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Abstract

PeptideProphet is a post-processing algorithm designed to evaluate the confidence in identifications of MS/MS
spectra returned by a database search. In this manuscript we describe the “what and how” of PeptideProphet in a
manner aimed at statisticians and life scientists who would like to gain a more in-depth understanding of the
underlying statistical modeling. The theory and rationale behind the mixture-modeling approach taken by
PeptideProphet is discussed from a statistical model-building perspective followed by a description of how a
model can be used to express confidence in the identification of individual peptides or sets of peptides. We also
demonstrate how to evaluate the quality of model fit and select an appropriate model from several available
alternatives. We illustrate the use of PeptideProphet in association with the Trans-Proteomic Pipeline, a free suite of
software used for protein identification.

Introduction
In mass-spectrometry shotgun proteomics, the first phase
of analysis is the identification of peptides in complex bio-
logical mixtures digested by enzymes such as trypsin.
Dependent on the peptides in the biological mixture, an
experiment will produce a certain number of spectra (call
it N). MS/MS spectra are individually matched to peptides
by searching through a database of peptides predicted
from the genome of the organism. The way the searches
are performed can be constrained using different search
parameters, such as the number of tryptic termini (NTT),
number of missed cleavages (NMC) or the mass difference
of the observed precursor ion mass and the weight of the
theoretical peptide (ΔM).
We will discuss PeptideProphet in the context of two

database search algorithms: SEQUEST [1] and Tandem
with the k-score plugin [2,3]. SEQUEST attempts to
determine a direct correlation between an observed
spectrum and sequences of amino acids in a protein
sequence database. Typical quantities associated with
SEQUEST include: XCorr, ΔCn, SpRank. Typical quanti-
ties associated with Tandem with the k-score plugin

include: logDot (logarithm of dot product between
observed and theoretical spectrum) and ΔDot. Peptide-
Prophet can be used with any database search algorithm
that returns a quantitative score.
Given a database search algorithm, every spectrum that

is observed will be scored against the peptides in the
database. For each spectrum, the highest scoring peptide
(depending on the scoring criterion) is typically chosen
as the best match. The best match is the potential pep-
tide sequence that generated its corresponding observed
spectrum. Thus, we have N spectra that have been
matched to a peptide and we will refer to these spectra as
identified spectra.
The necessity of PeptideProphet arises because the

spectra are subject to noise making it difficult to deter-
mine if the peptide that it is matched to is correct. The
spectrum itself is generated from a peptide sequence and
peaks can be missing or reduced in intensity. Because the
spectrum that is being generated is subject to noise the
database-based criterion will vary when comparing theo-
retical spectra to observed spectra. Additionally, when
searching the database, the correct peptide sequence may
be absent. Because of this noise, how do we determine
confidence in an identified spectrum? Traditional stan-
dards (such as just accepting all above XCorr > 2.5) does
not reflect the quality of the identification. Such a rule
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may accept too many incorrectly identified spectra. Thus,
statistical inference is needed to model the presence of
noise.
PeptideProphet [4] is a post-processing and rescoring

algorithm for determining confidence in identified spectra
found using a database search. PeptideProphet is one of
the first methods for the assessment of confidence. It is
based on a probability model and an Empirical Bayesian
approach to model fitting. It is now not a single model,
but a family of models [5].
The overview of PeptideProphet is as follows:

1. Rescoring: produce a score which reflects the quality
of an identified spectrum, while summarizing multiple
quantities, such as XCorr and ΔCn or logDot and
ΔDot. The rescoring separates incorrectly and cor-
rectly identified spectra scores as much as possible.
2. Modeling: produce a probability-based model for
the distribution of correctly and incorrectly identified
spectra. The model must be then fit to the scores of all
identified spectra.
3. Evaluation of the Quality of Fit: determine how
well the scores fit the probability-based model.
4. Inference

(a) Evaluation of confidence in individual identi-
fied spectra using the posterior probability.
(b) Evaluation of confidence in sets of identified
spectra: produce a cutoff on the scores to deter-
mine a set of correctly identified spectra while
controlling the False-Discovery Rate, defined as
the expected proportion of false positives.

We will first discuss the basic version of PeptidePro-
phet and then discuss the three extensions.

Materials
Human plasma dataset
This dataset uses the first LC-MS/MS replicate file from
the Western Consortium of the National Cancer Institute’s
Mouse Models of Human Cancer [6]. The data was
obtained using the Multiple Affinity Removal System and
was matched using a semitryptic SEQUEST search against
an IPI human protein database allowing a 3 Dalton mass
tolerance and 0-1 missed cleavage sites. More details on
the spectra can be seen in [7].

Controlled mixture
This dataset uses spectra generated from a linear ion trap
Fourier transform instrument that was published in [8].
In particular the spectra from Mixture 3 was used, where
16 known trypsin-digested proteins from different mam-
mals were analyzed. Spectra were also matched using a
semitryptic SEQUEST search against a database file with
the 16 known proteins concatenated with human

influenza proteins allowing a 3 Dalton mass tolerance
and 0-2 missed cleavage sites. Matches to human influ-
enza proteins are known to be incorrect. More details on
the dataset can be seen in [8].

Methods
Statement of the problem from a statistical perspective,
and terminology
Every statistical approach requires the definition of the
following components in the problem:

1. PeptideProphet works with the observed spectra
as the experimental unit where we have N observed
spectra with N being generally large (in the thou-
sands or more). Since the number of spectra N is
typically very large, the identified spectra can be
viewed as the underlying population.
2. An observed score is interpreted as a test statistic.
In statistics the summarized score S is called a test
statistic because it is the function of the observed
experimental unit that is being used to answer our
hypotheses.
3. PeptideProphet assumes that the test statistic
comes from a mixture of two distributions: one from
the distribution of correct identifications, and the
other from the distribution of the incorrect identifi-
cations. The distributions may be characterized by a
few parameters (parametric) or many parameters
(semi or non-parametric).
4. The goal of PeptideProphet is to test two compet-
ing hypotheses for each identified spectrum. Let Ti

be the true status of identified spectrum i where
Ti = 0 indicates that the identified spectrum was
incorrectly identified and where Ti = 1 indicates that
the identified spectrum was correctly identified. We
then wish to compare:

H0i : Ti = 0 (null hypothesis) versus H1i : Ti = 1 (alterative hypothesis)

5. Inference: confidence is determined for individual
spectra or sets of spectra.

• If the researcher is interested in a set of spec-
trum identifications, the False Discovery Rate
should be controlled.
We determine the confidence in a set of spectra
by controlling the False Discovery Rate. The False
Discovery Rate, given a cutoff δ, is the expected
proportion of all scores Si >δ that are truly incor-
rect (the proportion of accepted identified spectra
that are false positives). This situation is synon-
ymous to performing N multiple hypothesis tests
where FDR = E [VR |R > 0]P(R > 0) using the
values in Table 1. P (R > 0) is assumed to be 1
when we perform many tests (N is large). The
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False Discovery Rate is the expected proportion of
incorrectly rejected null hypotheses out of the
total rejected hypotheses. For a given cutoff if we
were to repeat the experiment an infinite number
of times and use the same cutoff each time the
expected False Discovery Rate is the average pro-
portion of incorrectly identified and accepted
spectra out of the total number of incorrectly
identified spectra.
An alternative confidence rate that is rarely used
is the False Positive Rate (FPR). The False Posi-
tive Rate, given a cutoff δ is the expected propor-
tion of all truly incorrectly identified spectra that
are considered to be correctly identified. From
the terms in Table 1 it is represented by
FPR = E [ V

N0
|N0 > 0]P (N0 > 0)

Many users prefer the q-value which is the mini-
mum False Discovery Rate required for a score si
to be considered significant. It is represented by
qvalue(si) = inf{�:si∈�}FDR(�), where Γ represents
the set of all possible cutoff scores [9]. This con-
fidence measure is used to describe a score si at
a single point but examines the False Discovery
Rate of all possible scores. Unlike the False Dis-
covery Rate, the q-value is a monotonic quantity
with respect to the score cutoff.
• If the researcher is interested in specific spec-
trum identifications the posterior error probabil-
ity is most commonly used as it quantifies the
confidence of a single identified spectrum.
The posterior error probability represents
P(Ti = 0|Si)which we also denote as PEP. In other
words using a probability model for Si, we can find
the probability of an identified spectrum being
incorrect given its test statistic. Note that we can
also calculate P(Ti = 1|Si) = 1 − P(Ti = 0|Si)
which is the probability of an identified spectrum
being correct given its test statistic. The posterior
error probability is also called the local false dis-
covery rate (locfdr) [10,11].
Alternatively the p-value can be used. If si is the
ith observed score then the p-value represents
P(Si ≥ si|H0i), or the probability of observing a
score equal to or greater than si assuming that the
ith identified spectrum was incorrectly identified.

The p-value is similar to the FPR in that the
p-value is the probability of observing a score
equal to or greater than si assuming that it is one
of the N0 truly null hypotheses.

For each spectrum, PeptideProphet establishes a score
reflecting the quality of an identified spectrum
First each spectrum (experimental unit) is observed and
potentially identified using a database-based criterion
(XCorr, ΔCn, logDot, Δdot, etc.), PeptideProphet rescores
the identified peptide with a discriminant function, using
the database-based criterion as the covariates for fitting
the discriminant function. The goal is to fit a function
that separates correct scores from incorrect scores. If Si
is the summarized score for the ith identified spectrum
from a SEQUEST search result, a discriminant function
produces a linear function f:

S = fSEQUEST(XCorr,�Cn, SpRank)

= β0 + β1XCorr + β2�Cn + β3SpRank
(1)

such that S > 0 for correctly identified spectra and S <
0 for incorrectly identified spectra.
If Si is the summarized score for the ith identified

spectrum from a Tandem search result, a linear discri-
minant function is used but with different coefficients:

S = fTANDEM(XCorr,�Cn, SpRank)

= β0 + β1logDot + β2�Dot
(2)

In the basic version of PeptideProphet the b’s are esti-
mated empirically from a controlled mixture and are
dependent on the precursor ion charge (i.e. a separate
discriminant function was trained for 1+, 2+, 3+ precur-
sor ion charges).

PeptideProphet relates observable and unobservable
quantities via a joint probability distribution
PeptideProphet relates scores Si to parameters via a
sampling distribution of the test statistic under H0i and
Hai. All scores Si’s are independent and identically dis-
tributed (iid). The sampling distribution of Si is assumed
to follow a Normal(μ, s) distribution if the identified
spectrum is correct (Ti = 1) and Gamma(a, b, g) distri-
bution if the identified spectrum is incorrect (T = 0).
Notationally we have that p(Si|Ti = 0) ∼ Gamma(α,β , δ)
and that p(Si|Ti = 1) ∼ Normal(μ, σ ). Note that other
forms of the distribution of scores for incorrect identifi-
cations such as the Gumbel distribution are often used
with no effect on the theory presented here. Among all
identified spectra an additional parameter π0 is used to
represent the overall proportion of incorrect identifica-
tions of identified spectra in the population. This formu-
lation results in a 2-group mixture model similar to

Table 1 Table of multiple hypothesis testing quantities

# Not Rejected # Rejected Total

# True Nulls U V N0

# True Alternatives T S N - N0

Total N - R R N

Table 1: U, V, T, and S correspond to the number of true negatives, false
positives, false negatives, and true positives respectively.
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what is established by Efron [10] where we may write
that

Si ∼ P(Ti = 0)p(Si|Ti = 0) + P(Ti = 1)p(Si|Ti = 1)

= π0fT=0 + (1 − π0)fT=1
(3)

The last equality is due to the fact that all scores are
independent and identically distributed (iid). Due to dif-
ferent discriminant functions being used for each
charge, a different sampling distribution and set of para-
meters are produced for each precursor ion charge (we
will refer to this simply as the charge).
There may be additional information available, such as

the NTT (number of tryptic termini), NMC (number of
missed cleavages), and ΔM (delta mass) that can be used
to improve the estimation of the sampling distribution of
the identified spectra [7,12,13]. For example, the use of
NTT = 0 in unconstrained searches often leads to
improved estimation of the parameters even in lower
quality datasets [5]. This is incorporated into the model
above by assuming the existence of additional distribu-
tions for incorrect and correct identifications:

(Si,NTTi,NMCi, δMi) ∼ π0fT=0fT=0,NTTfT=0,NMCfT=0,�M

+ π1fT=1fT=1,NTTfT=1,NMCfT=1,�M
(4)

Note that the density functions of fT=0, NTT, fT=0, NMC,
fT=0, ΔM, fT=1, NTT, fT=1, NMC, and fT=1, ΔM are discrete. It
is assumed, conditional on the identified spectrum being
incorrect or correct, that the members of (Si, NTTi,
NMCi, δMi) are independent, as shown above.

PeptideProphet estimates parameters of interest in an
Empirical Bayesian approach
PeptideProphet is considered an Empirical Bayesian
approach because it uses each identified spectrum twice:
once to estimate via the Expectation-Maximimzation [14]
algorithm the parameters of the sampling distribution (π0,
μ, s, a, b, and g) and second to estimate the confidence in
the correctness of an identified spectrum. The EM-algo-
rithm iterates between two steps, called the E-step and the
M-step in order to estimate the value of model para-
meters. With a large enough set of identified spectra (say
100), the EM-algorithm will always converge [14]. The
algorithm starts with initial values of model parameters π0,
μ, s, a, b, and g.
In the E-step, given the estimated values of the model

parameters, the probability of each score being correct
(or incorrect) is calculated. Given a single observed score
si and its correctness status Ti, usage of Bayes Theorem

yields P(Ti = 0|Si = si) =
P(Ti=0)p(Si=si|Ti=0)

P(Ti=0)p(Si=si|Ti=0)+P(Ti=1)p(Si=si |Ti=1)
which corresponds to the ratio of the Gamma density
scaled by π0 over the sum of the Gamma and Normal
densities scaled by π0 and 1 - π0 at score si.

In the M-step, given estimated membership probabil-
ities P(Ti = 0|Si = si) = pi for each score si, the model
parameters are re-estimated by finding the values with

the maximum likelihood. The estimate of π0 is
∑N

i=1 pi
N

. For

the Normal distribution the estimates of μ and s2 are:

μ̂ =

∑N
i=1 (1 − pi)si∑N
i=1 (1 − pi)

σ̂ 2 =

∑N
i=1 (1 − pi)(si − μ̂)2∑N

i=1 (1 − pi)

For the Gamma distribution, the estimate of g is sim-
ply the minimum of the scores si, i = 1, ..., N. In order

to estimate a and b let m1 =
∑N

i=1 pi(si−γ̂ )∑N
i=1 pi

and

m2 =
∑N

i=1 pi(si−γ̂ −m1)
2∑N

i=1 pi
. Then the estimates of a and b are

α̂ =
m2

1

m2

β̂ =
m1

m2

Due to the speed of the algorithm in working with
only two mixture components, the process of the E and
M-step can be iterated repeatedly until the model para-
meters do not change by a specified ε where ε is a small
number, such as 0.0001. The algorithm then outputs
estimated parameters of a, b, δ, μ and s, as well as the
estimate of π0 (denoted with hats when estimates). The
algorithm is detailed in Figure 1. Figures 2b and 2a
shows two fits of PeptideProphet to the Human Plasma
dataset of charges 2 and 3. Note that the EM algorithm
can be substituted for alternative algorithms such as the
Method of Moments.

Evaluation of the quality of fit of PeptideProphet
Deviations of the assumptions, or a low number of iden-
tified spectra can lead to an inadequate or unstable
model fit and incorrect conclusions. This can be diag-
nosed by visual inspection, and also by the bootstrap.
We recommend using visual inspection over goodness
of fit tests as tests do not explore the specific fitting
issues that may influence subsequent inference of the
identified spectra. In fact goodness of fit tests simply
attempt to summarize the goodness of fit into one sum-
mary statistic whereas we are typically interested in the
fit at certain locations of the mixture distribution. There
are several visual attributes of the mixture distribution
that researchers should be aware of and some remedies
for them.
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Do the empirical scores follow the fitted curves well?
Particular attention needs to be paid to the tails of the
distributions, especially the right tail of the distribution
of scores of incorrect identifications (red) and the left
tail of the distribution of scores of correct identifications
(blue). This is often of most interest to researchers as
the identified spectra in these regions are considered to

be borderline correct or incorrect. In the case of Figure
2b the curves fit the histogram well but in Figure 2a
there are many mismatches in the bars and the fitted
curves. The culprit of these mismatches is likely due to
the small number of spectra. The right portion of the
Normal distribution is fit with approximately only 30
spectra. If the data is comprised of a large number of

Figure 1 Pseudocode of the EM-algorithm for iteratively estimating model parameters and membership probabilities.

Figure 2 PeptideProphet fits on the Human Plasma Dataset. PeptideProphet fits on the Human Plasma Dataset with Tandem Scores on
charges 2 (left) and 3 (right). The blue and red curves correspond to the fitted frequency curves of the correct (Normal) and incorrect (Gamma)
distributions. The Charge 2 fits yields a mixture distribution with a much stronger separation than the fit to Charge 3.
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spectra but is deviating from the fitted curves, robust
procedures can also be considered and will be discussed
later.
Do the curves highly overlap? Although high overlap

does not necessarily indicate a poor fit it will lead to
smaller sets of confidently identified spectra. Overlaps
that occur in situations of highly constrained searches
can be remedied with techniques in later sections. Over-
lap in the case of a small number of spectra (Figure 2a)
may be remedied by artificially adding observations using
decoys which will also be subsequently demonstrated.
An issue that is not commonly addressed however is

the number of identified spectra available to fit the mix-
ture model. The number of identified spectra required to
fit a reliable model depends highly on the separation and
the form of the observed scores. A statistical approach to
examine the stability of the fitted model can be done via
the bootstrap.
Bootstrapping can be performed by sampling with

replacement B samples (spectra) where each is of size N
from the original dataset. At least 100 to 500 boot-
strapped samples are recommended. For each boot-
strapped sample b, we can refit the PeptideProphet
model to receive bootstrapped estimates of π̂∗

0,b, μ̂
∗
b, σ̂

∗
b ,

β̂∗
b , β̂∗

b , and γ̂ ∗
b . The bias, variance, and mean squared

error (MSE) of the procedure used to estimate a para-
meter can be found using the bootstrapped estimates. In
the case of μ, the bootstrap bias estimate is

b̂ias =
∑B

b=1 μ̂∗
b

B − μ̂. Large biases imply that the estimation

procedure is systematically over or underestimating the
true value of a parameter. Note that as B increases the
bias does not move towards 0. The bootstrap variance

estimate is defined as
̂variance =

∑B
b=1

(
μ̂∗
b−

∑B
b=1 μ̂∗

b
B−1

)
B

. Smal-

ler variability is desired. The bias and variability of an
estimation procedure is often summarized using the
mean squared error, which is M̂SE = ̂variance + b̂ias

2.
Three hundred bootstrapped samples for the Human

Plasma data for charges 2 and 3 were performed and
the bootstrapped estimates for π0, μ, and s are shown
in Figure 3. Although the means of the bootstrapped
distribution are close to the original estimates (marked
in red) the bootstrapped distributions for these para-
meters are more skewed for Charge 2 than for Charge
3. Additionally the variance of the bootstrapped esti-
mates is significantly greater in the Charge 2 case for μ
and s showing how unstable the estimates for the
Charge 2 distribution given the small number of identi-
fied spectra.
The mean squared error summarizes the overall devia-

tion of parameter estimates from B bootstrapped sam-
ples to the original estimates. The experimenter may

also view the deviations that occur between the original
sample and a single bootstrapped sample. Although a
histogram of both samples would suffice, a quantile-to-
quantile plot is an easy-to-read plot that exemplifies the
deviations between the two plots. The quantile-to-quan-
tile plot plots the quantiles of one distribution versus
the matched quantiles of the other. For example if there
are 10 values in two datasets the quantile-to-quantile
plot would display the 10, 20, 30,..., and 100th percen-
tiles of one distribution matched with the respective 10,
20, 30, ..., and 100th percentiles of the second distribu-
tion. Distributions that are alike should result in a quan-
tile-to-quantile plot that is linear. Deviations from
linearity at different quantiles in the plot imply differ-
ences between the two distributions at those associated
quantiles. Although no quantile-to-quantile plot will be
perfectly linear the plot should not deviate much at the
center and right portions of the plot as the accuracy of
the estimated confidence of identified spectra relies
heavily upon a good fit at these locations. The quantile-
to-quantile plot for Charge 2 in Figure 4 displays the
deviation in quantiles of the original mixture distribu-
tion and the quantiles of a random bootstrapped sample.
The deviations noticeably occur in the right half of the
plot which corresponds to the right portion of the axis
in Figure 2a indicating that the instability of the esti-
mate is due to the right half of the plot. More specifi-
cally, it is due to the low number of identified spectra in
this area of the plot.

Estimating the confidence of spectrum identifications
Estimating the confidence of a set of spectrum
identifications
In order to determine the correctness of the spectrum
identifications, a decision rule is defined where any
spectrum identification with a score above δ is con-
cluded to be correct. In many experiments we are inter-
ested in the statistical properties of the list of spectrum
identifications with scores above δ.
In order to estimate the False Discovery Rate given a

decision rule cutoff two approaches may be used.
Because all scores are assumed to follow the same fitted
distribution the False Discovery Rate can be estimated

with FD̂R(t) = π̂0P(S>t|T=0)
π̂0P(S>t|T=0)+(1−π̂0)P(S>t|T=1) [15]. This can

be seen by using the areas under the colored curves in
Figure 5. In a second approach, PeptideProphet tradi-
tionally estimates the False Discovery Rate by interpret-
ing the posterior error probabilities as local false
discovery rates [10,11]. The estimated overall False Dis-
covery Rate at point t is the average of the estimated
local false discovery rates of identified spectra with

scores greater than t : FD̂R(t) =
∑

si≥t PEPi
{#si:si≥t} .
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The False Positive Rate for a cutoff t can also be esti-
mated using the area under the fitted frequency curve of
the distribution of scores for incorrect identifications as
seen in Figure 5. Mathematically this is equivalent to
the p-value, or FP̂R(t) = P(S > t|H0) since each incor-
rect score follows the same distribution. Note that the
False Positive Rate ignores the distribution of scores for
correct identifications.
The estimation of the q-value at a specific point r

requires the estimation of the False Discovery Rate at
every point si from i = 1, 2, ..., N. The q-value for a
point r is the minimum False Discovery Rate among all
points si such that si ≤ r. The estimated False Discovery
Rate can be found using the model-based estimates or
by interpreting each posterior error probability as a
local false discovery rate. The q-value is often useful if a
monotonically increasing error rate is desired for

decreasing cutoff values. For example, in the case of
Figure 5 suppose the experimenter was only interested
in scores around 4. Using model-based estimates, the
estimated False Discovery Rate with a cutoff at 4 is
0.01503874 but the estimate of the False Discovery Rate
with a cutoff at 3.8 is 0.01489971 suggesting that the
error rate is lower for a lower cutoff value. To avoid this
issue, the q-value can be used as it finds the minimum
False Discovery Rate at each cutoff value. The q-value at
4 is 0.01489939 (found using increments of 0.01 search-
ing all FDR values from -4 to 4).
Estimating the confidence of an individual spectrum
identification
We now discuss the estimation of the posterior error
probability and the p-value. These measures are proper-
ties of a single spectrum and are synonymous to per-
forming a single hypothesis test. In Figure 5 the

Figure 3 Bootstrapped samples of π0, μ , and s for Charges 2 and 3 of the Human Plasma data. The original estimates are marked by the
vertical line. The length of the horizontal axes are equal for the plots of a particular parameter. The Charge 2 distributions are slightly skewed
compared to Charge 3 distributions and the mean squared errors are much greater in Charge 2 distributions. The variability of the Charge 2
distributions are visibly much greater indicating unstable estimates.
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Figure 4 Quantile-to-quantile plot comparing the quantiles of the original mixture distribution of the Human Plasma data. Quantile to
quantile plot comparing the quantiles of the original mixture distribution of the Human Plasma data for Charges 2 (left) and 3 (right) compared
to the quantiles of randomly bootstrapped samples. The quantile-to-quantile plot for Charge 2 shows more deviation in quantiles due to the
low number of identified spectra in the score range between 2 and 8.

Figure 5 The PeptideProphet fit to the Human Plasma dataset of Tandem scores of Charge 2. The PeptideProphet fit to the Human
Plasma dataset of Tandem scores of Charge 2 with fitted frequency curves from Figure 2b. The four confidence measures of the Posterior Error
Probability (PEP), p-value, False Discovery Rate (FDR), and False Positive Rate (FPR) are shown at a score of 1. The Posterior Error Probability at 1
is 0.156 and the estimated False Discovery Rate is 0.083. The p-value and FPR are equivalent and equal to 0.004. In the formula for the estimated
FDR, red is the estimate for V from Table 1 while blue combined with red is an estimate for R from Table 1.
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posterior error probability and p-value only apply to
spectra at a single point.
According to Bayes Theorem the posterior probability

of Ti = 0 (our hypotheses of interest) given its test statis-

tic is P(Ti = 0|Si = si) =
P(Ti=0)p(Si=si|Ti=0)

p(Si=si)
. Following the

Empirical Bayesian step where parameters are estimated

we have that P(Ti = 0|Si) = π̂0fT=0(si)
π̂0fT=0(si)+(1−π̂0)fT=1(si)

. Because

the posterior error probability is equivalent to the local
false discovery rate we also have that locfdr = P(Ti = 0|Si).
The p-value is estimated as P(Si > si|H0i) which is the

right tail-end of the Gamma density past si.
The posterior error probability may be preferred over

the p-value because it also yields an estimate for the prob-
ability of an identified spectrum to being correct (1 - PEP).
The advantage of the p-value is that it only requires the
use of the distribution of scores for incorrect identifica-
tions as it ignores the distribution of scores for correct
identifications. Notice that in Figure 5 the p-value at a
score of 1 is a low value of 0.004 but that the Posterior
Error Probability at 1 is a much higher value at 0.156.

PeptideProphet can use a decoy database to estimate the
parameters of the distributions of scores for incorrect
identifications
When there is significant overlap between the two den-
sity functions or a low number of identified spectra it is
difficult for the EM-algorithm to estimate π0 and the
parameters of the Gamma and Normal distributions. In
this case PeptideProphet employs the Target-Decoy
approach to better estimate the Gamma distribution. We
first describe the two forms of Target-Decoy: the conca-
tenated strategy and the separate strategy [16,17]. The
objective of both strategies is to introduce decoys in
order to estimate the error rate since decoys are known
to be incorrectly identified spectra. Reversed sequences
(decoy sequences) are commonly generated by taking the
target database and reversing each target sequence. Alter-
native methods are to use randomized sequences where
amino acid sequences are generated using a pre-specified
probability distribution [16].
In the concatenated Target-Decoy strategy each spec-

trum is searched in a single database that is composed of
both target and decoy sequences. This involves competi-
tion between the best correct peptide sequence, the best
incorrect forward peptide sequence, and the best (incor-
rect) decoy peptide sequence. Hits where the best incor-
rect decoy peptide sequence is found to be the match are
used to estimate the FDR.
In the separate Target-Decoy strategy each spectrum

is searched once in the forward database and searched
again independently in the decoy database. The distribu-
tion of scores from the peptides identified via the decoy
database is used to estimate the form of the distribution

of incorrectly identified spectra. This approach ignores
competition between forward and decoy sequences.
The semisupervised version of PeptideProphet utilizes

the concatenated Target-Decoy strategy by simply com-
bining the target and decoy sequences into the same
database. The decoy scores are forced to only contribute
to the estimation of a, b, and g of the Gamma distribu-
tion. PeptideProphet accomplishes this by assuming any
decoy match has a posterior error probability of 1. In
the EM-algorithm as described earlier, pi for any decoy
is assumed to be 1 at every iteration. The semisuper-
vised version of PeptideProphet helps estimate the para-
meters of the Gamma distribution better and thus
indirectly improves the estimation of π0, μ, and s as
well. As seen in Figure 6a for the case of the Human
Plasma dataset the improved estimation of the distribu-
tions also increased the separation between the distribu-
tions. As seen in Figure 6b the use of decoys helped
prevent the possible mistake of having high confidence
in scores around the 0 to 1 range.

PeptideProphet can use a decoy database for
semiparametric estimation of the probability distribution
The quality of fit of the Gamma and Normal distribu-
tions may rely on how the database is searched (con-
strained versus unconstrained search) or the search
algorithm that is used [12]. As is the case in many sta-
tistical modelings, there is no guarantee that the scores
of the identified spectra necessarily follow the Gamma
and Normal distributions. Previously, decoys were used
to estimate parameters of pre-specified distributions.
Now we will use decoys for data-dependent estimation
of the distributions themselves.
One approach is to estimate the distributional forms

using a kernel density (semi-parametric) approach [12]
as opposed to maximum likelihood estimation. Kernel
density estimates first discretizes the horizontal axis into
bins. For a specified bandwidth h, the distribution of
scores for incorrect identifications is estimated using

p(S|h) = 1
n0h

∑n0

i=1
K( S−Si

h ) where n0 is the number of

decoys, K is the Normal density function, and Si is the
score of decoy i. The greater the h the smoother the
function while the smaller the h the more rough the
function. The parameter h can be specified using any
method such as using the mean integrated square error.
Cross-validation can be used as well. The distribution of
scores for correct identifications is estimated in the
same fashion as well but using only forward scores.
Pseudocode of the semiparametric approach can be seen
in Figure 8.
An example of this approach can be seen in Figure 7.

The parametric fit of the distribution of scores for cor-
rect identifications clearly deviates from the Normal
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curve as the mode of the correct hits is shifted to the
right. The semiparametric approach produces a curve
that more robustly fits the left-skewed distribution of
scores for correct identifications.
To avoid overfitting, this approach should only be used

in the cases of strong deviations between the fitted distri-
butions and the observed scores, such as the parametric fit
(dashed-lines) in Figure 7. Overfitting typically occurs in
experiments with a small number of spectra, such as in
Figure 2a. Overfitting can be checked via bootstrapping by
seeing if bootstrapped samples do not reflect the same
need for a semiparametric fit at certain score values. This
can be done via quantile to quantile plots or by checking
mean squared errors. If users anticipate good separation,
parametric PeptideProphet is often sufficient for practical
purposes.

PeptideProphet can be extended to dynamically estimate
the coefficients of the discriminant function from the data
Overlap in the distributions of scores of correct and
incorrect identifications can be due to a suboptimal
scoring function, which does not discriminate well
between the properties of correct and incorrect identifi-
cations. This often occurs in cases of constrained
searches where the database that is searched is much
smaller than the unconstrained search space that was
used to find the coefficients in the fixed discriminant
function. For additional information on constrained ver-
sus unconstrained searches, see [5]. A solution to this is
to adapt the discriminant function to each experiment

or search approach which can improve the separation
between the distribution of scores for incorrect and cor-
rect identifications [13].
Pseudocode of the adaptive version of PeptideProphet

can be seen in Figure 10. The main step in the algorithm
is to update b’s from Equations 1 or 2 by extracting iden-
tified spectra with high posterior error probabilities and
identified spectra with low posterior error probabilities.
When retraining the b’s the algorithm will randomly
sample identified spectra with low posterior error prob-
abilities I times and produce I different estimates. The
average of these I b’s is the updated b. This entire step is
repeated by re-estimating posterior error probabilities
and updating b until the b do not change by a small ε.
The improvement of the adaptive discriminant func-

tion over the fixed discriminant function for the Con-
trolled Mixture dataset in a constrained search space is
displayed in Figure 9. Only tryptic peptides with a narrow
mass tolerance were searched.
This approach is also useful for incorporating lower

ranked peptide matches (i.e. for a given spectrum,
instead of only considering the best peptide sequence
match, use the new discriminant function to also
rescore peptide sequence matches that ranked close to
the best peptide sequence match). Every time a new dis-
criminant function is estimated (when the I β̂ ′s are aver-
aged) a new summarized score is calculated for the top
5 (can be changed of course) Peptide Matches for every
spectrum. The highest scoring peptide-spectrum-match
is used in the training of the next discriminant function.

Figure 6 Semisupervised estimation of parameters. Semisupervised estimation of parameters of the same distribution of scores as in Figures
2b and 2a. For Charge 3 the slight rightward shift of the Gamma distribution (distribution of scores for incorrect identifications) also encouraged
a large rightward shift of the Normal Distribution (distribution of scores for correct identifications). The two vertical lines indicate the means of
the Normal distributions. The addition of decoys for Charge 2 allowed to algorithm to learn that most of the identified spectra with scores from
0 to 1 are likely to be incorrect. Without decoys this may have been overlooked.
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Figure 7 The Controlled Mixture dataset fit with the basic PeptideProphet and the semiparametric version. The Controlled Mixture
dataset fit with the basic PeptideProphet and the semiparametric version of PeptideProphet utilizing the kernel density estimator. The smoothed
estimator allowed for a more fine-tuned fit to the estimated (asymmetric) distribution of the correctly identified spectra.

Figure 8 Pseudocode of the semiparametric version of PeptideProphet.
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Implementation of the PeptideProphet in the Trans-
Proteomic Pipeline
The Trans-Proteomic Pipieline (TPP) is an open source
program developed at the Institute for Systems Biology
designed for complete proteomic analysis starting from
spectrum identification to protein identification and quan-
tification and can be downloaded from http://sourceforge.
net/projects/sashimi/[18]. In this section we assume that

search results have already been converted to pepXML
files, which is the standard input for PeptideProphet. A
discussion of this can be found at (http://tools.proteome-
center.org/wiki/index.php?title=TPP_Tutorial).
We present an example using the Human Plasma

dataset where the spectra are searched through Tandem
with the k-score plugin with TPP version 4.4. Peptide-
Prophet automatically models all precursor ion charges

Figure 9 Semiparametric fits with dynamically estimated coefficients. Semiparametric fits of the distributions of scores for correct and
incorrect identifications on the Controlled Mixture Dataset from a constrained search (tryptic peptides, narrow mass tolerance) using fixed
discriminant coefficients (left) versus adaptive discriminant coefficients (center). The right tail of the distribution of scores for incorrect
identifications can be seen penetrating the distribution of scores for correct identifications more deeply in the fixed case implying greater
discriminative ability when using the adaptive discriminant function. The improved performance of adaptive coefficients can be seen in the plot
of the estimated FDR versus the estimated number of significant correctly identified spectra (right). Recall that in this dataset, target scores are
assumed correct. The estimated FDR here was estimated by the ratio of the number of decoys to target scores.

Figure 10 Pseudocode of the adaptive version of PeptideProphet.
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and outputs the probability of correct identification. A
mixture model using the Normal for the distribution of
correct scores and a Gumbel distribution for the distri-
bution of incorrect scores.
In Figure 11 of the 17543 identified spectra are listed.

The first column lists the probability of correct identifi-
cation (1 - PEP), so numbers close to 1 here are desir-
able. The remaining columns list, in order, the spectrum
label, Tandem expect score, the fraction of ions
matched, the peptide sequence match, the protein
match, and the calculated neutral peptide mass. In this
example any protein label with a “rev” is a decoy. Each
hyperlink will lead to additional information. For exam-
ple, clicking on a peptide sequence will lead to a BLAST
search or clicking on the fraction of ions matched will
display the observed spectrum.
Clicking on 0.7664, or the ninth entry “2b_plas-

ma_0mM_C1.00024.00024.1” on the identified spectra
list, results in information of the model fit by Peptide-
Prophet in Figure 12 and the estimated parameter values
for charge 2 in Figure 13.
We will now discuss how to use the information in

Figures 12 and 13 to estimate the confidence measures
discussed previously:

1. False Discovery Rate: estimates of the False Discov-
ery Rate can be obtained three ways. In the upper-
right hand corner of Figure 12 estimated False
Discovery Rates under the “Error” column is given for

1 - PEP values under the “Min Prob” column. In
other words, “Min Prob” represents the minimum
posterior probability of being correct in order to con-
clude that an identified spectrum is correct. For
example, a “Min Prob” of 0.95 implies that only iden-
tified spectra with PEP’s lesser than 0.05 are consid-
ered correct or that (1 - PEP) must be greater than
0.95 to be considered correct.
A second approach is to use the estimated model
parameters in Figure 13 to estimate the False Dis-
covery Rate for identified spectra of charge 2. The
estimate for (1 - π0) is 0.04 which yields an estimate
of π0 as 0.96. The Normal’s (Gaussian) estimated
mean μ is 2.6 with an estimated standard deviation
s of 1.90. The Gumbel’s estimated μG parameter is
-1.16 with an estimated b parameter as 0.76. Alter-
natively, the expected value (mean) of the Gumbel is
-1.16 with a standard deviation of 0.98. If the experi-
menter is not interested in NTT, NMC, and ΔM, for
a cutoff score t, the estimated FDR can then be esti-

mated by FD̂R(t) = π̂0P(S>t|T=0)
π̂0P(S>t|T=0)+(1−π̂0)P(S>t|T=1) where

P(S >t|T = 0) is found using the Normal distribution
and P(S >t|T = 1) is found using the Gumbel distri-
bution. Suppose the experimenter wanted to restrict
the FDR calculation to identified spectra with only 0
missed cleavages. According to the output in the dis-
tribution of correct scores, a randomly selected cor-
rectly identified spectra has a 0.926 probability of

Figure 11 pepXML viewer from TPP. The output of PeptideProphet is stored in pepXML format. The pepXML viewer visualizes the content of
pepXML and posterior probabilities associated with each identified spectrum.
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having 0 missed cleavages and a 0.074 probability of
having 1 to 2 missed cleavages. For the distribution
of incorrect scores, probabilities are 0.404 and 0.596
for 0 and 1 missed cleavages respectively. The esti-
mated FDR would then be

FD̂R(t) =
π̂0P(S > t|T = 0)fT=0,NMC(0)

π̂0P(S > t|T = 0)fT=0,NMC(0) + (1 − π̂0)P(S > t|T = 1)fT=1,NMC(0)

=
π̂0P(S > t|T = 0)(0.404)

π̂0P(S > t|T = 0)(0.404) + (1 − π̂0)P(S > t|T = 1)(0.926)

The calculation takes into account that among the
correctly identified spectra, it is estimated that a
majority of the identified spectra have 0 missed
cleavages.
A third approach of estimating the False Discovery
Rate is to download all posterior probabilities, convert
them to posterior error probabilities (local false

discovery rates) by taking the complement, define a
cutoff point t and then to calculate

FD̂R(t) =

∑
si≥t PEPi

{#si : si ≥ t}.
2. False Positive Rate or p-value: using the Gumbel’s
estimated parameters, the false positive rate can be
found by looking at the tail area.
3. q-value: the q-value at a specific point δ can be
calculated by estimating the False Discovery Rate at
the score value of every identified spectra and then
by finding the minimum False Discovery Rate
among all scores si ≤ δ.
4. Posterior Error Probability and Local False Dis-
covery Rate: these are most easily found by finding
the complement of the values in the first column of
Figure 11 or by looking at the complement of “prob”
at the bottom center of Figure 12. Note that these

Figure 12 Scoring results for identified spectra from a PeptideProphet fit in TPP. PeptideProphet output of sensitivity error analysis and
figures of estimated mixture models. The bottom portion shows the fitted curves for different charges. The light blue curves represent the
distribution of scores for incorrect identification, purple for correct identifications, and black the sum of the two distributions. The red vertical
line also indicates the score for the identified spectra that we clicked on with its additional information at the bottom of the figure.
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probabilities automatically incorporate NTT, NMC,
and ΔM. If the experimenter was interested in the
posterior error probability of a score independent of
NTT, NMC, and ΔM, this can still be calculated
using the estimated model parameters.

All inference for semisupervised and semiparametric
PeptideProphet cases are identical. Inference would be
identical for the adaptive version of PeptideProphet but it
is not implemented in TPP at this time but is available
from the authors upon request.
Following the execution of PeptideProphet the next

step in analysis is often the identification of proteins pre-
sent in the sample. In this different analysis, the experi-
mental unit changes from being a spectrum to a peptide.
TPP can be used to run ProteinProphet, a computational
algorithm that can utilize PeptideProphet’s estimated
probabilities to determine the probability for the pre-
sence of proteins in two steps [19]. In the first step the
posterior probability of a peptide being correctly identi-
fied from PeptideProphet is decreased for peptides that
are the only peptide linked to a protein and increased for
peptides that are linked to proteins explained by many
peptides. In the second step the probability of a protein

being in the sample is calculated as the probability that at
least one of its associated peptides were identified in
the sample. This is 1 − ∏

i(1 − p′
i) if p

′
i is the adjusted

probability of a peptide being in the sample where i is
indexed from 1 to the number of peptides linked to the
protein in question.

Discussion
PeptideProphet is available for use on the Trans-Proteo-
mic Pipeline with many other database search tools (X!
Tandem, MASCOT, OMSSA, Phenyx, ProbID, InsPecT,
MyriMatch). The statistical approach of PeptideProphet
is generalizable to any database search algorithm that
returns a quantitative score for each identified spectrum.
Although we used the Gamma and Normal distribu-

tions to model the components of the PeptideProphet
model, there are no limitation to the choice of para-
metric distribution for describing the distributions of
scores for incorrect and correct identifications in Pepti-
deProphet. The Gumbel distribution, with parameters μ
and b is another common distribution used for the dis-
tribution of scores of incorrect identifications. A gener-
alization of the Gumbel distribution is the Extreme
Value Distribution. Additional information, such as the

Figure 13 Parameter estimates for a PeptideProphet fit in TPP. Estimated parameter values of the PeptideProphet mixture model for charge
2. The parameters of accurate mass difference (ΔM) are not fully displayed.
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NTT, may be incorporated into the summarized score
by using a different machine learning approach instead
of a discriminant function. Quantities like the NTT
were left out of the summarized discriminant score due
to its discrete nature. For example, the logistic regres-
sion function would allow discrete and continuous cov-
ariates to be transformed into a single summarized
score while separating identified spectra with T = 0
from identified spectra with T = 1.
The Target-Decoy approach used in this manuscript is

an approach that pioneered the use of decoys for the esti-
mation of the False Discovery Rate and its results are
often compared to other techniques [16]. For the estima-
tion of the False Discovery Rate PeptideProphet and Tar-
get-Decoy methods in our experience produce similar
results especially when the semisupervised version of Pep-
tideProphet is used as its search approach is similar to the
concatenated version of Target-Decoy. In fact, PeptidePro-
phet can be considered as an extension of the concate-
nated version of Target-Prophet because of its additional
modeling objectives. PeptideProphet simply has distribu-
tional assumptions and can be used to estimate confidence
of individual spectrum identifications or sets of spectrum
identifications (local and global FDR estimates) whereas
target-decoy is limited to sets (global FDR estimate only).
Also, if there is heavy overlap Target-Decoy will outper-
form basic PeptideProphet but Semisupervised Peptide-
Prophet and Target-Decoy should be similar.
An alternative approach which relaxes the parametric

assumptions is the variable component approach which
uses an unknown mixture of Gaussians to represent the
incorrect and correct distributions of scores [12]. The cor-
rect distribution is represented by a mixture distribution
of k0 normal distributions (that may have different means
and variances) and the incorrect distribution is repre-
sented by a separate mixture distribution of k1 normal dis-
tributions. Parameters k0 and k1 are unknown. Each score
si is a member of either the overall correct or incorrect
distributions, but are then further assigned as a member
to one of the sub-components of the mixture representing
the correct or incorrect distribution. Gibbs sampling is
used to estimate the forms of the sub-components (which
also suggests the complexity of this approach). Although
the variable component and kernel methods perform simi-
larly there are minor computational and modeling issues
to consider [12]. The advantages to the variable compo-
nent method are that: (1) The model is still parametric,
which may help reduce the chance of overfitting, (2) Ker-
nel estimation may over fit, especially if the bandwidth is
too low, and (3) It does not completely rely on decoys for
the negative whereas kernel density estimation uses decoys
only for estimating the negative distribution. The advan-
tages of the kernel approach are that: (1) The variable
component method is much more computationally

intensive and more complicated (and thus the Kernel Esti-
mation is less intensive), (2) The variable component
method requires the specification of priors, and (3) Kernel
estimation is very well known and commonly used.
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