Abbas et al. BMC Bioinformatics 2012, 13(Suppl 17):S10
http://www.biomedcentral.com/1471-2105/13/517/510

BMC
Bioinformatics

PROCEEDINGS Open Access

A hybrid method for the exact planted (/, d) motif
finding problem and its parallelization

Mostafa M Abbas'’, Mohamed Abouelhoda®®", Hazem M Bahig*

From Asia Pacific Bioinformatics Network (APBioNet) Eleventh International Conference on Bioinformatics

(InCoB2012)
Bangkok, Thailand. 3-5 October 2012

Abstract

solution is limited to small values of / and d.

nubios.nileu.edu.eg/tools/hymotif.

Background: Given a set of DNA sequences s, .., 5, the (|, d) motif problem is to find an Flength motif sequence
M, not necessary existing in any of the input sequences, such that for each sequence s;, 1 < i < t, there is at least
one subsequence differing with at most d mismatches from M. Many exact algorithms have been developed to
solve the motif finding problem in the last three decades. However, the problem is still challenging and its

Results: In this paper we present a new efficient method to improve the performance of the exact algorithms for
the motif finding problem. Our method is composed of two main steps: First, we process g < t sequences to find
candidate motifs. Second, the candidate motifs are searched in the remaining sequences. For both steps, we use
the best available algorithms. Our method is a hybrid one, because it integrates currently existing algorithms to
achieve the best running time. In this paper, we show how the optimal value of g is determined to achieve the
best running time. Our experimental results show that there is about 24% speed-up achieved by our method
compared to the best existing algorithm. Furthermore, we also present a parallel version of our method running
on shared memory architecture. Our experiments show that the performance of our algorithm scales linearly with
the number of processors. Using the parallel version, we were able to solve the (21, 8) challenging instance using 8
processors in 2042 hours instead of 6.68 days of the serial version.

Conclusions: Our method speeds up the solution of the exact motif problem. Our method is generic, because it
can accommodate any new faster algorithm based on traditional methods. We expect that our method will help
to discover longer motifs. The software we developed is available for free for academic research at http://www.

Background

DNA motifs are short sequences in the genome that play
important functional roles in gene regulation. Due to
their short length, it is difficult to identify these regions
using features intrinsic in their composition. Assuming
that the motifs are conserved in closely related species
due to the importance of their function, it is possible to
discover them by comparing the respective DNA

* Correspondence: mabbas@su.edu.eg; mabouelhoda@yahoo.com
'Department of Basic Sciences, Faculty of Engineering, Sinai University, El-
Arish, Egypt

Systems and Biomedical Engineering Department, Faculty of Engineering,
Cairo University, Giza, Egypt

Full list of author information is available at the end of the article

(BioMVed Central

sequences to identify the sub-sequences that are very
similar to each other.

There are two common combinatorial formulations
that identify the motifs: The first is the consensus motif
problem which made its first appearance in 1984 [1],
while the second is the planted (/, d)-motif problem that
was presented in 2000 [2]. It is worth noting that the lat-
ter formulation is a special case of the former. The exact
definitions are as follows:

Given a set of ¢ sequences s; where 1 < i < ¢ defined
over an alphabet Y. The consensus motif problem is to
find an /-length motif sequence M such that in each
sequence s;, 1 < i < t, there is at least one subsequence p;

© 2012 Abbas et al,; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://www.nubios.nileu.edu.eg/tools/hymotif
http://www.nubios.nileu.edu.eg/tools/hymotif
mailto:mabbas@su.edu.eg
mailto:mabouelhoda@yahoo.com
http://creativecommons.org/licenses/by/2.0

Abbas et al. BMC Bioinformatics 2012, 13(Suppl 17):S10
http://www.biomedcentral.com/1471-2105/13/517/510

differing with at most d mismatches from M; i.e., dy(p;,
M) < d, where dp is the hamming distance between p;
and M.

The planted (/, d) motif problem is a special case of
the consensus problem in which we restrict that p;
occurs only once in s;.

Due to its combinatorial nature, the consensus motif
problem and its variant defined above is extremely
challenging. Over a benchmark data of 20 sequences,
each of length 600 characters, large instances of (15,
5), (17, 6), (19, 7) and (21, 8) have been addressed and
many algorithms have been developed to solve them
one after another. These algorithms can be classified
into two major categories: approximation algorithms
[2-12] and exact algorithms [13-30]. Approximation
algorithms are based on probabilistic local search
techniques, such as Gibbs Sampling, Expectation Max-
imization, etc. Although these algorithms may solve
the challenging instances in practice, there is no guar-
antee that the motif can be found even when [/ is
short.

Exact algorithms are based on exhaustive search tech-
niques. The brute force algorithm proceeds by testing
all possible motifs of length / using pattern matching,
leading to O (I n t 4') time complexity. This algorithm,
however, is not suitable for discovering long motifs in
practice, and many algorithms have been developed to
provide faster solutions. Examples of these algorithms
are CENSUS [23], PMS1 [26], PMSP [27], PMSprune
[29], PMS5 [30], SMILE [19], RISO [24], RISOTTO
[28], and Voting [25]. In the following we briefly review
the most efficient ones and the ones related to our
work.

The algorithms SMILE [19], RISO [24], and RISOTTO
[28] are based on the use of suffix tree. The time complex-

ity of these algorithms is the same and it is O(£Nv(l, d)),
d

where (I, d) = ZCil3i is the size of the d-mismatch

i=0

t
neighbourhood of motifs of length / and N = Z ni, n; is
i=1
the length of sequence i from input sequences. RISOTTO
improved the time complexity of SMILE and RISO in the
average case and solved some challenging instances such
as (15, 5) and (17, 6).
PMSP [27] is based on exploring the neighbourhood of
the /-mer of the first sequence and checking whether the
elements of such neighbourhoods are (/, d) motifs. The

time complexity is O(;}thV(l, d)). It is able to solve

some challenging instances such as (15, 5) and (17, 6).
PMSprune [29,31] is an improved version of the PMSP
algorithm, based on the branch and bound strategy.
Although it has the same worst-case time complexity as

Page 2 of 12

PMSP algorithm, it is more efficient in practice and it
could tackle the (17, 6) and (19, 7) instances for the first
time. PMS5 [30] is based on computing the common d-
neighbourhood of three /-mers using integer program-
ming formulation. It combines this novel idea with the
algorithms PMS1 and PMSPrune. PMS5 can tackle the
large challenging instances (19, 7), (21, 8) and (23, 9).
The only drawback of PMS5, it requires larger amount of
internal memory to finish computation.

Our contribution

In a previous work [32,33], we have introduced an idea
composed of two stages to speed up the exact algo-
rithms: In the first stage, we generate a set of candidate
motifs by applying one of the exact algorithms based on
the neighbourhood method (like Voting [25] or PMSP
[27] algorithms) using g < t sequences. In the second
stage, for each candidate motif we check if it is a valid
motif or not using pattern matching on the reminder
(t - q) sequences. This dramatically reduces the search
space and leads to significant speed up. The bottleneck
in this approach, however, was the determination of the
g value that yields the fastest running time. That is, the
user has to guess the value of g, which might lead to
non-optimal running time and even no speed up com-
pared to the traditional methods. Also, the authors in
[34] have used the same idea on PMS1, RISOTTO, and
PMSprune algorithms.

In this paper, we present a theoretical method which
can be used to determine the appropriate value of g.
Then we apply this strategy on PMSprune algorithm and
solve some big challenging instances such as (21, 8).
Furthermore, we propose a parallel version of our algo-
rithm to present a practical solution to the challenging
instances of the motif problem. Our parallel version
further speeds up the solution of the (21, 8) instance.

Definitions and related work

In this section, we introduce some notations and defini-
tions that will help us to describe our algorithm and
related work in a concise manner.

Definition 1 adapted from [29]: For any string x,
with |x| = [, let By(x) = {y: |y| = [, du(y, x) < d}, where
dy; denotes the Hamming distance and B,(x) denotes
the set of neighbourhoods of x. We also write v(J, d) to
refer to |By(x)|-

Definition 2 adapted from [29]: Let s denote a string
of length # and let x denote another string of length /,
| <n. We define the minimum distance between s and x

_] , ‘
as du(x,s) = I;HEI du(x, x") | where x <; s denotes that x is
<

a substring of s with length /.
Definition 3 adapted from [29]: Given an [/-length
string x and a set of strings S = {sy, ..., s} with |s;| = n

Abbas et al. BMC Bioinformatics 2012, 13(Suppl 17):S10
http://www.biomedcentral.com/1471-2105/13/517/510

fori = 1, .., t and [<n, we define the distance between S
and x as di(x, S) = mlz%x{c_iy(x, si)} = mlz}x{misn{dH(x,)}
i= 1= <S;

Definition 4 adapted from [29]:A string x is an (/, d)
motif for a set of sequences S = {sy, ..., s, if:

1) dy(x, S) < d.

2) Jy<isy 1 x € Ba(y) Ady(x, {s1, ..., s}) < d.

Proposition 1 adapted from [10]: Let # and v be two
random strings of length / over an alphabet of 4 charac-

ters with equal probability of occurrence. The probabil-
d

) . 1 i I—i

ity pa that dy(u, v) < dis pg = 20: <i>(3/4) (1/4)",
i=

and the probability that dj(x,S) > dis (1-(1-ps)" """

The expected number of /-length motifs that occur at

least once in each of the ¢ sequences with up to d sub-

stitutions is E(}, d, t, n) = 4'(1-(1-py)" ")

PMSprune Algorithm

Because the first stage of our method will depend on the
PMSprune algorithm. We will review the basic steps of
it in the notions presented above.

The main strategy of PMSprune is to generate B,(y),
for every [-mer y in s;, using a branch and bound tech-
nique. An element xeB,(y) is a motif only if
dy (x,S) < d . The step of verifying that dy (x,S) < d is
achieved by scanning all substrings of S. For fixed values
of t, n, and [/, the expected time complexity of
PMSprune is equal to

2d§1’:+1<£> 31)) o

where p,, is the probability that the hamming distance
between two strings is at most 2d, and it is defined in
Proposition 1. For fixed values of ¢, n, and [/, value d’

was estimated such that the probability of dy(x, S) > d’

TPMSprune =0 <t(1’l -1+ 1)2 (Z + P2d

is close to 1. (The probability of EiH(x, S) > d is given in
t
Proposition 1 and it is (1 _ (1 _ p:i)n—m))

Implementation

Our proposed strategy

Our new strategy, referred to as hybrid exact pattern
motif search (HEP), is composed of three steps: first, we
determine the value g, corresponding to the size of a
subset of input sequences, as explained below. Second,
we apply an exact exhaustive algorithm £ (like,
PMSprune) on the set of g sequences to find the set of
d-neighbourhood B,(x) (review definition 1 for exact
definition of d-neighbourhood). We call this set the can-
didate motif set. Finally, we apply a pattern search algo-
rithm over the remaining sequences to verify each

Page 3 of 12

motif. Note that our algorithm is generic in the sense
that it takes the program £ also as input in addition to
the input sequences and user parameters. A pseudo
code for this strategy using the exact algorithm £ is as
follows:

Algorithm 2: HEP (£, sy,..., s, 1, [, d)

Begin

1) Determine the number of sequences g using the
method given below.

2) Implement the exact algorithm £ on ¢ input
sequences. Let C be the set of candidate motifs
found in the g sequences.

3) For each pattern v in C, check if v is a valid motif
or not in the reminder (¢ - g) input sequences using
pattern matching Algorithm.

End.

Theorem 1: Algorithm 2 correctly finds all (/, d)
motifs in a given ¢ input sequences.

Proof: Step 2 of the algorithm is exhaustive and finds
the whole set of d-neighborhood for the g sequences.
Therefore, and by definition of the (/, d) motif problem,
any (/, d) motif belongs to this set, even if g = 1. In Step
3, each candidate motif is verified by comparison to
each substring in the remaining sequences. This step is
conducted by an approximate pattern matching algo-
rithm for each /-length substring in the candidate motif
set and each [-length substring in the remaining
sequences such that the hamming distance between
these two substrings is < d. This guarantees that no
motif is missing.

Theorem 2: The running time of the HEP is equal to

Tuep = Tig) + 1(t — q)(n — 1+ 1)E(l, d, g, n) 2)

where T, is the running time of step 2 involving the
use of an exact algorithm £ on the g input sequences and
(t-q) (n-1+1)E(d, g n) is the running time of step 3
such that E(/, d, g, n) is the number of elements in the set
C, which is estimated to be 4/(1- (1 - p,)" "' * 1)7. Note
that the complexity of step 1 takes constant time, as we
will explain below. Note that the running time of the
brute force algorithm is acquired if g = 0 in equation 2.
The running time of the exact algorithm £ is acquired if
q = t in equation 2.

Determination of the best g

The range of the number of sequences g, enhancing the
performance of the exact motif finding problem is calcu-
lated by solving the following inequality for the para-
meter g:

Tygp < T ®3)

Abbas et al. BMC Bioinformatics 2012, 13(Suppl 17):S10
http://www.biomedcentral.com/1471-2105/13/517/510

Definition 5: We define mns as the minimum number
of sequences g that yields better running time; i.e., the
first value of g that verifies the inequality. We also
define ons as the optimal number of sequences g that
yields the best running time; i.e., the value of g such
that Tyep is minimum over 1 < g < £

Implementing HEP based on PMSprune

We decided to use PMSprune for implementing the first
step in our method, because of its superiority compared
to other algorithms as discussed in [31]. However, we
stress that our approach is generic and can be used with
any better algorithm that appears in future. In the fol-
lowing, we will refer to our method based on PMSprune
as HEP_PMSprune. If ¢ = mns we will denote it with
HEP_PMSprune(mns), and if ¢ = ons we will denote it
with HEP_PMSprune(ons).

Determining mns for PMSprune

Replacing Ty by the time of PMSprune on g
sequences, Equations (1) and (2) can be rewritten as fol-
lows:

2d—d'+1

Ty =0 =1+ 10’ Cepa 3 (1)3) + (= a)n=141)
i-1
2d—d'+1

tepu Y (1))

i=1

2d—d'+1

Triep prsprune = 4(n — 1+ 1)7(1+ paa Z <5> 3 +1(t—q)

i=1

(n—1+1)EQ d,q,n)

Replacing THEP with THEP?PMSprune and T£ with
Tpptsprune in the inequality (3)results in the following
variation:

2d—d'+1

I(t—q)(n—1+1)E(Id qn) < (t—q)(n—1+1)*(1+pau Z (i) 3%)

i=1

Substituting the value of E(/, d, g, n) with the value
given in Proposition 1 in the left hand side yields
()

Dividing both sides by 4’ and taking the logarithm,

2d—d' +1
m=1+1)(+pa Y

41— (1= pa))T < ;

2d—d'+1

log {(n — 1+ 1)L+ pag ; <5> 3i)} — log(14") @

q>
log(1 — (1 —pa)""")

The inequality (4) provides the range of the values of
q that makes the running time of HEP using PMSprune

Page 4 of 12

less than the running time of the original PMSprune
over the all set of sequences. The minimum value of g
in the range of the inequality is called mnus and it is
equal to:

2d—d'+1

logi(n—1+1)(I+paa Y

> (l) 31‘)} — log(l4')

n—I+1 +1
log(1 = (1 —pa)"™")

Determining ons for PMSprune
For fixed values of ¢, n, [and d, ons can be calculated
for PMSprune by selecting the value of g that minimizes
the total number of operations Trep parsprune for 1 < g <
t. The following algorithm computes the value of ons for
each instance (/, d).

Algorithm 3: Find ons

Begin

1)g=ons=1 d

2 Bdam -4 (- 0= (3 () G-y

i=0

2d—d'+1

3) Twin=q(n—1+1)2(+pa Y <;)3i)+l(t—q)(n—l+l)E(l,d,q,n)

i=1

4) for q = mns to t do

d
E(l,d,q,n) = 4! 1-(1- (Z (i) (3/4)f(1/4)’*i))n—l+1)q

i=0

2d—d'+1
T=qn—1+12(1+pua Y. (f) 30) 4 1(t — q)(n — 1+ DE(L, d, 4, n)
i=1

if T <Tpy, then

Tmin =T

ons = q

5) return ons

End

The above algorithm computes g in O(f) time. In
practice, the time for computing g takes negligible time
with respect to the rest of motif finding steps; it took
maximum one second for all experiments included in
this paper with simulated and real datasets. To save
some time, our implementation includes a look-up table
containing pre-computed values of g for different values
of [, n, and d, where [< 20, d < 3, and selected values of
n with n = 300, n = 350, 400, ..., n = 700. For other
values of /, n, and d, we compute the best g using the
above algorithm.

Parallel version of HEP_PMSprune(ons)

We propose a parallel version for HEP_PMSprune(ons)
called PHEP_PMSprune(ons). The two main steps of
HEP_PMSprune(ons) can be parallelized as follows:

Abbas et al. BMC Bioinformatics 2012, 13(Suppl 17):S10
http://www.biomedcentral.com/1471-2105/13/517/510

We parallelize the PMSprune algorithm by assigning a
set of [-mers from s; to each processor for establishing
the set of neighboring motifs. The resulting sets are
stored in candidate motif lists C;, i € {1, 2, ..., p}, where
p is the number of processors. After each processor
finishes computation, the C; lists are merged together in
a larger set C, such that each motif is represented once
in this list; i.e., all repetitions are removed. Creating the
C list is done in linear time with respect to the number
of candidate motifs and it is achieved as follows:

We incrementally construct the partial list C; that
contains the L; lists, 1 < j < p, by appending the list ;
at the end of the list C;; such that all elements in L;
existing in C;; are discarded. This continues until j = p;
ie, C, is C. Discarding a repeated element is done effi-
ciently as follows: For small values of [, we create a
look-up table with size X, where X is the alphabet size.
Each possible /-length string can be mapped to a num-
ber in the range between zero and ¥’ in O(J) time. The
i™ entry in this table contains one if a string in Ci1is
mapped to i. Otherwise, it contains zero. The strings in
C; are queried against this look-up table to discard repe-
titions and set entries they are mapped to with value
one. For longer values of /, we use the Aho-Corasick
automaton to index all /-length motifs in C;,, and check
if a strings in C; exists in the automaton or not and add
the new strings of C; to the automaton. For these string
matching algorithms, we refer the reader to [35].

In the second step, we validate each candidate motif
independently in parallel over the available processors.
The running time of this algorithm is O(Ty/p +|C|),
where T is the sequential running time and |C| is the
size of set C.

The first step in the parallel algorithm does not lead
to loss of any motifs. This is because the set C includes
the d-neighborhood set of the g-sequences. The reason
is that we run PMSprune in parallel against the strings
(%, $2, 83, ..., S;), where x is a substring of s;. That is,
each substring is not processed. The second step in the
parallel algorithm is also correct, because the elements
in C are independent of each other and checking the
validity of each candidate motif can be safely run in par-
allel. Our experimental results confirm the correctness
of our parallelization procedure.

Results and discussion

Experiments on simulated datasets

We used the simulated data sets that are used in many
articles [25-30,32-34] with ¢ = 20 sequences and # = 600
characters, where the alphabet size is 4. Each (/, d) input
instance dataset is generated as follows: We generate
random strings with length (n-) each, where the charac-
ters appear randomly with equal probability. Then we
generate randomly an /-length string M and plant a

Page 5 of 12

copy of it in each sequence at random position after
mutating it with at most d random mutations. We
tested the algorithms for varying #, /, and d values and
for the following challenging instances: (11, 3), (13, 4),
(15, 5), (17, 6), (19, 7), and (21, 8).

Experiments overview

Our experiments address three major issues: The first is
the performance of our method compared to the use of
PMSprune only. The second, we show that our method
for selecting g, already achieves the best running time.
The third is the performance of the parallel version and
its scalability. The algorithms are implemented on a 2
Quad-core processors (2.5 GHz each) machine. The
programs are coded in C language. In the parallel ver-
sion, we use openMP directives for parallelizing the
code.

Performance of HEP on PMSprune

Tables 1 and 2 show the performance of the algorithms
HEP_PMSprune(mns) and HEP_PMSprune(ons) with
respect to PMSprune algorithm respectively. The last
column in Tables 1 and 2 displays the improvement in

T —-T
PMSprune which equals to PMSprune HEP PMSprine(mns)

Tpum Sprune

TPMSprune — Thgp PMSprune(ons)

and respectively. We used

TPMSprune
the notations ‘s’, ‘m’, ‘h’, and ‘dy’ in computing the time
for seconds, minutes, hours, and days, respectively. The
results confirm that, the algorithms HEP_PMSprune
(mns) and HEP_PMSprune(ons) significantly reduced
the running time compared to the standard PMSprune

algorithm in all challenging instances.

Evaluating the choice of g
In this section, we experimentally evaluate our algorithm
for determining the best g that minimizes the running
time of the HEP_PMSprune(g) algorithm. To achieve
this, we will follow the following steps:

1. We run HEP_PMSprune(q), mns < g < ¢t for the
problem instances (11, 3), (13, 4), (15, 5), (17, 6), (19, 7),

Table 1 Time Comparison of PMSPrune and
HEP_PMSprune(mns) with the Challenging Instances

) d Tomsprune MNS Tuep pmsprunelmns) ~ Improvement
11 3 192 s 9 14 s 271 %
13 4 3395 s 7 2605 s 2327 %
15 5 77 m 6 64 m 16.8 %
17 6 155 h 7 1.26 h 185 %
19 7 1862 h 6 1493 h 19.8 %
21 8 8.59 dy 6 6.68 dy 2223 %

Abbas et al. BMC Bioinformatics 2012, 13(Suppl 17):S10
http://www.biomedcentral.com/1471-2105/13/517/510

Table 2 Time Comparison of PMSPrune and
HEP_PMSprune(ons) with the Challenging Instances

I D Tomsprune ONS Tuep_pmsprunelons) ~ Improvement
11 3 192 s 10 134 s 30 %

13 4 3395 9 2455 s 27.69 %
15 5 77 m 7 6.02 m 218 %

17 6 155 h 8 1.26 h 18.65 %
19 7 1862 h 7 1439 h 2274 %

21 8 8.59 dy 6 6.68 dy 2223 %

and (21, 8) and determine the value of g that minimizes
the running time; we will refer to this value with o#seyy,.

2. Compare the onsey, against our ons computed
theoretically.

Figure 1, which plots the running time against differ-
ent g values, shows the results of applying these steps.
We observe the value of ons is equal or very close to
the value of onseyy,.

We also conducted another experiment, where the
problem instances were generated with different # and /
and d. Table 3 shows the results for many of these
instances, where the number of sequences ¢ = 20. We
can observe that our algorithm finds the optimal g in all
these instances. We also observe improvement of the
running time with respect to the PMSprune algorithm
in most of the cases. The cases with no improvement in
the running time are attributed to the fact that the
expected number of motifs is very low and the original
algorithm runs already fast in these cases.

Note that it was not feasible to list the results for all
possible values #n, [, and d in Table 3. But in other
instances with different values of #, /, and d, we found
that ons and its time were consistent with ons.,, and its
time published in this table.

Performance of PHEP_PMSprune(ons)algorithm

In Table 4, we show the results of applying the parallel
version of our algorithm PHEP_PMSprune(ons) using
different number of processors and for different pro-
blem instances. The running time of the difficult
instance (21, 8) has been decreased from 6.68 days to
about 20.42 hours using 8 processors. Figure 2 shows
the scalability results for the algorithm where

Trep
PMSprune(ons) .
™. From Table 4 and Figure 2 we
HEPPMSprune(nns)

note that PHEP_PMSprune(ons) reduce the time of
HEP_PMSprune(ons) and the speedup achieved scales
well with the increasing number of processors.

speedup =

Experiments on real datasets
We used two collections of real datasets used in pre-
vious research papers [10,26,29,36]. The first collection

Page 6 of 12

is a dataset including a number of the upstream regions
of yeast genes [37] affected by certain transcription fac-
tors. The transcription factors are from the SCPD [38]
database and the paper [39]. The upstream DNA
sequences were extracted using the Saccharomyces Gen-
ome Database [37]. The second collection includes the
dataset of Blanchette [36] which includes the upstream
DNA regions of many genes from different species. This
dataset is available at http://bio.cs.washington.edu/sup-
plements/FootPrinter and a copy of it is available with
our software tool for testing.

Tables 5 and 6 show the motifs found by our method
compared to the published ones for both collections. In
each table, we give a reference to the published motif.
Our program could detect all published motifs. It is also
interesting to note that our program could detect extra
novel motifs in the case of the Interleukin-3 problem
instance in Table 6. These motifs look interesting,
because they are 20 bp long with hamming distance
zero; an observation that calls for further biological
investigation.

Tables 5 and 6 also include the running times (in sec-
onds) of running our method for the listed problem
instances and the improvement in time compared to the
PMSprune method. The running time for one problem
instance is the time needed to run our program in the
(I, d) parameters range from (6, 0) until (21, 3), i.e.,
there are 64 invocations of our program. The results
show that our program is superior to the PMSprune for
large instances.

Conclusions

In this paper, we introduced an efficient method that
can enhance the performance of exact algorithms for
the motif finding problem. Our method depends on
dividing the sequence space into two sets. Over the first
set, we generate a set of candidate motifs. Then, we use
the remaining set of sequences to verify if each candi-
date motif is a real one. The experimental results show
that our method is superior to the best methods avail-
able so far and could tackle large problems like (21, 8).
Finally, we introduced a scalable and efficient parallel
version for the proposed method. Our tool is available
for free for academic research at http://www.nubios.
nileu.edu.eg/tools/hymotif.

Availability and requirements
Project name: hymotif.

Project home page: http://www.nubios.nileu.edu.eg/
tools/hymotif

Operating system(s): Linux.

Programming language: C.

Other requirements: C/C++ libraries.

License: GPL.

http://bio.cs.washington.edu/supplements/FootPrinter
http://bio.cs.washington.edu/supplements/FootPrinter
http://www.nubios.nileu.edu.eg/tools/hymotif
http://www.nubios.nileu.edu.eg/tools/hymotif
http://www.nubios.nileu.edu.eg/tools/hymotif
http://www.nubios.nileu.edu.eg/tools/hymotif

Abbas et al. BMC Bioinformatics 2012, 13(Suppl 17):S10 Page 7 of 12

http://www.biomedcentral.com/1471-2105/13/517/510

e N
’ . . - -
-
" -
4 = -
g 1 & w04 -
§ .. K -
& 104 % 2 o
i " i _
. * 4 v -
“ o
- » .
B P A A e . A . Ty FYeyp————y—
9 3
1 1
- .
N - -
] . -
- -
. = .
g . - -
1. v i.. i
t " - s -
v: irl v - i . -
. . T .
- -
. - - v
L s
1ch idi
-
s -
-
.
b= i
£ o
1 .
-
-
-
v a?
a
1ol
Figure 1 Performance of our method for different challenging instances. Behavior of HEP_PMSprune(q) for different (/, d) instances such
that g € {mns,.., . (@): (11, 3), (b): (13, 4), (0): (15, 5), (d): (17, 6), (e): (19, 7). We used the following remarks in the figures: 1) Black-triangle-down
to indicate the runing time of HEP_PMSprune(mns). 2) Black-star to indicate the running time of PMSprune or HEP_PMSprune(t). 3) White-box to
indicate the running time of HEP_PMSprune(ons); i.e,, using theoretically estimated g.

Abbas et al. BMC Bioinformatics 2012, 13(Suppl 17):S10 Page 8 of 12
http://www.biomedcentral.com/1471-2105/13/517/510
Table 3 The performance of the HEP_PMSprune(ons) for different values of n and /

n d) ons T _ons ons_exp T_onsexp T_pms
300 3 " 9 0.0001 3-20 0.0001 0.0001
600 3 Inl 10 1.34 10 1.34 1.92
900 3 " 14 4 11-16 4 5
1200 3 " 17 7 17 7 8
1500 3 " 20 16 20 16 16
300 3 12 6 0.05 4-20 0.05 0.05
600 3 12 8 0.83 4-20 0.83 0.83
900 3 12 8 15 6-20 1.5 1.5
1200 3 12 9 3 6-15 3 4
1500 3 12 10 5 8-12 5 7
300 4 13 7 3 5-20 3 3
600 4 13 9 24.55 9 24.55 33.95
900 4 13 1 81 " 81 109
1200 4 13 14 190 14 190 217
1500 4 13 17 353 17-19 356 360
300 4 14 6 1 4-20 1 1
600 4 14 7 6.5 7-18 6.5 7
900 4 14 8 215 8-9 215 24
1200 4 14 8 54 8 54 67
1500 4 14 9 107 9 107 146
300 4 15 5 0.25 4-20 0.25 0.25
600 4 15 5 1.25 4-20 1.25 1.25
900 4 15 6 5 5-20 5 5
1200 4 15 6 12 8 10 13
1500 4 15 7 16.5 7-13 16.5 20
300 4 16+ 5 0.002 3-20 0.002 0.002
600 4 16+ 5 0.25 4-20 0.25 0.25
900 4 16+ 5 1 4-20 1 1
1200 4 16+ 6 2.34 5-20 2.34 2.34
1500 4 16+ 6-8 4.89 5-20 4.89 4.89
300 5 15 7 38 6-10 38 46
600 5 15 8 361.2 8 360 462
900 5 15 9 1250 9 1250 1847
1200 5 15 " 2976 " 2976 4060
1500 5 15 13 5829 13 5829 6969
300 5 17 5 2 5-20 2 2
600 5 17 6 27 13-20 19 19
900 5 17 5 103 7-20 92 92
1200 5 17 6 231 6-8 224 264
1500 5 17 6 439 6-8 439 552
300 5 18+ 5 1 5-20 1 1
600 5 18+ 6 5 6-20 4 4
900 5 18+ 6-7 14 6-20 14 14
1200 5 18+ 6-7 33 6-20 33 33
1500 5 18+ 6-8 74 6-20 74 74

The first column includes the sequence length n, the second includes the hamming distance d, and the third includes the motif length /. The entries I+, means
greater than / leads to no improvement. ‘ons’ stands for the theoretically computed g, while “ons_exp” stands for the experimentally found one. We report range
of ons_exp that yielded best time. There also range of ons for I+. “T_ons” and “T_ons,,," stand for the times (in seconds) with ons and ons_exp, respectively.

“T_pms” stands for the time with the original PMSprune algorithm only.

Abbas et al. BMC Bioinformatics 2012, 13(Suppl 17):S10
http://www.biomedcentral.com/1471-2105/13/517/510

Page 9 of 12

Table 4 Running time of PHEP_PMSprune(ons) using different number of processors p for some challenging instances

I d Time
P=2 P=3 P =4 P=5 P=6 P=7 P=8
13 4 24.86 s 124's 835s 6.1s 495 s 435 s 36s 32s
15 5 634 m 319 m 213 m 161 m 128 m 107 m 552's 485 s
17 6 128 h 3828 m 2558 m 1916 m 1534 m 1281 m 1098 m 961 m
19 7 14.56 h 724 h 481 h 361 h 298 h 242 h 207 h 182 h
21 8 6.68 dy 333 dy 223 dy 167 dy 134 dy 112 dy 2318 h 2042 h
N
8 <
7
6 -
5 4
Q
-g 4
0 44
()]
Q. 4
1]
3 -
2 -
14
0 ' 1 . 1 ' | ! 1 . | . I ' 1 | ! 1
0 1 2 3 4 5 6 7 8 9
Number of Processors
Figure 2 Scalability plot of the parallel version. The plots show speed-up for different number of processors and problem instances.
J
Table 5 Application of the PHEP_PMSprune(ons) on the real yeast dataset
Transcription Factor Genes Detected motif (s) & parameters Published Motif (s) & reference(s) Time
PHO4 (600 bp) PHOS5, PHOS8, PHO81, PHO84, CACGTG (6,0) CACGTIGIT] [38] 38 (5%)
HSE_HSTF SSA1, HSP26, SSA4, HSC82, SIST, CUP1-1 TTCAGTGAA TTCNNGAA [38] 37 (35%)
(600 bp) 92 TTCNNNGAA [38]
PDR PDR3, SNQ2, TCCGTGGA TCCGIC|TIGGA [38] 27(13%)
(600 bp) PDR15, HXT9, HXT11, PDR5, 871
YOR1 TCCGCGGA
81)
MCB CDC2, CDCY, ACGCGT [A[TICGCGIAT] [38] 31(20%)
(600 bp) CDC6, CLNT, (6,0)

POL1, CDC21

Abbas et al. BVIC Bioinformatics 2012, 13(Suppl 17):S10
http://www.biomedcentral.com/1471-2105/13/517/510

Page 10 of 12

Table 5 Application of the PHEP_PMSprune(ons) on the real yeast dataset (Continued)

ECB SWI4, MCM5 TTTCCCATTAAGGAAA (16,3) TTtCCenntnaGGAAA [10,39] 41(49%)
(600 bp) MCM7, CDCo
CLN3

The first column includes the transcriptional factors (regulatory elements) and the length of upstream sequences. The second column includes the regulated
genes. The first three factors and their related genes are available at the SCPD [38]. The ECB is the early-cell-cycle-box promoter region described in [39] and we
extracted its related genes from the Yeast Genome Database [37]. The third column includes the motif detected by our tool and the respective parameters (/, d).
The fourth column includes the published motifs and their references. The final column includes the running time in seconds needed to run our program in the
parameter range from (6, 0) until (21, 3), i.e,, there are 64 invocation of our program. The percentages in brackets refer to percentage improvements in rum time
compared to PMSprune method.

Table 6 Application of the PHEP_PMSprune(ons) on the Blanchette real dataset

DNA region Seq. Detected motif Published Motif Time
no.
Insulin family 8 CCTCAGCCCC (10, 1) CCTCAGCCCC [10/40] 87(10%)
5" promoter
(500 bp)
AAGACTCTAA (10,2) AAGACTCTAA [36,40]
GCCATCTGCC (10,1) GCCATCTGCC [36,40]
CTATAAAG (8,0) CTATAAAG [36, GB]
GGGAAATG (8,1) GGGAAATG [36,40]
Metallothionein 26 TTTGCACACGC (11,3) TTTGCACACG [36/40] 7.87(1%)
5'UTR+Promoter
(590 bp)
TGCACAC (7,1) TGCACACGG [36/40]
Interleukin-3 5'UTR+Promoter 6 TTGAGTACT (9,2) TTGAGTACT [36,40]
490 bp
GATGAATAAT (10,1) GATGAATAAT [36,40]
TCTTCAGAG, (9,2) TCTTCAGAG [36,40]
AGGACCAG, (8,1) AGGACCAG [36,40] 466(10%)
AGGTTCCATGTCAGATAAAG, Novel
ATGGAGGTTCCATGTCAGAT,
CTATGGAGGTTCCATGTCAG,
GAGGTTCCATGTCAGATAAA,
GGAGGTTCCATGTCAGATAA,
TATGGAGGTTCCATGTCAGA,
TGGAGGTTCCATGTCAGATA,
all these motifs found with (20,0)
Growth—hormone 16 AACTTATCCAT (11,3) ATTATCCAT [36,40] 3.43(0%)
5UTR+promoter
(380 bp)
ATAAATGTAAA (11,3) ATAAATGTA [36,40]
TATAAAAAG (9,2) TATAAAAAG [36,40]
c-fos 6 CCATATTAGGAC (12,3) CCATATTAGGACATCT [1041] 350(15%)
5 UTR+promoter
(800bp)
GAGTTGGCTGC (11,3) GAGTTGGCTG [36]
CACAGGATGT (10,2) CACAGGATGT [36,40]
AGGACATCTGCT (12,3) AGGACATCTG [36,40]
c-myc 7 GTTTATTC (8,1) GTTTATTC [36] 83.5(42%)
5'+promoter
(100bp)

CTTGCTGGG (9,2)

TTGCTGGG [36]

TGTTTACATC (10,2)

TGTTTACATC [36,40]

ccarcccc

CCCTCCCC [36,40]

Abbas et al. BMC Bioinformatics 2012, 13(Suppl 17):S10
http://www.biomedcentral.com/1471-2105/13/517/510

Page 11 of 12

Table 6 Application of the PHEP_PMSprune(ons) on the Blanchette real dataset (Continued)

Hjstone H1 4
5UTR+Promoter
650 bp

CAATCACCAC, (10,2)

CAATCACCAC, [36, GB] 47.6(9%)

AAACAAAAGT (10,1)

AAACAAAAGT, [36, GB]

The first column includes the gene family and the length of upstream sequences. The second column includes the number of sequences. The third column
includes the motif detected by our tool and the respective parameters (I, d). The fourth column includes the published motifs and their references; “GB” stands
for Genebank annotation. The final column includes the running time in seconds needed to run our program in the parameter range from (6,0) until (21,3), i.e.,
there are 64 invocation of our program. The percentages in brackets refer percentage improvements in rum time compared to PMSprune method.

Any restrictions to use by non-academics: No
restrictions.

Acknowledgements

The authors are grateful to M.M. Mohie Eldin for useful discussion. The
authors also thank Sanguthevar Rajasekaran for providing us with the source
code of PMSprune and real datasets.

This article has been published as part of BMC Bioinformatics Volume 13
Supplement 17, 2012: Eleventh International Conference on Bioinformatics
(InCoB2012): Bioinformatics. The full contents of the supplement are
available online at http://www.biomedcentral.com/bmcbioinformatics/
supplements/13/517.

Author details

'Department of Basic Sciences, Faculty of Engineering, Sinai University, El-
Arish, Egypt. *Systems and Biomedical Engineering Department, Faculty of
Engineering, Cairo University, Giza, Egypt. *Center for Informatics Sciences,
Nile University, Giza, Egypt. “Computer Science Division, Department of
Mathematics, Faculty of Science, Ain ShamsUniversity, Cairo 11566, Egypt.

Authors’ contributions

All authors contributed to theoretical and practical developments which
form the basis of HEP method. All authors wrote and approved the
manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 13 December 2012

References

1. Waterman MS, Aratia R, Galas DJ: Pattern recognition in several
sequences: consensus and alignment. Bulletin of Mathematical Biology
1984, 46(4):515-527.

2. Pevzner P, Sze SH: Combinatorial approaches to finding subtle signals in
DNA sequences. Proceedings of Eighth International Conference on Intelligent
Systems for Molecular Biology 2000, 269-278.

3. Lawrence C, Reilly A: An expectation maximization (EM) algorithm for the
identification and characterization of common sites in unaligned
biopolymer sequences. Proteins: Structure, Function and Genetics 1990,
7:41-51.

4. Lawrence C, Altschul S, Boguski M, Liu J, Neuwald A, Wootton J: Detecting
subtle sequence signals: A Gibbs Sampling strategy for multiple
alignment. Science 1993, 262:208-214.

5. Bailey T, Elkan C: Unsupervised learning of multiple motifs in biopolymers
using Expectation Maximization. Machine Learning 1995, 21:51-80.

6. Fraenkel Y, Mandel Y, Friedberg D, Margalit H: Identification of common
motifs in unaligned DNA sequences: application to Escherichia coli Lrp
regulon. Bioinformatics 1995, 11:379-387.

7. Rigoutsos |, Floratos A: Combinatorial pattern discovery in biological
sequences: the TEIRESIAS algorithm. Bioinformatics 1998, 14:55-67.

8. Hertz GZ, Stormo GD: Identifying DNA and protein patterns with
statistically significant alignments of multiple sequences. Bioinformatics
1999, 15:563-577.

9. Gelfand M, Koonin E, Mironov A: Prediction of transcription regulatory
sites in archaea by a comparative genomic approach. Nucleic Acid Res
2000, 28:695-705.

10.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

Buhler J, Tompa M: Finding motifs using random projections. Journal of
Computational Biology 2002, 9(2):225-242.

Price A, Ramabhadran S, Pevzner PA: Finding subtle motifs by branching
from sample strings. Bioinformatics 2003, 19(2):ii149-ii155.

Huang C, Lee W, Hsieh S: An improved heuristic algorithm for finding
motif signals in DNA sequences. [EEE/ACM Transactions on Computational
Biology and Bioinformatics 2011, 8(4):959-975.

Galas DJ, Eggert M, Waterman MS: Rigorous pattern-recognition methods
for DNA sequences: analysis of promoter sequences from Escherichia
coli. Journal of Molecular Biology 1985, 186(1):117-128.

Staden R: Methods for discovering novel motifs in nucleic acid
sequences. Computer Applications in the Biosciences 1989, 5(4):293-298.
Brazma A, Jonassen |, Vilo J, Ukkonen E: Predicting gene regulatory elements
in silico on a genomic scale. Genome Research 1998, 15:1202-1215.

Sagot MF: Spelling approximate repeated or common motifs using a
suffix tree. In Latin'98: Theoretical informatics, LNCS Lucchesi CL, Moura AV
1998, 1380:111-127.

Van Helden J, Andre B, Collado-Vides J: Extracting regulatory sites from
the upstream region of yeast genes by computational analysis of
oligonucleotide frequencies. Journal of Molecular Biology 1998,
281(5):827-842.

Tompa M: An exact method for finding short motifs in sequences with
application to the ribosome binding site problem. Proceedings of seventh
International Conference on Intelligent Systems for Molecular Biology 1999,
262-271.

Marsan L, Sagot MF: Algorithms for extracting structured motifs using a
suffix tree with an application to promoter and regulatory site consensus
identification. Journal of Computational Biology 2000, 7(3-4):345-362.

Sinha S, Tompa M: A statistical method for finding transcription factor
binding sites. Proceedings of Eighth International Conference on Intelligent
Systems for Molecular Biology 2000, 344-354.

Blanchette M: Algorithms for phylogenetic footprinting. Proceedings of
Fifth International Conference Computational Biology (RECOMB 2001) 2001.
Eskin E, Pevzner PA: Finding composite regulatory patterns in DNA
sequences. Bioinformatics 2002, 18(1):354-363.

Evans PA, Smith A: Toward optimal motif enumeration. Proceedings of
Eighth International Workshop Algorithms and Data Structures (WADS03)
2003, 47-58.

Carvalho AM, Freitas AT, Oliveira AL, Sagot MF: A highly scalable algorithm
for the extraction of CIS-Regulatory regions. Proceedings of Third Asia
Pacific Bioinformatics Conference 2005, 273-282.

Chin FYL, Leung HCM: Voting algorithms for discovering long motifs.
Proceedings of Third Asia Pacific Bioinformatics Conference 2005, 261-271.
Rajasekaran S, Balla S, Huang C-H: Exact algorithms for planted motif
problems. Journal of Computational Biology 2005, 12(8):1117-1128.

Davila J, Balla S, Rajasekaran S: Space and time efficient algorithms for
planted motif search. Proceedings of Second International Workshop on
Bioinformatics Research and Applications (LNCS 3992) 2006, 822-829.

Pisanti N, Carvalho A, Marsan L, Sagot MF: RISOTTO: fast extraction of
motifs with mismatches. Proceedings of Seventh Latin American Theoretical
Informatics Symposium 2006, 757-768.

Davila J, Balla S, Rajasekaran S: Fastand practical algorithms for planted
(I, d) motif search. IEEE/ACM Transactions on Computational Biology and
Bioinformatics 2007, 544-552.

Dinh H, Rajasekaran S, Kundeti V: PMS5: an efficient exact algorithm for
the (I, d)-motif finding problem. BMC Bioinformatics 2011, 12:410-420.
Sharma D, Rajasekaran S, Dinh H: An experimental comparison of
PMSprune and other algorithms for motif search. CoRR abs 2011,
1108.5217.

http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S17
http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S17
http://www.ncbi.nlm.nih.gov/pubmed/6509229?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6509229?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8211139?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8211139?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8211139?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9520502?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9520502?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10487864?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10487864?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10637320?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10637320?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12015879?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14534184?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14534184?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20855921?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20855921?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3908689?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3908689?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3908689?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2684350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2684350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23125354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23125354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9719638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9719638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9719638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108467?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108467?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108467?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16241901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16241901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22024209?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22024209?dopt=Abstract

Abbas et al. BMC Bioinformatics 2012, 13(Suppl 17):S10
http://www.biomedcentral.com/1471-2105/13/517/510

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Abbas MM, Bahig HM: Performance and analysis of modified voting
algorithm for planted motif search. Proceedings of Seventh ACS/IEEE
International Conference on Computer Systems and Applications 2009,
725-731.

Bahig HM, Abbas MM, Bhery A: Experimental study of modified voting
algorithm for planted (I, d)-motif problem. Experimental Medicine and
Biology, special issue Advanced in Computational Biology, Springer 2010,
65-73.

Rajasekaran S, Dinh H: A speedup technique for (|, d)-motif finding
algorithms. BMC Research Notes 2011, , 4: 54-61.

Gusfield D: Algorithms on strings, trees, and sequences: computer
science and computational biology. Cambridge university Press, New York
1977.

Blanchette J, Tompa M: Discovery of regulatory elements by a
computational method for phylogenetic footprinting. Genome Research
2002, 12(5):739-748.

Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, Hester ET, Jia Y, Juvik G,
Roe T, Schroeder M, Weng S, Botstein D: SGD: Saccharomyces Genome
Database. Nucleic Acid Res 1998, 26:73-79 [http://www.yeastgenome.org/].
Zhu J, Zhang M: SCPD: A Promoter Database of the Yeast Saccha-
Romyces Cerevisiae. Bioinformatics 1999, 15(7-8):607-611http://cgsigma.
cshlorg/jian/].

Mclnerny CJ, Partridge JF, Mikesell GE, Creemer DP, Breeden LL: A novel
Mcm1-dependent element in the SWI4, CLN3, CDC6, and CDC47
promoters activates M/G1-specific transcription. Genes Dev 1997,
11(10):1277-1288.

Wingender E, Dietze P, Karas H, Knuppel R: TRANSFAC: a database on
transcription factors and their DNA binding sites. Nucleic Acids Research
1996, 24(1):238-241http://transfac.gbf-braunschweig.de/TRANSFAC/].
Natesan S, Gilman M: YY1 facilitates the association of serum response
factor with the c-fos serum response element. Mol Cell Biol 1995,
15(11):5975-5982.

doi:10.1186/1471-2105-13-S17-S10

Cite this article as: Abbas et al: A hybrid method for the exact planted
(I, d) motif finding problem and its parallelization. BMC Bioinformatics
2012 13(Suppl 17)S10.

Page 12 of 12

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

(BioMed Central

http://www.ncbi.nlm.nih.gov/pubmed/11997340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11997340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9399804?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9399804?dopt=Abstract
http://www.yeastgenome.org/
http://www.ncbi.nlm.nih.gov/pubmed/10487868?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10487868?dopt=Abstract
http://cgsigma.cshl.org/jian/
http://cgsigma.cshl.org/jian/
http://www.ncbi.nlm.nih.gov/pubmed/9171372?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9171372?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9171372?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8594589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8594589?dopt=Abstract
http://transfac.gbf-braunschweig.de/TRANSFAC/
http://www.ncbi.nlm.nih.gov/pubmed/7565750?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7565750?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Our contribution
	Definitions and related work
	PMSprune Algorithm
	Implementation
	Our proposed strategy

	Determination of the best q
	Implementing HEP based on PMSprune
	Determining mns for PMSprune
	Determining ons for PMSprune
	Parallel version of HEP_PMSprune(ons)

	Results and discussion
	Experiments on simulated datasets
	Experiments overview
	Performance of HEP on PMSprune
	Evaluating the choice of q
	Performance of PHEP_PMSprune(ons)algorithm
	Experiments on real datasets

	Conclusions
	Availability and requirements
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

