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Abstract

Background: The “small phylogeny” problem consists in inferring ancestral genomes associated with each internal
node of a phylogenetic tree of a set of extant species. Existing methods can be grouped into two main categories:
the distance-based methods aiming at minimizing a total branch length, and the synteny-based (or mapping)
methods that first predict a collection of relations between ancestral markers in term of “synteny”, and then
assemble this collection into a set of Contiguous Ancestral Regions (CARs). The predicted CARs are likely to be
more reliable as they are more directly deduced from observed conservations in extant species. However the
challenge is to end up with a completely assembled genome.

Results: We develop a new synteny-based method that is flexible enough to handle a model of evolution
involving whole genome duplication events, in addition to rearrangements, gene insertions, and losses. Ancestral
relationships between markers are defined in term of Gapped Adjacencies, i.e. pairs of markers separated by up to a
given number of markers. It improves on a previous restricted to direct adjacencies, which revealed a high
accuracy for adjacency prediction, but with the drawback of being overly conservative, i.e. of generating a large
number of CARs. Applying our algorithm on various simulated data sets reveals good performance as we usually
end up with a completely assembled genome, while keeping a low error rate.

Availability: All source code is available at http://www.iro.umontreal.ca/~mabrouk.

Background
One of the aims of comparative genomics is to reveal the
evolutionary scenario that has led to an observed set of
present-day genomes from hypothetical common ances-
tors. When a speciation history, represented as a phyloge-
netic tree, is already known, the problem reduces to that
of finding ancestral genomes, in terms of gene content and
organization, for non-terminal nodes of the tree. The
reconstruction of ancestral karyotypes and gene (or any
other type of markers) content and order has been widely
considered by the computational biology community [1-7].
For most formulations in terms of different kinds of gen-
omes (circular, multichromosomal, single or multiple gene

copies, signed or unsigned genes) and different distance
metrics, even the simplest restriction in term of the median
of three genomes, has been shown NP-hard [8]. As
reviewed in [9,10], the considered methods can be grouped
into two main classes. The distance-based methods aim at
labeling ancestral nodes in a way minimizing total branch
length over the phylogeny [3,6,7,9]. On the other hand, the
synteny-based (or mapping) methods [2,4,5,11] rely on
three steps: (1) Infer a collection of ancestral genes;
(2) Infer a collection of relations between ancestral genes
in terms of “synteny”; (3) Assemble this collection into
an ancestral genome. In contrast to a distance-based
approach, the output of a synteny-based approach is a set
of Contiguous Ancestral regions (CARs) that is not guaran-
teed to be completely assembled into a genome. However,
the predicted CARs are likely to be more reliable as they
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are more directly deduced from observed conserved fea-
tures of the extant species.
The first formal method based on this approach was

developed by Ma et al. [5]. In this algorithm, syntenies are
adjacencies, sets of ancestral relations are computed by a
variant of the Fitch parsimony algorithm and a greedy
heuristic is used for the assembly. Another class of syn-
teny-based methods [4,12] define ancestral relations in
term of common intervals, represent them in a binary
matrix, and then solve a problem known as the Consecu-
tive Ones problem (C1P) to translate the matrix into sets
of ancestral CARs. When the collection of ancestral rela-
tions is fully compatible, the translation into ancestral gen-
omes is straightforward, but in general the problem of
transforming the matrix into a C1P matrix in an “optimal”
way is hard, and appropriate simplifications are consid-
ered. The result of such methods is not a unique ancestral
gene order but rather a PQ-tree representing a collection
of possible orders.
Most computational methods for comparative genomics

account only for markers with exactly one copy in every
considered extant genome. A few extensions to genomes
with unequal gene content have also been considered
[2,12,13]. The case of multiple gene copies is more chal-
lenging as the one-to-one correspondence between ortho-
logs is missing. Recently, a number of ancestral genome
inference studies have accounted for multiple gene copies
in the very special case of an evolution by Whole Genome
Duplication (WGD). WGD is a spectacular evolutionary
event that has the effect of simultaneously doubling all the
chromosomes of a genome. Evidence of WGD has shown
up across the whole eukaryote domain. A distance-based
approach for inferring a pre-duplicated genome was devel-
oped in 2003 [14], and extended to the median problem
[15-17]. However, the synteny-based approach is more
naturally extendable to WGD events. Indeed, as the pre-
duplicated genome has single gene copies, as long as an
appropriate way for inferring “Double Conserved Synteny”
(DCS) relations between ancestral markers is found, the
assembly part can be taken without any modification. In
[18], Gordon et al. manually reconstructed the ancestral
yeast genome. Formal extensions of the synteny-based
approach to handle WGD have also been developed
[2,9,19]. In this paper, we present a new synteny-based
method for ancestral genome inference, allowing for evo-
lutionary scenarios involving WGDs and gene losses,
where relations between ancestral genes are defined as
Gapped Adjacencies, i.e. pairs of genes separated by up to
a fixed number of genes. It is an extension of a previous
method [2] where relations between genes were defined in
term of “direct” adjacencies. The assembling step is based
on the computation of a rigorous score for each potential
ancestral gapped adjacency (g, h), reflecting the maximum
number of times the gapped adjacency between g and h

can be conserved along the branches of the whole phylo-
geny, over any possible setting of ancestral genomes. To
make the link with the C1P framework, the syntenies that
we consider in this paper can be related to gapped gene
teams, while those considered in [4] are related to various
types of common intervals [20]. However the assembly
methods and the output of the algorithms (a set of CARs
versus a PQ-tree) are very different. In the absence of
WGD events and gene losses, the approach most compar-
able to ours is the one developed by Ma et al. [5]. In case
of direct adjacencies, the algorithm in [2] obtained a
higher accuracy for adjacency prediction than Ma’s algo-
rithm, but at the cost of a higher number of CARs, pre-
venting from recovering a completely assembled genome.
In this paper, relaxing the constraint of adjacency to
gapped adjacency allows to improve on these results.
Indeed, our results on simulated data sets show that we
usually end up with a completely assembled genome,
while keeping a low error rate.

Methods
Problem statement and preliminary concepts
The general problem we are aiming to solve can be sta-
ted as follows.
Input: A set Γ of m modern genomes, a species tree S

with leaves labeled with genomes from Γ, and an inter-
nal node ν of S representing a speciation event of
interest;
Output: An ancestral genome at node ν.
Formally, a species tree (or phylogeny) for Γ is a tree S

with m leaves, where each genome of Γ is the label of
exactly one leaf, and each internal node (called specia-
tion node) has exactly two children and represents a
speciation event. We say that S is labeled if each inter-
nal node u of S has a label G(u) corresponding to a
hypothetical ancestral genome just preceding the consid-
ered speciation event.
Considering a set Σ of genes, a genome is a set {C1,

C2, ... CN} of chromosomes, where each chromosome is
a sequence of signed elements from

∑
. Chromosomes

can be circular or linear, but we always use a circular
representation by adding an artificial gene O at the end
of a linear chromosome and considering the augmented
chromosomes as circular. Given a genome G, we call
the gene set of G and denote by

∑
G ⊆ ∑

the set of
genes present in G (including O). For example, the gene
set of the genome labeling the leftmost leaf of the tree
in Figure 1 is {O, a, b, c}. We further denote by ±∑

G

the set obtained from
∑

G by considering each gene in
its positive and negative directions. By convention, the
gene O is always considered positive. A multiset of
±∑

G is a subset of ±∑
G with possibly repeated genes.

Given a gene g ∈ ∑
G , we denote by mult(g, G) the
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multiplicity, i.e. number of copies, of ±g in G. In parti-
cular, the multiplicity of O is the number of linear chro-
mosomes of G. For example, the multiplicity of gene a in
the genome of the leftmost leaf of the tree in Figure 1 is
4. We extend our notation to define, for node u of the
tree,

∑
u and mult(g, u) as the set of genes present in the

genome at node u and the multiplicity of g in that
genome.
Evolutionary model
Our model involves rearrangements and content-modify-
ing operations. As we adopt a synteny-based approach,
rearrangements are only implicitly considered, as only
traces of these rearrangements in terms of disrupted gene
adjacencies are considered. In other words, all kinds of
rearrangement events can be present in the history. Our
approach also allows for unequal gene content, resulting
from gene losses or insertions. As for the multiplicity of
genes, the only operation leading to multiple gene copies
(genes with multiplicity ≥ 2) that is considered is the
Whole Genome Duplication (WGD). Formally, a WGD is
an event transforming a genome G = {C1,C2 ... CN} of N
chromosomes into a genome GD containing 2N chromo-

somes, i.e. GD = {C1,C′
1,C2,C′

2...CN,C′
N} , where, for each

1 ≤ i ≤ N,Ci = C′
i .

In addition to the assumption that WGDs are the only
events responsible for gene multiplicity (in particular,

single-gene duplications are not considered), we suppose
that, in each genome, at least one gene reflects the dou-
bling status of the genome, i.e. there exists a gene that
has not lost any copy. As noticed by Zheng et al. [17],
under these assumptions, the number and position of
WGD events can be easily deduced from the multiplicity
of the most frequent gene found in each genome. To
account for such events, new internal nodes, called
WGD nodes, are added appropriately on the edges of S
(see Figure 1). As for speciation nodes, a label G(u) of a
WGD node u represents an ancestral genome just pre-
ceding the WGD event (i.e. containing a single copy of
each gene). Contrary to speciation nodes, each WGD
node has only a single child. Moreover, if all extant gen-
omes have a gene with multiplicity greater than 1, then
a WGD node is inserted above the root of S.
Adjacencies

Each gene g ∈ ∑
G is represented by an ordered pair of

unsigned markers, its start and end, with +g represented
as (gt, gh) and -g represented as (gh, gt). Genome G can
thus be thought of as a sequence of pairs of markers. We
say that a gene b ∈ +

∑
G(respectively − b ∈ −∑

G) is a

left a-adjacency of a gene a ∈ ±∑
G in G if both genes

are on the same chromosome and the number of markers
between bh (respectively bt) and at in G is smaller than a.
Symmetrically, b ∈ +

∑
G(respectively − b ∈ −∑

G) is a

Figure 1 A species tree with each leaf labeled with its corresponding genome. For simplicity, we consider all the genes to be positively
signed. The last line below each leaf is the gene set and multiplicity of each gene. Single circles indicate speciation nodes, while double-circles
indicate WGD nodes. Applying the procedure described in the text leads to the gene set assignment and multiplicity given as labels of internal
nodes. This assignment leads to the indicated insertion and losses.
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right a-adjacency of a ∈ ±∑
G if the number of markers

between ah and bt (respectively bh) is smaller than a. In
other words, when a is odd, b is left a-adjacent to a iff G
contains substrings b × a or -a x - b, where x is a sequence
of at most (a - 1)/2 signed genes from ±∑

G − {a, b} .
When a is even, b is left a-adjacent to a iff (i) b is (a - 1)-
adjacent to a or (ii) G contains substrings -b x a or -a x b,
where x is a sequence of at most (a - 2)/2 signed genes
from ±∑

G − {a, b} . For g ∈ ∑
G , we use LA(g, a, G)

(resp. RA(g, a, G)) to denote the multiset of signed genes
that are left (resp. right) a-adjacent to g. For example, for
the genome G labeling the leftmost leaf in the tree of Fig-
ure 1, we have LA(a, 1,G)= {O, a, b, a}, while RA(a, 2, G) =
{a, b, a, c, -a, -b, -a, -c}.
Conserved adjacencies
Consider a branch (u, v) of a labeled tree S, where v is a
descendent of u. To assess the level of conservation
between an ancestral gene arrangement G(u) and its
descendant G(v), we compare the left and right a-adja-
cency multisets in G(u) and G(v). More precisely, we
define adjCons(g,α,G(u),G(v)) = |LA(g,α,G(u))∩LA(g,α,G(v))|+|RA(g,α,G(u))∩RA(g,α,G(v))|,
as the number of left and right conserved a-adjacencies
of g on (u, v), and adjCons(α,G(u),G(v)) =

∑
g∈�u∩�v

adjCons(g,α,G(u),G(v))

as the number of conserved a-adjacencies on the branch
(u, v). Finally, the number of conserved a-adjacencies
over the whole tree S, denoted as adjCons(a, S), is the
sum of adjCons(a, G(u),G(v)) for all branches (u, v) of S
Notice that in adjCons(a, G(u),G(v)) we account for
each adjacency conservation twice. It may appear that
right adjacencies alone (or, symmetrically, left adjacen-
cies) are sufficient to reflect adjacency conservation
between two genomes. But consider, for example, the
sequence “+1 -2 +3 -4”. If we just consider right 1-adja-
cencies, then the subsequence “+ 1 -2” will be consid-
ered twice (as -2 is the right adjacency of 1 and -1 is
the right adjacency of 2) but the subsequence “-2 + 3”
will not be considered (as -3 is the left adjacency of 2
and -2 is the left adjacency of 3).

Ancestral gene content
The first step of our ancestral inference method is to
assign ancestral gene content and multiplicity at each
ancestral node. Resolving the ordering of these genes is
performed in a second step. We consider a natural proce-
dure, inspired from [18], assuming a model with no con-
vergent evolution and minimum losses. We say that a
node v is a direct descendant of a WGD node u if and
only if v is a WGD node or a leaf and there is no other
WGD node on the branch from u to v. To assign gene
content Σu and gene multiplicity at each internal node u
of S, we apply the two following operations in two bot-
tom-up traversals of S: (1) For each WGD node u and

each gene g, let v be the direct descendant of u with max-
imum multiplicity for g. If mult(g, v) ≥ 2 then assign g to

u and define mult(g, u) =
⌊
mult(g,v)

2

⌋
. For example after a

traversal of the species tree S of Figure 1, the gene set of
the WGD node d only contains a and b, as the maximum
multiplicity of c in the direct descendants of d is 1; (2)
Assign a gene g to any internal node u of S on a path
from the node of S representing the least common ances-
tor (LCA) of all the nodes containing g (leaves or WGD
nodes), to any leaf containing g. Moreover, if not already
defined, define mult(g, u) as the maximum multiplicity of
g in u’s children.
In the rest of this paper, we will assume that gene

content and multiplicity is set for all nodes of S. A
labeling G(u) of a node u of S will refer to a genome
respecting the content and multiplicity constraints given
by Σu. Notice that, by construction (taking the maxi-
mum multiplicity of each gene at each internal node),
there is no increase of multiplicity (except possibly from
0 to 1 in the case of the gain of a new gene) from a
node u to a child v, unless u is a WGD node, in which
case the multiplicity of a gene is at most doubled. Such
a construction guarantees that any labeling of S can be
explained by an evolutionary scenario in agreement with
the hypothesis of WGDs being the only events responsi-
ble for gene multiplicity.

A synteny-based method accounting for direct
adjacencies
In [2], we have presented a synteny-based method that
infers a pre-duplicated ancestral genome at a node ν
corresponding to a highest WGD node of S, or any
node preceding a first WGD node. More precisely, the
method aims at infering a genome G(ν) such that
adjCons(1,S|G(ν)) is maximized, where adjCons(1, S|G
(ν)) is adjCons(1,S) (as defined in Section Conserved
Adjacencies, for a = 1) with the constraint that genome
G(ν) is assigned at node ν (see details in [2]).
For any node u of S and any gene g of

∑
u , let X be a

multiset of mult(g, u) potential adjacencies of g. Define
LeftAdj(g, S|LA(g,1,G(u)) = X) (resp. RightAdj(g, S|RA(g,1,G(u))
=X)) as the maximum number of left (resp. right) adja-
cencies that can be preserved over the whole tree, for
any ancestral genome assignment with the constraint
that the genome G(u) satisfies LA(g, 1,G(u)) = X. The
following upper bound on the objective function allows
to treat each gene independently:

adjCons(1, S|G(u)) ≤
∑

g
LeftAdj(g, S|LA(g,1,G(u))=X) + RightAdj(g, S|RA(g,1,G(u))=X)

The method, that we call DirectAdj, proceeds in two
steps summarized below.
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Step 1: For each internal node u of the tree (specia-
tion or WGD node), each gene g ∈ ∑

u , and each multi-
set X of possible adjacencies of g at node u, we compute
LeftAdj(g, S|LA(g,1,G(u)) = X) and RightAdj(g, S|LA(g,1,G(u)) =

X) using a Dynamic Programming Algorithm. The values
at a node u are computed from the values at the two
children and also at the parent of u (see Figure 2 for an
example).
Step 2: For the node ν for which an ancestral genome

is sought, we obtain the desired pre-duplicated genome
by chaining adjacencies. As ν represents a speciation
preceding any WGD event, or a first WGD event, each
gene g of

∑
v is present exactly once at ν. At this node

we use the notations L(g, h) = LeftAdj(g, S|LA(g,1,G(v))={h})
and R(g, h) = RightAdj(g, S|RA(g,1,G(ν))={h}) . We proceed
by a reduction to the Traveling Salesman Problem
(TSP) on a complete undirected graph Q where vertices
correspond to genes, and an edge (g, h) is weighted
according to a ratio (L(g, h) + R(h, g))/MaxAdj(g, S),
where MaxAdj(g, S) is the number of nodes of S con-
taining g. The division by MaxAdj(g, S) allows to correct
for genes that are lost in some parts of the tree, which
avoids favoring genes with high multiplicity. Moreover,
as noticed in [2], the result of the TSP is usually a single
long chromosome concatenating all genes. To avoid this
drawback, we define TSP-τ by augmenting the initial
TSP heuristic with the procedure of cutting, from the

inferred ancestor, all adjacencies with weight less than a
certain threshold τ (see Algorithm section). All details
on costs, the heuristic used to solve the TSP and how to
handle chromosomal endpoints and gene signs, are
given in [2]. The value of τ has been chosen to optimize
accuracy on simulated datasets, according to the error
rate associated to the set of adjacencies of a given
weight. However, a conservative threshold in term of
error rate leads to an excess of CARs, which prevents
from recovering a completely assembled genome. In the
following section, we generalize the approach described
above to allow for a more flexible notion of synteny in
term of gapped-adjacencies, which addresses the above-
mentioned problem.

Generalization to gapped adjacencies
Before describing our new algorithm called GapAdj,
which is a generalization of DirectAdj accounting for a-
adjacencies for increasing values of a, we start by moti-
vating our new approach.
Many adjacencies in an ancestral genome are likely to be

no longer present in some present-day genomes due to
rearrangements and content-modifying operations, pre-
venting from reconstructing large CARs. However, since
small and local evolutionary events are more frequent
than large and far-reaching operations [21], we can expect
to reconnect neighboring CARs by considering gapped
adjacencies. Consider for example the species tree (A) of

Figure 2 An illustration of Step 1 for a gene g and an internal node u. Numbers in brackets indicate the multiplicity of gene g at each
node of the tree. Multisets at leaves represent (say left) adjacencies of gene g in the corresponding genome. All multisets X of possible
adjacencies of g at node u are shown, followed by the value of LeftAdj(g, S|LA(g,1,G(u))=X). The rest of notation illustrates how the value 6 is
obtained at u for the multiset {a, a}: the root and WGD node labels are the adjacencies that have to be set for g, and the label of an edge (v, w)
is the number of conserved adjacencies for g on that branch.
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Figure 3. As a and b are “neighboring” (close) genes in all
three genomes, we expect the inferred ancestral genome at
the root of the tree to have a CAR with genes a and b.
However, as all (right) direct adjacencies of a are different
(b in 1, -b in 2 and x in 3), none of these adjacencies
would have a score attaining a reasonable minimum cost τ
for the TSP, and a and b will end up in two different
CARs with algorithm DirectAdj. However, as b (and also
-b) is a 2 - adjacency of a in two extent genomes, and a 3
- adjacency of a in all three genomes, they end up in the
same CAR if we consider 2 or 3-adjacencies (second or
third iteration of GapAdj algorithm described in the next
section). As another example, consider a “true” evolution-
ary scenario depicted in Figure 3.(B). Consider a threshold
τ for TSP-τ corresponding to an adjacency being present
in two of the three extent species. Then, as the only direct
adjacency present at least twice in extant genomes is bc,
DirectAdj leaves a and bc in two separate CARs. However,
as b is a 2-adjacency of a in species 1 and 2 (it is actually
the only adjacency reaching the threshold up to a = 2),
GapAdj would end up with a CAR containing the
sequence abc after iteration a = 2.
Algorithm Gapped-Adjacencies (GapAdj):

(
∑

, S, v, τ ,MAXα)
Initialize the set C of CARs to

∑
v ;

For a =1 to MAXa Do
Step 1:
1. For each internal node u of S (bottom-up traversal)

Do
2. For each g ∈ ∑

uDo
3. For each multiset X of possible adjacencies of g

at u Do
4. Compute LeftAdj(g, a, S|LA(g,a,G(u)) = X);
5. Compute RightAdj(g, a, S|RA(g,a,G(u)) = X);

End For
End For

End For

Step 2:
Construct the graph Q with vertices being the genes of∑
, and edges weighted according to computed a-adja-

cencies; By applying TSP-τ on Q, update the set C of
CARs; Restrict

∑
to the a-extremities of each CAR of C;

End For
Return (C);

Algorithm
The full GapAdj algorithm is given in Algorithm
Gapped-Adjacencies. The output of GapAdj is the set of
CARs C representing the ancestral genome at node ν of
S. This set is first initialized to the set Σν of genes at ν
(each gene being assigned to its own CAR). The algo-
rithm proceeds by iterating the two-step procedure
described in the section on direct adjacencies on
increasing values of a, from 1 to a constant MAXa. Step
1 consists in computing a-adjacency scores. The
dynamic programming algorithms detailed in [2] for
computing the scores LeftAdj(g, S |LA(g,1,G(u))=X) and
RightAdj(g, S |RA(g,1,G(u))=X)of left and right adjacencies
of a gene g with a multiset X at a node u of S are
directly generalizable to account for a-adjacencies, i.e.
to compute the scores LeftAdj(g, S|LA(g,α,G(u))=X) and
RightAdj(g, S |RA(g,α,G(u))=X) . As for Step 2, we proceed
by constructing a complete undirected graph Q where ver-
tices are the two extremities of each CAR, and edges are
weighted according to a-adjacencies scores, computed at
Step 1, of the two genes at the extremities of each CAR. A
heaviest Hamiltonian cycle through Q, where edges with
weight under a threshold τ are excluded, corresponds to
an hypothetical ancestral genome characterized by a set of
CARs Ca with |Ca| ≤| Ca-1|. This instance of the TSP is
solved using the Chained Lin-Khernigan heuristic imple-
mented in the Concord package [22].
An important parameter of our algorithm is the cut-

off value τ used to filter out less reliable adjacencies

Figure 3 A species tree for the set of species Γ = {1, 2, 3}, with two different genome assignments at leaves. Example (B) depicts a most
parsimonious inversion scenario leading to the observed genomes.
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from the solution produced by the TSP algorithm. Based
on the simulations that we have performed in [2], we
choose a fixed threshold allowing for the best balance
between error rate and number of CARs produced. The
chosen threshold τ corresponds roughly to keeping an
adjacency if and only if it is conserved in at least 70% of
the tree branches. Another important parameter of our
algorithm is the constant MAXa, corresponding to the
maximum value of a to be considered, which affects
both the running time, the final number of CARs and
their accuracy. Clearly MAXa does not need to be more
than the size of the longest chromosome of Γ, as no
improvement can be achieved for larger values. Unless
explicitly indicated, we use MAXa = 50, which produced
good results in most of our simulations.
Complexity
As the complexity of Step 2 depends upon the consid-
ered heuristic for the TSP, we focus here on the com-
plexity of Step 1. Denote by mult the highest
multiplicity of a gene g at any node of S. It follows from
the complexity result given in [2] (section 4.1) that each
line 4. and 5. of algorithm GapAdj can be computed in
time O(|S||Σ|mult). The For loop 3. multiplies this com-
plexity by |Σ|, the same holds for the For loop 2., and
the For loop 1. multiplies this complexity by |S|. It fol-
lows that Step 1 of algorithm GapAdj can be computed
in time O(Maxα × |S|2 × |∑ |mult+2) .

Results and discussion
To evaluate the accuracy and running time of our
approach, we first used data generated using simulated
genome evolution. This allows us to dissect the impact
of each aspect of the method and of the data on the

accuracy of the reconstructed ancestor. Our simulations
are based on the phylogenetic tree of yeast species
shown in Figure 4 (A), which is ideal for this type of
study as it contains a phylum affected by a whole-gen-
ome duplication and another that remains non-dupli-
cated. Each of the simulation-based results reported in
this section are averaged over 50 repetitions.

Simulations with no WGD
In the absence of WGD events, the method that is most
comparable to ours is the one of Ma et al. [5], implemen-
ted in a program called InferCAR. As this method does
not support gene losses, we first restrict our simulations to
a model with rearrangements only. In addition, as a first
validation, we consider single chromosomal genomes, and
inversions as the only rearrangement events.
We simulated data sets based on the yeast phylogenetic

tree but excluding the portion affected by the WGD. The
tree contains six non-duplicated species. The node of
interest is the root s of the monophyletic group of five
species (indicated by a simple circle in Figure 4 (A)).
A simulated genome of two hundred genes is placed at
the root r of the tree, and a number r of inversions are
randomly performed on each branch of the tree, where r
is chosen randomly in the interval

[ rmax
2 , rmax

]
, for a

given constant value rmax. While the theoretical time
complexity of GapAdj is reasonable for genomes with
thousands of genes, the unoptimized state of the imple-
mentation renders the execution of multiple simulations
with larger genomes rather time consuming, hence the
choice of an ancestral genome with only two hundred
genes. However, intuitively one can see that similar
results could be obtained with larger genomes if the

Figure 4 (A) Evolution of the 11 yeast species recorded in the Yeast Gene Order Browser, as given by [29]. The * indicates partially
sequenced organisms. At leaves, the top number is the number of chromosomes, contigs or scaffolds. The bottom number is the number of
genes, as reported in [18]. On each branch, the label is the number of gene losses, which is directly inferred from the gene content at leaves.
The simple circle is the root of the monophyletic group of non-duplicated species, referred in the text by s. (B) The phylogenetic tree for Oryza
sativa (rice), Brachypodium distachyon (brachypodium) and Sorghum bicolor (sorghum). At leaves, the top number is the number of
chromosomes. The bottom number is the number of markers used in the study of cereal genomes.
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number of rearrangements is increased proportionally.
Notice that the maximum value rmax = 25 considered in
our simulations leads to some of the leaf genomes being
almost completely shuffled, as four or five branches sepa-
rate them from the root, which lead to the creation of
about 160 to 200 breakpoints. The length of inverted seg-
ments follows a geometric distribution with p = 0.5,
resulting in a majority of short inversions, as previously
suggested [21].
Figure 5 (two left diagrams) illustrates the two algo-

rithms’ error rates, computed as the fraction of inferred
a-adjacencies (for 1 ≤ a ≤ MAXa) that are not present
as a-adjacencies in the true simulated ancestor at s,
while the right diagram illustrates the number of CARs
obtained (on average) for that ancestor. Both algorithms
show a high accuracy for adjacency prediction, as the
error rate is always lower than 10%. Our GapAdj algo-
rithm almost always recovers a complete genome (i.e. a
single CAR), which is very rarely the case of InferCAR,
which yields an average of 6 CARs for rmax = 25. How-
ever, this increase in CAR concatenation is obtained at
the cost of a certain loss of precision.
Figure 5 (two right diagrams) illustrates the progres-

sion of the error rate and CAR number for increasing
values of a. It provides a comparison with the initial
algorithm DirectAdj [2] that only considers direct adja-
cencies (a = 1). From a =1 to a = 50, the number of
CARs drops from 20 to a single chromosome, while the
error rate is increased by less than 4%. This increase in
error rate is expected, as CARs being joined together for
a > 1 do not have strong support based on direct adja-
cencies and are necessarily more difficult to infer. None-
theless, we note that the increase in error rate is
relatively modest, compared to what would be expected
if CARs were joined randomly, which would produce an
increase of approximately 10% in error rate. These preli-
minary results are promising as the initial goal of
obtaining a completely assembled genome while keeping
a low error rate is attained in this case.
We then consider an extended model of evolution

for multichromosomal genomes that evolve through

inversions, inter-chromosomal rearrangements (translo-
cations, fusions, fissions) and gene losses. Based on the
same six-leaf species tree described above, we simulate
data sets starting with a 2-chromosome, 200-gene gen-
ome at the root r of the tree. Each gene loss event
involves a single gene chosen randomly in the genome.
The number of gene losses on each branch is propor-
tional to that observed in actual yeast genomes, while
the proportion of each type of rearrangement operation
is chosen to be similar to that reported for S. cerevisiae
in [18]: (Inv : Trans : Fus+Fiss) = (5 : 4 : 1). The results
given in Figure 6 (two leftmost diagrams) reflect the dif-
ference in gapped-adjacencies and number of chromo-
somes between the real and predicted genome at node
s. Notice that chromosomal fusions and fissions may
occur on the branch from r to s, so the true number of
chromosomes depicted in the second diagram of Figure
6 is not always 2. Interestingly, the curve for inferred
CARs roughly follows the curve for true CARs. In addi-
tion, the error rate remains lower than 12% in all cases.

Simulations with WGD
For simulations with WGD, we used two trees: one being
the subtree of yeast (Figure 4 (A)) rooted at τ, and
another (Figure 4 (B)) corresponding to the evolution of
three cereals (rice, brachypodium and sorghum), that we
will study thereafter. We simulate data sets starting with
a pre-duplication 2-chromosome, 200-gene genome at
the root of the tree and performing a number of gene
losses and a maximum rmax of rearrangements on each
branch. As WGD events are usually followed by extensive
losses, we perform 50 or 100 random losses between
the duplication and first speciation event, followed by
5 random losses on each branch of the tree. As for the
rate of various rearrangements, we use the same as
before. Error rates are given in Figure 6 (third diagram).
The number of CARs produced by the algorithm typi-
cally slightly overshoots the correct number, varying
from 2 to 4. Note that the losses that occurred immedi-
ately after the duplication event result in many false adja-
cencies inferred, as depicted by the difference in error

Figure 5 Simulations for a tree without WGD, and a maximum of rmax inversions (x-axis on the two left diagrams) on each branch.
Red curves are the results of GapAdj and the blue ones those of InferCAR. From left to right, (1st): Error rate for the inferred ancestral genome;
(2nd) Number of inferred CAR; (3d) Error rate and (4th) Number of CARs obtained by GapAdj . For these two diagrams rmax = 20 and values on
the x-axis correspond to the parameter MAXa.
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rate between simulations with only 50 post-duplication
losses and those with 100. Since those are ancient events,
their effects are seen on many or all of the leaf gene
orders, preventing us from inferring the right order in
areas surrounding the lost genes in the ancestor. Interest-
ingly, the fact that an outgroup predating the WGD is
available for yeast allows to circumvent this problem as
adjacencies can be grasped from this genome not affected
by losses, which explains the better results obtained for
yeast. Figure 6 (last diagram) shows the running time of
our algorithm for rmax = 20, as a function of MAXa.
Although the running time increases cubically with
MAXa, it remains quite manageable. In the absence of
the WGD, the running time is significantly smaller, as it
remains under 2 seconds even for MAXa = 50.

Study of yeast genome evolution
We applied our method to the full yeast species tree
(Figure 4 (A)) with the gene data sets of the Yeast Gene
Order Browser [18], to infer the pre-duplicated ancestral
genome of Saccharomyces cerevisiae. Both this dataset

and the cereals dataset had been curated by their authors
to remove genes whose duplication is likely to come
from events other than WGDs. We then compared our
predicted ancestor with the 8-chromosome genome
manually inferred by Gordon et al. [18]. Figure 7 (left)
gives the fraction of a-adjacencies that we infer but are
in contradiction with the genome inferred by Gordon et
al. For all tested values of a, this fraction remains below
2%. Importantly, considering gapped adjacencies in addi-
tion to direct adjacencies allows to reduce the number of
CARs from 23 to 12, which is significantly closer to the
number of ancestral chromosomes predicted by Gordon
et al. Among the 11 additional inferred 1-adjacencies, 7
are shared with the ancestor of Gordon et al.

Study of cereal genome evolution
We now focus on three of the four completely
sequenced cereal crop genomes studied by Murat et al.
[23], namely rice (Oryza sativa), sorghum (Sorghum
bicolor) and brachypodium (Brachypodium distachyon).
As demonstrated by various studies, these species have

Figure 6 From left to right, (1st) Error rate and (2nd) Number of CARs obtained by GapAdj on simulations following a model
accounting for multichromosomal genomes evolving through gene losses, and a maximum of rmax (x-axis) inversions and inter-
chromosomal rearrangements per branch of the tree. (3d) Error rate obtained by GapAdj on simulations performed according to the cereal
tree (Figure 4(B)) and the subtree of yeast rooted at τ (Figure 4(B)). The model accounts for inversions, inter-chromosomal rearrangements, gene
losses and one WGD. The two red (resp. blue) curves correspond to the results for cereal (resp. yeast) by performing 50 and 100 losses just
following the WGD. (4th) Running time of GapAdj for one data set following the “cereal 50” model, and with rmax=20.

Figure 7 (Left) Fraction of adjacencies in disagreement between the pre-duplicated yeast ancestor inferred by GapAdj and that
inferred by Gordon et al. in [18]. (Right) Number of CARs inferred with GapAdj algorithm.
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evolved following a whole genome duplication that has
occurred about 60 million years ago (see Figure 4.(B)).
Maize, the fourth species considered in [23] was
excluded here to avoid noise due to an additional
maize-specific WGD and ensuing massive gene loss. We
used the sets of markers (10,720 from rice, 10,649 from

brachypodium, and 9,364 from sorghum) and the
homology relationships provided by Murat et al., and
the orders for these markers from [24-26].
Figure 8 shows the predicted pre-duplication genome

and its extant descendants. Syntenic regions (homologous
sets of genes with conserved order) are painted using the

Figure 8 Syntenic regions of three cereal species karyotype with respect to their ancestor inferred using our GapAdj algorithm.
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Cinteny web server [27]. Running GapAdj with a maxi-
mum value of a (up to the size of the largest chromosome
which is about 3500), we end up with a set of 6 CARs
(plain bars in Figure 8), which is one more chromosome
than that inferred by Murat et al. [23]. Looking carefully
at the obtained results, we can see that the ancestral CARs
5 and 6 are clustered (and shuffled) into a single chromo-
some in Brachypodium (chromosome 2), and in two chro-
mosomes in rice and sorghum (chromosomes 1 and 5 in
the rice, and 3 and 9 in sorghum). Moreover there is no
other segment of the CARs 5 and 6 in any other extant
chromosome. This observation suggests that these two
CARs should be concatenated into a single and complete
chromosome. This would be consistent with the results
reported by Murat et al. [23], who infer that a single pre-
duplicated chromosome C is the ancestor of the same
chromosome in Brachypodium (2) and the same two chro-
mosomes in rice (1 and 5) and sorghum (3 and 9). The
reason our algorithm did not concatenate them is prob-
ably that the genes at both extremities of the ancestral
CAR 5 are in two different chromosomes in rice and sor-
ghum. This suggests a future extension of our algorithm
that would consider the a-extremities of each current
CAR for subsequent concatenations.
Comparing our observations with Murat et al., we

notice a number of striking similarities. In particular,
one of the main discovery of the paper [23] is that some
chromosomes have evolved following a particular evolu-
tionary event, called nested fusion, resulting in the inser-
tion of one chromosome inside another (non-telomeric
fusion). Indeed, chromosome 2 of Brachypodium is
explained in [23] as resulting from a nested chromo-
some fusion of the two copies of the chromosome C
(introduced in the previous paragraph), that has
occurred after the speciation leading to the Brachypo-
dium lineage. Interestingly this nested fusion is clear in
our results, as our chromosome painting is in agreement
with chromosome 2 of Brachypodium being the result of
an insertion of the ancestors of rice chr. 5 in the middle
of the ancestor of rice chr. 1.

Conclusions
Any method for ancestral genome inference is debatable
by nature, as it should be based on a model of evolution
that is set a priori, even though we have no direct
access to the history of genomes. Moreover, as real
ancestors are not known, any validation method is open
to criticism, and there is no direct way of evaluating one
solution compared to another. Based on the first obser-
vation, we opted for a synteny-based method that is
based as much as possible on the observed data sets,
without the need for explicitly defining the rearrange-
ment events acting on these genomes. It is the first syn-
teny-based method that fully capitalizes on the observed

adjacencies in present day genomes in relation with
their phylogenetic organization. It is flexible enough to
apply to genomes that have evolved through WGD
events, rearrangements and gene insertions and losses.
Based on the second observation, we first opted in [2]
for a conservative approach concatenating two ancestral
genes g and h only if the direct adjacency (g, h) is
observed in a large fraction of extant genomes and suffi-
ciently supported by the phylogeny. The result was an
algorithm with high accuracy for adjacency prediction,
but with the counterpart being a high number of CARs.
Our generalization to gapped adjacencies while main-
taining a conservative strategy for each gap size has led
to a reasonable compromise between accuracy in adja-
cency and karyotype reconstruction.
A clear limitation of most empirical and analytical

approaches considering evolution by WGD [9,10,15-19],
including our method, is to ignore all other sources of
gene duplication. This is not to say that single-gene
duplications are assumed not to happen during evolution,
but rather that a preprocessing of the genomes eliminat-
ing all undesired gene copies is done preliminary to
applying the developed methodology. As discussed in
Byrne et al. [28] in the case of yeast and Murat et al. [23]
in the case of cereals, gene families that have undergone
recent expansions via smaller tandem or segmental dupli-
cations can typically be identified via a phylogenetic analy-
sis or other homology based approaches. However, in
general identifying the true orthologous and paralogous
gene copies is not an easy problem. Generalizing our
approach to account for local gene duplication would
therefore be an interesting future work, although the com-
plexity of the optimization problem is expected to be con-
siderably increased, as well as the size of the solution space
(the number of most parsimonious evolutionary histories).
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