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Abstract

Background: The transcriptome of an organism can be studied with the analysis of expressed sequence tag (EST)
data sets that offers a rapid and cost effective approach with several new and updated bioinformatics approaches
and tools for assembly and annotation. The comprehensive analyses comprehend an organism along with the
genome and proteome analysis. With the advent of large-scale sequencing projects and generation of sequence
data at protein and cDNA levels, automated analysis pipeline is necessary to store, organize and annotate ESTs.

Results: TranSegAnnotator is a workflow for large-scale analysis of transcriptomic data with the most appropriate
bioinformatics tools for data management and analysis. The pipeline automatically cleans, clusters, assembles and
generates consensus sequences, conceptually translates these into possible protein products and assigns putative
function based on various DNA and protein similarity searches. Excretory/secretory (ES) proteins inferred from ESTs/
short reads are also identified. The TranSegAnnotator accepts FASTA format raw and quality ESTs along with
protein and short read sequences and are analysed with user selected programs. After pre-processing and
assembly, the dataset is annotated at the nucleotide, protein and ES protein levels.

Conclusion: TranSegAnnotator has been developed in a Linux cluster, to perform an exhaustive and reliable
analysis and provide detailed annotation. TranSegAnnotator outputs gene ontologies, protein functional
identifications in terms of mapping to protein domains and metabolic pathways. The pipeline is applied to
annotate large EST datasets to identify several novel and known genes with therapeutic experimental validations
and could serve as potential targets for parasite intervention. TransSegAnnotator is freely available for the scientific
community at http://estexplorer.biolinfo.org/TranSegAnnotator/.

Background

Expressed sequence tags or ESTSs, derived from comple-
mentary DNA (cDNA) libraries provide a low-cost tran-
scriptomic alternative to whole genome sequencing as
these are short, unedited, randomly selected single-pass
sequence reads of approximately 200-800 base pairs (bp)
which represent a small region or a part of nucleotide
sequence from a transcribed protein coding or non-coding
messenger mRNA. They play vital role in gene identifica-
tion and verification of gene prediction as they represent
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the expressed region of a genome. The analysis of EST
data can facilitate gene discovery, help in gene structure
identification, complement genome annotation, establish
the viability of alternative transcripts, direct single nucleo-
tide polymorphism (SNP) characterization and facilitate
proteomic exploration [1-3]. They were used as the pri-
mary source for human gene discovery in early 1990s [4].
Besides EST's, millions of sequencing reads of 35-250 bp
are generated with the advent of “next-generation”
sequencing (NGS) which further help in the study of tran-
scriptome data mainly for neglected organisms and also,
understanding different isoforms of an organism at differ-
ent stages of development. Studies using experimental
proteomic approach have shown the identification of
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proteins in ESP with transcriptome assembly [5]. Many
challenges are faced in the areas of bioinformatics analysis
in data storage and management solution and developing
informatics tools for analysis with the focus on sequence
quality scoring, alignment, assembly, and data processing
with the advent of short read strategy of NGS [6,7].
A comprehensive analysis pipeline is required to store,
organize and annotate ESTs with several computational
tools for pre-processing, clustering, assembly into contigu-
ous segments known as contigs and annotation to yield
biological information. The web resources available were
reviewed for large-scale EST dataset at each step including
clustering, assembly, consensus generation and tools for
DNA, protein and ES annotation [8]. A number of analysis
steps and tools confounded computational strategies to
organize and analyse transcriptomic dataset [9] which is
compounded by the ability of some tools to handle high-
throughput EST data. An evaluation revealed that all avail-
able platforms terminated prior to downstream functional
annotation, including gene ontologies (GOs), motif/
pattern analysis and pathway mapping. Hence, the estab-
lishment of a comprehensive large-scale transcriptomic
analysis pipeline [9] was required to be developed to keep
up with the rapidity with which enormous amounts of
sequence data are currently being generated. An urgent
need for advanced, high-throughput computational ana-
lyses of EST and genomic sequence datasets using auto-
mated platforms is highlighted. EST data are been applied
to study of functional biomolecules [9,10] but, predicting
ES proteins, from ESTs have been uncommon. Excretory/
Secretory (ES) products are the molecules excreted or
secreted by a cell or an organism that can circulate
throughout the body of an organism (e.g., in the extracel-
lular space) or are localized to or released from the cell
surface, making them readily accessible to drugs and/or
the immune system. ES products cover 8 + 20% of the
proteome of an organism [11] and include molecules of
varied functionality, including chemokines, digestive
enzymes cytokines, hormones, toxins, antibodies, morpho-
gens, extracellular proteinases and antimicrobial peptides.
They are known to be involved in vital biological pro-
cesses, including cell adhesion, cell migration, cell-cell
communication, differentiation, proliferation, morphogen-
esis and immune responses [12]. Biochemical and immu-
nological studies of parasitic helminths were focussed on
ES proteins. Worms secrete biologically active mediators
which can transform or customize their niche within the
host [13-15] to regulate or to elude immune attack or sti-
mulate a particular host response.

Some platforms terminate at the assembly level, provid-
ing contigs and singletons [16] (referred to as rESTSs)
while other platforms exclusively run nucleotide-based
programs with limited annotation at the protein level
[17-20]. Based on the benchmarking results, a robust
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transcriptome analysis pipeline (TranSeqAnnotator) is
constructed with contig generation from ESTs and short
reads, updated pathway analysis, non-classically secreted
protein identification and extensive annotation with an
option to select specific analysis phases by users (detailed
below). Proteins secreted by classical and non-classical
pathways are identified by a combination of computa-
tional approaches to predict ESPs. The pipeline accepts
ESTs, quality values, protein sequences and short reads
as input and provides as output, assembled rESTs and
their annotations including gene ontologies, secretory
proteins, mapping to protein domains, motifs, metabolic
pathways and interaction databases. TranSeqAnnotator
(TSA) is available as web service and can be downloaded
for local installation.

Implementation

TranSeqAnnotator workflow has three phases with
Phase I (a) for EST or (b) short read fasta sequence pre-
processing, assembly, conceptual translation and blast
against NR, Phase II for the identification of putative ES
proteins, from classically and non-classically secreted
proteins and the elimination of transmembrane proteins
and Phase III for the combined annotation of the pro-
tein sequence and ES proteins involving a carefully
selected suite of bioinformatic tools, based on a large-
scale transcriptome analysis [21] (Figure 1). TranSeqAn-
notator currently implements the genetic codes for 15
organisms, covering the most studied organisms, includ-
ing human, rat, pig, dog, chicken, rice, wheat, thale cress
(Arabidopsis thaliana), zebrafish, yeast and a free-living
roundworm (Caenorhabditis elegans).

Phase I accept ESTs and short reads as well as quality
values in the case of ESTs as input for pre-processing
and assembly (Figure 1).

The sequence cleaning step uses seqclean [22] and
seqtrim [23] with ESTs alone and with ESTs and quality
sequences respectively followed by masking the repeats
using RepeatMasker [24] which is optional. The Phase I
(b) accepts short reads and pre-processing is carried out
using seqclean. The masked sequences are then passed
on for clustering and assembly with iAssembler http://
bioinfo.bti.cornell.edu/tool/iAssembler/ which incorpo-
rates MIRA [25] and CAP3 assemblers for ESTs and
short reads. For conceptual translation into proteins, the
program ESTScan [26] applies the genetic code from
the nearest organism to the contig and singleton
sequences generated by CAP3 or iAssembler.

In Phase II, the protein sequences generated in Phase I,
using TMHMM [27] and putative ES proteins identified
using SecretomeP [28] are annotated (Figure 1). Firstly,
the signal sequence is checked with SignalP while, Secreto-
meP looks for non-classically secreted proteins and the
hidden Markov model probability scores (SignalPNN and
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Figure 1 Schematic diagram of TranSeqAnnotator workflow.

SignalP-HMM), using default parameters that can be
modified by experienced users. Subsequently, all proteins
with signal sequences are passed on to TMHMM, a hid-
den Markov model-based transmembrane helix prediction
program, to “filter out” of transmembrane proteins. ES
proteins, the subset lacking transmembrane helices are
further annotated. Phase III, the annotation level for pro-
tein sequences or ES proteins comprises a suite of compu-
tational tools InterProScan [29] for domain analysis and
Gene Ontology, pathway mapping using KOBAS (KEGG
Orthology-Based Annotation System) [30,31]. Also, pro-
tein BLAST is employed to search databases derived from
Wormpep [32] for locating nematode homologues and a
list of homologous proteins in C. elegans, archived in
WormBase as well as interaction databases like IntAct
[33], BioGrid [34] and DIP [35] which give information on
molecular interaction data and experimentally verified
protein-protein interactions.

TSA accepts a dataset submitted by the user and
optional programs can be selected as required (Figure 2).
The progress of the analysis is monitored on the status

page which is updated after each selected process is com-
pleted and the output of each program is available along
with a summarized output. Some of these tools are pro-
vided in the ESTExplorer [36] and EST2Secretome [37]
pipeline but, the analysis of large-scale EST dataset and
short read sequences with updated bioinformatics tools is
incorporated with TranSeqAnnotator as part of the
benchmarking with the large-scale analysis of Teladorsa-
gia circumcincta dataset (unpublished work). Also, the
program SecretomeP showed the identification of impor-
tant proteins which the previous pipelines failed to iden-
tify with SignalP. The identification of both classically
and non-classically secreted proteins with secretomeP is
the highlight of the robust analysis pipeline as our earlier
analysis on Fasciola hepatica [38].

Software/hardware environment

TranSeqAnnotator is developed using PERL v5.10.0
which links the different bioinformatics programs and
MySQL as backend for data management and analysis.
The front end is developed using PHP and the processes
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are run based on CPU availability. Each input sequence
submitted by the user is tagged with a request ID to
trace the process. The pipeline runs on a 16-node Linux
cluster (2.4 GHz, Intel(R) Xeon (R) CPU, 16 Processors,
32 GB RAM) running on ubuntu server operating sys-
tem. The output files for viewing and downloading are
provided as final results which are available for a week.

Results and discussion

Application of TranSeqAnnotator

Ascaris lumbricoides, the soil-transmitted helminths or geo-
helminths is the largest common intestinal nematode para-
sites of human that causes the disease ascariasis [39]. It
infects an estimated 1.2 billion people worldwide, but is
usually asymptomatic [40]. 1822 A. lumbricoides EST
sequences from dbEST [41], were analysed using the
TranSeqAnnotator. The dataset is from the adult male
whole body Ascaris lumbricoides cDNA clone. The phase I
of pre-processing (SeqClean and RepeatMasker) aligned/
clustered using CAP3 followed by assembly, was carried
out which yielded 236 contigs and 658 singletons. These

rESTs were mapped to the non-redundant (NR) dataset
using BLAST, for nucleotide level annotation. Using a
translational matrix, ESTScan conceptually translates these
high quality rESTs, which are then transferred to Phase II
of TSA, for the prediction of ES proteins, by sequentially
running SecretomeP (with a threshold value for the NN-
score of 0.9) and TMHMM programs. The cluster dataset,
translated peptide sequences and ES proteins were anno-
tated with biochemical pathways, employing KOBAS,
domain/family motif and GeneOntology using InterProS-
can. The query sequences were compared using BLASTP
against Wormpep [32] and against the IntAct database
(version 1.7.0) to extract all interaction partners. The 894
rESTS were conceptually translated to yield 510 peptide
sequences. The GO terms were identified for these putative
protein sequences using InterProScan, with 108 peptide
sequences assigned biological process (BP), 156 associated
with molecular function (MF) and 83 as part of a cellular
component (CC) (Additional File 1). The analysis revealed
that translation (GO:0006412) and oxidation-reduction
process (GO:0055114) were the highly represented GO
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categories signifying biological processes. The major num-
ber of GO terms in molecular function was structural con-
stituent of ribosome (GO:0003735), oxidoreductase activity
(GO:0016491) and ATP binding (GO:0005524) whereas
in cellular component, the highly represented GO terms
were ribosome (GO:0005840) and extracellular space
(GO:0005615).

A total of 239 peptide sequences were mapped to 113
KEGG pathways using KOBAS. The main KEGG path-
ways mapped included ribosomal protein assembly path-
way (n = 34) and cytoskeleton proteins (n = 19). Other well
represented pathways include tight junction (n = 14), regu-
lation of actin cytoskeleton (n = 12), focal adhesion (n =
12), valine, leucine and isoleucine degradation (n = 8) and
propanoate metabolism (n = 7). Peptides were mapped to
several pathways, including glycolysis/gluconeogenesis,
MAPK signaling pathway and ubiquitin mediated proteo-
lysis (Additional File 2).

Domain mapping by Interproscan provides details as to
the family, fold and functional domains present in the
putative peptides. The most represented was the collagen
triple helix repeat of proteins, comprising 14 protein
entries, followed by C-type lectin fold and transthyretin-
like family, with nine protein entries each. Other highly
represented domains are the actin-like and C-type lectin
(Additional File 3).

A total of 32 were predicted by SecretomeP. Of these, 6
are classically secreted peptides; with N-terminal signal
sequences while 26 are non-classical, supporting the use
of SecretomeP vs. SignalP alone, which can only predict
classically secreted proteins. Of these 32, six proteins with
transmembrane helices, predicted by TMHMM were
eliminated, resulting in 26 excreted/secreted proteins
inferred from the present dataset of 894 rESTs. We could
identify cecropin (including the cecropin-P1, cecropin-P2,
cecropin-P3), cathepsin L from Ascaris suum and cathe-
psin L-like protease from Strongylus vulgaris, chymotryp-
sin/elastase isoinhibitor 1 from Ascaris suum, C-type
lectin protein 160 from Ascaris suum and C-type lectin
domain-containing protein 160 from Ascaris suum. Gelso-
lin from Ascaris suum and GelSoliN-Like family member
(gsnl-1) from Caenorhabditis elegans were also identified
(Additional File 4). Cecropins, represent a large family of
antibacterial and toxic peptides are known to execute host
defence functions mainly against micro-organisms [42,43]
and are found in insects [44]. Ascaris cecropins (P1-P4)
were identified as antimicrobial peptides that were posi-
tively inducible by bacterial injection. Ascaris cecropins
synthesized chemically were bactericidal against a wide
range of microbes, i.e. Gram-positive (Staphylococcus
aureus, Bacillus subtilis and Micrococcus luteus) and
Gram-negative (Pseudomonas aeruginosa, Salmonella
typhimurium, Serratia marcescens and Esherichia coli)
bacteria, and were weakly but detectably active against
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yeasts (Saccharomyces cerevisiae and Candida albicans)
[45]. A large family of proteins that binds carbohydrate
moieties in a Ca2+-dependent manner are represented by
C-type lectins (CTLs) which act as a pathogen recognition
molecule or an antibacterial protein in immune responses
to protect the worm itself against microbial infection
[46-49]. They also play vital role in immune homeostasis
by endogenous ‘self’ ligand recognition [50], and they
themselves have a bactericidal activation [51]. Studies have
shown that A. suum C-type lectin-1(As-CTL-) shows high
similarity to Toxocara canis C-type lectin (Tc-CTLs) and
are exposed to attack by host immune responses. Hence,
to avoid protective immune responses in infected animals
during tissue migration A. suum larvae might interfere
with host inflammation processes by As-CTL-1 [52]. The
Gelsolin family belongs to a group of actin binding pro-
teins are known to be involved in cell structure, motility,
apoptosis, amyloidosis and cancer. Gelsolin-like protein-1
(GSNL-1) from C. elegans is a new member of the gelsolin
family of actin regulatory proteins which provide new
insight into functional diversity and evolution of gelsolin-
related proteins [53,54]. We were able to functionally
assign GO terms to 26 putative ES proteins with proteoly-
sis (GO:0006508) the most common GO category repre-
senting biological processes, cysteine-type peptidase
activity (GO:0008234) in molecular function and extracel-
lular region (GO:0005576) in cellular component. Protein
processing in endoplasmic reticulum, phagosome, lyso-
some, antigen processing and presentation, rheumatoid
arthritis represented the sequences mapped to KEGG
pathways using KOBAS. The TranSeqAnnotaor methodol-
ogy was benchmarked using the large-scale dataset of Tel-
adorsagia circumcincta (unpublished work) and applied
for the annotation of A. lumbricoides.

Future directions

TranSeqAnnotator currently supports nucleotide, short
reads, protein and ES level annotation. Our aim is to
extend the pipeline with updating the masking the
repeats with repeatless libraries to annotate newly
sequenced organisms and also to carry out annotations
for different datasets like RNA-seq, microarray
datasets.

Additional material

Additional file 1: GO annotation for putative peptides. Gene
Ontology annotations from Interproscan reported.

Additional file 2: KEGG Pathway analysis of proteins (E-value
threshold of 1E-05). Database matches reported.

Additional file 3: Domain description for the protein sequences.
Interproscan domains reported.

Additional file 4: Top BLAST hits for secreted proteins. Non-
redundant database matches reported.
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