice versa.
Each SM also consists of a L2 cache of size 128 KB. The
hierarchy of caches on the Fermi architecture allows for
more efficient global memory access patterns.
CUDA provides a C/C++ language extension with

application programming interfaces (APIs). A CUDA
program is executed by a kernel, which is effectively a
function call to the GPU, launched from the CPU.
CUDA logically arranges the threads into blocks which
are in turn grouped into a grid. Each thread has its own
ID which provides for one-one mapping. Each block of

threads is executed on a SM and share data using the
shared memory present.

Mapping HCP onto GPU
The problem of computing molecular surface potential
is inherently data parallel in nature, i.e., the potential at
one point on the surface can be computed indepen-
dently from the computation of potential at some other
point. This works to our advantage as such applications
map very well onto the GPU. We begin with offloading
all the necessary data (coordinates of vertices and atoms
and the approximated point charges) to the GPU global
memory. To ensure efficient global memory accesses
patterns, we flattened the data structures. By flattening
of data structures we mean that all the arrays of struc-
tures were transformed into arrays of primitives so that
the threads in a half warp (16 threads) access data from
contiguous memory locations [20,21]. The GPU kernel
is then executed, wherein each thread is assigned the
task of computing the electrostatic potential at one ver-
tex. At this point the required amount of shared mem-
ory, i.e, number of threads in a block times the size of
the coordinates of each vertex, is allocated on each
streaming multiprocessor (SM) of the GPU. The kernel
is launched multiple times as required, until all the ver-

Figure 2 Illustration of the HCP multi-scale algorithm. Predefined threshold distances (h1, h2, h3) are used to determine the level of
approximation used in the HCP approximation. This top-down algorithm results in ~ NLogN scaling compared to a ~ N2 scaling without HCP.
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tices are exhausted, with implicit GPU synchronization
in between successive kernel launches. On the GPU
side, each kernel thread copies the coordinates of its
assigned vertex onto the shared memory. This results in
a reduction of the number of global memory loads as
explained in the Results section. The limited amount of
per SM shared memory does not allow us to offload the
coordinates of constituent components of the biomole-
cule and hence, coordinates of complexes, strands,

residues, and atoms have to remain in global memory.
The HCP algorithm is then applied to compute the elec-
trostatic potential, and the result is stored in the global
memory. All the threads perform this computation in
parallel, and after the threads finish, the computed
potential at each vertex is transferred back to the CPU
memory, where a reduce (sum) operation is performed
to calculate the total molecular surface potential.
According to the algorithm, evaluation of distance

Figure 3 Overview of NVIDIA GPU architectures. The Fermi architecture is shown to consist of 16 Streaming Multiprocessors (SMs). Each SM
consists of 64 KB of on-chip memory, which can configured as 16 KB of shared memory and 48 KB of L1 data cache or vice versa. Also present
on each SM is 128 KB of L2 data cache. The GDDR5 memory controllers facilitate data accesses to and from the global memory. The GT200
architecture consists of 30 SMs. Each SM consists of 16 KB of shared memory but no data caches, instead it contains L1/L2 texture memory
space. Also present are GDDR3 memory controllers to facilitate global memory accesses.
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between the vertex and molecular components requires
each thread to accesses coordinates from the global
memory. This implies that potential calculation at each
vertex necessitates multiple global memory accesses,
which makes HCP memory-bound on the GPU.
HCP also introduces a significant number of divergent

branches on the GPU. This phenomenon occurs because
for some threads in a warp, it may be possible to apply
HCP approximation while for other, it may not be pos-
sible to do so. Therefore, these two groups of threads
would diverge and follow respective paths, resulting in a
divergent branch. In the Results section, we show how
the associated costs of divergent branching in HCP on
the GPU can be amortized to deliver a performance
boost.

Test setup
To illustrate the scalability of our application, we have
used four different structures with varied sizes. The
characteristics of the structures used are presented in
Table 1. The GPU implementation was tested on the
present generation of NVIDIA GPUs.
The Host Machine consists of an E8200 Intel Quad

core running at 2.33 GHz with 4 GB DDR2 SDRAM.
The operating system on the host is a 64-bit version of
Ubuntu 9.04 distribution running the 2.6.28-16 generic
Linux kernel. Programming and access to the GPU was
provided by CUDA 3.1 toolkit and SDK with the NVI-
DIA driver version 256.40. For the sake of accuracy of
results, all the processes that required a graphical user
interface were disabled to limit resource sharing of the
GPU.
We ran our tests on a NVIDIA Tesla C1060 graphics

card with GT200 GPU and the NVIDIA Fermi Tesla
C2050 graphics card. An overview of both of these
GPUs is presented in Table 2.

Results and discussion
In this section, we present an analysis of (i) the impact
of using shared memory, (ii) the impact of divergent
branching, (iii) the speedups realized by our implemen-
tation, and (iv) the accuracy of our results. On CPU, the
timing information was gathered by placing required
time-checking calls around the computational kernel,
excluding the I/O required for writing the results. On
GPU, the execution time was measured by using the

CUDAEventRecord function call. For a fair comparison,
time for offloading the data onto the GPU global mem-
ory and storing the results back onto the CPU was
taken into account along with the time for execution of
the kernel. Single precision was used on both platforms.
All the numbers presented are an average of 10 runs
performed on each platform. For HCP, the 1st-level
threshold was set to 10Å and the 2nd-level threshold
was fixed at 70Å.

Impact of using shared memory
At every approximation level, HCP reuses the vertex
coordinates to compute the distance between the vertex
and molecule components. Therefore in the worst case
when no approximation can be applied, same data is
accessed four times from the global memory (due to
four levels in the molecule hierarchy). We used the
shared memory to reduce these global memory accesses.
Percentage reduction in the number of global memory
loads due to the use of shared memory on GT200 archi-
tecture, with and without HCP approximation, is shown
in Table 3. The base line for each of these columns is
the respective implementation, i.e., without_HCP and
HCP, without the use of shared memory. These num-
bers were taken from the CUDA Visual Profiler pro-
vided by NVIDIA [22].
From the table, we note that the global memory loads

are reduced by 50% for all structures, when the HCP
approximation is not used. Whereas with HCP, the
amount by which loads are reduced varies from struc-
ture to structure. This can be reasoned as follows.
When no approximation is applied, the coordinates of
vertices and that of all atoms are accessed from global
memory, which requires cycling through the residue
groups. Therefore when shared memory is not used, the
vertex coordinate is loaded twice, once for residue and
once for the atom. While when shared memory is used,
it is loaded only once, i.e., for copying into the shared
memory, thereby, resulting in a 50% reduction in global
memory loads.
But in the case of HCP, the number of times a vertex

coordinate is loaded from global memory depends upon
the structure. This is because for each structure the
effective number of computations to be performed are
different. For example, for a structure with 1st level of
approximation and no shared memory usage, vertex

Table 1 Characteristics of input structures

Structure #Vertices #Complexes #Strands #Residues #Atoms

H helix myoglobin, 1MBO 5,884 1 1 24 382

nuclesome core particle, 1KX5 258,797 1 10 1,268 25,086

chaperonin GroEL, 2EU1 898,584 1 14 7,336 109,802

virus capsid, 1A6C 593,615 1 60 30,780 476,040
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coordinates would be loaded three times from the global
memory - (i) to compute the distance to the complex,
(ii) to compute the distance to the strand and (iii) finally
to compute the distance to the residue. While with
shared memory it would be accessed just once. Simi-
larly, for a structure with no approximation, the vertex
would be accessed four times, without using shared
memory. Therefore, the table suggests that least number
of components could be approximated for the virus cap-
sid, and hence, maximum percentage reduction.
Use of the shared memory resulted in a drastic reduc-

tion in the number of global loads and hence, provided
about 2.7-fold speedup to our application.

Impact of divergent branching
Divergent branching on a GPU occurs when the threads
of a warp follow different execution paths. In our GPU
implementation, each thread takes charge of one vertex
and as shown in Figure 4, it is possible for threads
within a warp to follow different execution paths,
thereby, introducing a divergent branch. Here we quan-
tify the cost of divergent branches that are introduced.
For the ease of exposition, we limited our analysis to
one level of HCP only, but this can be extended. As the
execution paths are now serialized, the time taken for
the execution of a divergent branch, denoted by tdiv-
Branch can be characterized as follows:

tdivBranch = t1 + t2 (2)

where ti denotes time taken for execution path i, as
shown in Figure 4. From the figure, it can be noted that
both execution paths perform the similar task of calcu-
lating the potential. Path#1 calls the function, calcPo-
tential () just once while for Path#2,
calcPotential () is called from within a loop that
iterates over all atoms of that residue. Hence, it can be
inferred that time for divergent branches is directly pro-
portional to the number of atoms in the molecule.

t2
∴ tdivBranch

∴ tdivBranch

�
≈
≈
∝

t1
t2
#Atoms × TcalcPotential
#Atoms

(3)

Thus, Total time for all the divergent branches in the
system:

TdivBranch = #DivBranches × tdivBranch
∴ TdivBranch ∝ #Atoms

(4)

From (4), we can say that the cost of divergent
branches would be maximum for the molecule which
has the greatest #atoms but this is not true as can be
seen from Figure 5. In the figure, we present the speed-
ups achieved due to HCP on CPU as well as the GPUs
with #atoms increasing from left to right. As all the
speedups are positive, we can safely infer that GPU is
indeed beneficial for HCP despite the introduction of
divergent branches. We also note that speedup achieved
due to HCP on GPUs, increases with the increase in
#atoms in the structure, thus, dissatisfying (4). Hence,
there exists an aspect which compensates for the cost of
introduction of divergent branches. As HCP is a mem-
ory-bound application, number of memory transactions
dominate the execution time. Looking back at the algo-
rithm (in the Methods section), we observe that HCP
does reduce the number of memory transactions. It
does so by applying the approximation, which results in
reduced fetching of coordinates from the global

Table 2 Overview of GPUs used

GPU Tesla C1060 Fermi Tesla C2050

Streaming Processor Cores 240 448

Streaming Multiprocessors (SMs) 30 16

Memory Bus type GDDR3 GDDR5

Device Memory size 4096 MB 3072 MB

Shared Memory (per SM) 16 KB Configurable 48 KB or 16 KB

L1 Cache (per SM) None Configurable 16KB or 48 KB

L2 Cache None 768 KB

Double Precision Floating Point Capability 30 FMA ops/clock 256 FMA ops/clock

Single Precision Floating Point Capability 240 FMA ops/clock 512 FMA ops/clock

Special Function Units (per SM) 2 4

Compute Capability 1.3 2.0

Table 3 Percentage reduction in the number of global
memory loads

Structure Without HCP With HCP

H Helix myoglobin 50% 32%

nucleosome core paricle 50% 62%

chaperonin GroEL 50% 84%

virus capsid 50% 96%
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memory. Now, coordinates of only the higher level com-
ponent are required and hence, compensating for the
cost of divergent branches. Execution time for the entire
application with HCP can be derived as follows:

TWith HCP

where TMem

= TWithout HCPTMem + TdivBranch
= global memory access time

(5)

HCP would guarantee improved performance on the
GPU if the gain in time due to reduced memory trans-
actions is greater than the cost of divergent branches.
However, computing memory access times on the GPU
is an extremely difficult task as one has no knowledge
of how warps are scheduled, which is essential as the
warps send access requests to memory controllers.

Figure 4 Divergent branching due to the HCP approximation. This illustration shows that our GPU implementation causes divergent
branches to occur. This is because for every thread, there are probable execution paths. Divergent branches occur if threads within a warp take
different paths.

Figure 5 Speedup due to the HCP approximation. Even with the occurrence of divergent branches, speedup due to the HCP approximation
is positive on the GPU. This alludes to the fact there is some aspect with amortizes the cost of the introduction of these divergent branches.
Speedup is maximum for the largest structure, i.e., virus capsid. Baseline: Corresponding implementation on each platform without the use of
HCP approximation.
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Hence, no direct method to measure global memory
access times exists. We used an indirect approach and
found out the reduction in memory transactions as well
as the increase in divergent branches for our application.
These numbers have been taken using from the CUDA
Visual Profiler provided by NVIDIA and are presented
in Table 4 [22]. The memory transactions in the table
portray the sum of 32-, 64- and 128-byte load and store
transactions per SM. Also, the number of divergent
branches represent the divergent branches introduced
on one SM. From the table, it is seen that the reduction
in memory transactions is orders of magnitude greater
than the increase in divergent branches. From the table,
we note that the number of memory transactions
reduced per one divergent branch is maximum for the
capsid, which results in the fact that HCP+GPU is most
effective for capsid. Figures 6 and 7 corroborate this fact
and hence, we can attest that it is the reduction in
memory transactions which help make GPUs favorable
for HCP. This proves that even an algorithm with diver-
gent branching can be benefited by the GPU, provided
there is some aspect which amortizes the cost of the
divergent branches introduced.

Speedup
Figures 6 and 7 present speedups achieved by our
implementation on NVIDIA Tesla C1060 and NVIDIA
Fermi Tesla C2050 GPUs respectively. Both the figures
present speedup over the CPU implementation opti-
mized by hand-tuned SSE Intrinsics and parallelized
across 16 cores, without the use of any approximation
algorithm. Speedups achieved due to the use of GPU
alone as well as that due to the combination of GPU
and HCP are presented for all four structures.
From both these figures, we note that speedup due to

the GPU alone is almost constant for all three structures
barring Mb.Hhelix. This is because Mb.Hhelix is an
extremely small structure and it does not requires
enough GPU threads for the computation of its molecu-
lar surface potential, thereby, leaving the GPU under
utilized. This phenomenon is prominent in case of the
Fermi Tesla C2050 which actually results in a slowdown
due to under-utilization of the GPU. For other struc-
tures the threshold of the number of threads is met and
almost similar speedup is achieved across both the fig-
ures. The observed speedup is around 11-fold on Tesla
C1060, whereas on Tesla C2050 the speedup is around

Table 4 Impact of the HCP approximation on memory transactions and divergent branches

Structure Decrease in # of mem. Transactions Increase in # of divergent branches

H Helix myoglobin 95,800 34

nucleosome core particle 119,507,436 4,635

chaperonin GroEL 1,831,793,578 25,730

virus capsid 5,321,785,506 22,651

Figure 6 Speedup on NVIDIA Tesla C1060. Speedup due the GPU alone is almost constant because once the threshold for the number of
threads that can be launched is met, there is no further increase in speedup. Speedup due to HCP+GPU increases with the increase in the size
of the structure due to the O(nlogn) scaling of the HCP approximation. Baseline: No-approximation CPU implementation optimized by hand-
tuned SSE Intrinsics and parallelized across 16 cores.
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25-fold. The increased speedup on C2050 may be attrib-
uted to several architectural differences between Fermi
and GT200 GPUs, like the ability for concurrent kernel
execution, ECC support and fewer SMs. However, the
architectural feature that we feel has the most impact
for this algorithm, is the presence of a hierarchy of
caches on Fermi, as they allow for greater exploitation
of the locality of data. For no approximation, all atoms
need to be accessed sequentially, thereby, making the
caches play an important role and hence, Fermi Tesla
C2050 is deemed to be more effective.
As explained in a previous section, application

speedup due to the combination of GPU and HCP
increases with the increase in number of memory trans-
actions reduced per divergent branch increased. There-
fore, from Table 4, number of memory transactions
reduced is maximum for virus Capsid and hence, it
attains the maximum speedup. Next highest reduction
in the number of memory transactions is for 2eu1 and
hence, next highest speedup and so on. Our application
manages to achieve up to 1,860-fold speedup with HCP
on Tesla C1060 for Capsid while the corresponding
speedup on Fermi Tesla C2050 is approximately 1,600-
fold. The actual execution time of our implementation
on both GPUs is <1 sec.
Speedup achieved with HCP on Tesla C2050 is less

than that achieved on Tesla C1060 due to the fact that
the algorithm fails to take the advantage of the caches
present on Fermi, as before. With HCP, not all memory
requests are sequential as coordinates of both atoms and
high level components are required, making the caches

less potent than before. Speedups achieved across all fig-
ures for without_HCP version are almost consistent for
both the GPUs, which is because it does not introduce
divergent branches. Whereas, the version with HCP,
results in divergent branches and also varying amounts of
speedups across structures, depending upon how much
cost of the divergent branches can be amortized by the
corresponding reduction in memory transactions.

Accuracy
To get the best performance on GPUs, we used single
precision as double precision on GT200 architecture
adversely impacts the performance by as much as 8-
times. Although double precision on Fermi is almost
half as fast as single precision, we decided to stick with
single precision for greater performance than accuracy.
To get an estimate of the accuracy of our results, we
compute the relative root mean squared error (RMSE)
of the single-precision-GPU implementation against the
double-precision-CPU implementation. The results are
shown in Table 5. We also present the error due to
HCP both on CPU and the GPU. HCP, being an
approximation algorithm, does introduce some error on
the CPU. From the table, we note that the error intro-
duced by the GPU itself is fairly negligible when com-
pared to the error introduced by HCP alone on the
CPU. Thus, the total error due to HCP and GPU is
almost equivalent to the error on the CPU. Therefore,
we can safely conclude that single precision on GPU
does not jeopardize the accuracy of our computed
results.

Figure 7 Speedup on NVIDIA Tesla Fermi C2050. Speedup on the Tesla Fermi C2050 is greater than Tesla C1060 due to the presence of
hierarchy of caches on the C2050 GPU. Baseline: No-approximation CPU implementation optimized by hand-tuned SSE Intrinsics and parallelized
across 16 cores.
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Due to the paltry error introduced by single precision
on the GPU, it may be deemed acceptable for the com-
putation of molecular surface potential on the GPU but
may be unsatisfactory for molecular dynamics. In case
of molecular dynamics simulations, even a minute error
in one time step can have a substantial effect on the
results as the error would accumulate during the course
of the simulation. It is here that superior double preci-
sion support of Fermi would come in handy.

Conclusions
With the emergence of GPU computing, there have
been many attempts at accelerating the electrostatic sur-
face potential (ESP) computations for biomolecules. In
our work, we demonstrate the combined effect of using
a multi-scale approximation algorithm called hierarchi-
cal charge partitioning (HCP) and mapping it onto a
graphics processing unit (GPU). While mainstream
molecular modeling algorithms impose an artificial par-
titioning of biomolecules into a grid/lattice to map it
onto a GPU, HCP is significantly different in that it
takes advantage of the natural partitioning in biomole-
cules, which facilitates a data-parallel mapping onto the
GPU.
We then presented our methodology for mapping and

optimizing the performance of HCP on the GPU when
applied to the calculation of ESP. Despite being a mem-
ory-bound application, we leveraged many known optimi-
zation techniques to accelerate performance. In addition,
we demonstrated the effectiveness of the introduction of
divergent branching on GPUs when it reduces the number
of instructional and memory transactions.
For a fairer comparison between the CPU and GPU, we

optimized the CPU implementation by using hand-tuned
SSE intrinsics to handle the SIMD nature of the applica-
tion on the CPU. We then demonstrated a 1,860-fold
reduction in the execution time of the application when

compared to that of the hand-tuned SSE implementation
on the 16 cores of the CPU. Furthermore, we ensured
that the use of single-precision arithmetic on the GPU,
combined with the HCP multi-scale approximation, did
not significantly affect the accuracy of our results.
For future work, we will apply our HCP approxima-

tion algorithm to molecular dynamics (MD) simulations
on the GPU, given how well it performs in the case of
molecular modeling. For MD simulations, the use of
double precision is mandatory as the error incurred in
each time-step would accumulate over time, thereby
immensely affecting the accuracy of the MD results. In
addition, we plan to exploit the use of the cache hierar-
chy on the NVIDIA Fermi to accelerate the memory-
bounded aspect of our application.
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