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Abstract

Background: Next-Generation Sequencing (NGS) technologies and Genome-Wide Association Studies (GWAS)
generate millions of reads and hundreds of datasets, and there is an urgent need for a better way to accurately
interpret and distill such large amounts of data. Extensive pathway and network analysis allow for the discovery of
highly significant pathways from a set of disease vs. healthy samples in the NGS and GWAS. Knowledge of
activation of these processes will lead to elucidation of the complex biological pathways affected by drug
treatment, to patient stratification studies of new and existing drug treatments, and to understanding the
underlying anti-cancer drug effects. There are approximately 141 biological human pathway resources as of Jan
2012 according to the Pathguide database. However, most currently available resources do not contain disease,
drug or organ specificity information such as disease-pathway, drug-pathway, and organ-pathway associations.
Systematically integrating pathway, disease, drug and organ specificity together becomes increasingly crucial for
understanding the interrelationships between signaling, metabolic and regulatory pathway, drug action, disease
susceptibility, and organ specificity from high-throughput omics data (genomics, transcriptomics, proteomics and
metabolomics).

Results: We designed the Integrated Pathway Analysis Database for Systematic Enrichment Analysis (IPAD, http://
bioinfo.hsc.unt.edu/ipad), defining inter-association between pathway, disease, drug and organ specificity, based on
six criteria: 1) comprehensive pathway coverage; 2) gene/protein to pathway/disease/drug/organ association; 3)
inter-association between pathway, disease, drug, and organ; 4) multiple and quantitative measurement of
enrichment and inter-association; 5) assessment of enrichment and inter-association analysis with the context of
the existing biological knowledge and a “gold standard” constructed from reputable and reliable sources; and 6)
cross-linking of multiple available data sources.
IPAD is a comprehensive database covering about 22,498 genes, 25,469 proteins, 1956 pathways, 6704 diseases,
5615 drugs, and 52 organs integrated from databases including the BioCarta, KEGG, NCI-Nature curated, Reactome,
CTD, PharmGKB, DrugBank, PharmGKB, and HOMER. The database has a web-based user interface that allows users
to perform enrichment analysis from genes/proteins/molecules and inter-association analysis from a pathway,
disease, drug, and organ.
Moreover, the quality of the database was validated with the context of the existing biological knowledge and a
“gold standard” constructed from reputable and reliable sources. Two case studies were also presented to
demonstrate: 1) self-validation of enrichment analysis and inter-association analysis on brain-specific markers, and 2)
identification of previously undiscovered components by the enrichment analysis from a prostate cancer study.

Conclusions: IPAD is a new resource for analyzing, identifying, and validating pathway, disease, drug, organ
specificity and their inter-associations. The statistical method we developed for enrichment and similarity
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measurement and the two criteria we described for setting the threshold parameters can be extended to other
enrichment applications. Enriched pathways, diseases, drugs, organs and their inter-associations can be searched,
displayed, and downloaded from our online user interface. The current IPAD database can help users address a
wide range of biological pathway related, disease susceptibility related, drug target related and organ specificity
related questions in human disease studies.

Background
With the age of big data approaching [1], bioinformatics
for Next-Generation Sequencing (NGS) and Genome-
Wide Association Studies (GWAS) will be one of the big-
gest areas of disruptive innovation in life science tools
over the next few years [2]. Next-Generation Sequencing
technologies and Genome-Wide Association Studies gen-
erate millions of reads and hundreds of datasets, and
there is an urgent need for a better way to accurately
interpret and distill such large amounts of data. The use
of large scale gene expression analysis has been proven to
be useful in identifying differentially expressed genes to
classify and predict various disease subtypes. However, it
is often difficult to assign biological significance to a
large number of genes that are implicated. This problem
persists even when users are able to reduce the number
of differentially expressed genes substantially via hier-
archical clustering methods.
As more information is revealed through large-scale

“omics” techniques, it is becoming increasingly apparent
that genes do not function alone but through complex
biological pathways. Unraveling these intricate pathways
is essential to understanding biological mechanisms, dis-
ease states, and the function of drugs that transform
them. Extensive pathway and network analysis allow for
the discovery of highly significant pathways from a set of
disease vs. healthy samples in the NGS and GWAS.
Knowledge of activation of these processes will lead to
elucidation of the complex biological pathways affected
by drug treatment, to patient stratification studies of new
and existing drug treatments, and to understanding the
underlying anti-cancer drug effects.
Pathway databases serve as repositories of current

knowledge on cell signaling, enzymatic reaction, and
genetic regulation. There are more than 300 pathway
repositories listed in Pathguide resource http://www.
pathguide.org[3], from which over 141 are specialized on
reactions in human as of Jan 2012, for example, BioCarta
http://www.biocarta.com[4], KEGG http://www.genome.
jp/kegg/[5], NCI-Nature curated http://pid.nci.nih.gov/
PID/index.shtml[6], Reactome http://www.reactome.org
[7], and Wikipathways http://www.wikipathways.org/[8].
However, these resources have several limitations. First,
most currently available resources do not contain disease,
drug or organ specificity information such as disease-
pathway, drug-pathway, and organ-pathway associations.

Next, these resources have been developed with variable
degrees of data coverage, quality, and utility [9]. In addi-
tion, only half of them provide pathways and reactions in
computer-readable formats needed for automatic retrie-
val and processing [10]. Lastly, many pathway databases
are in distinct formats [11].
Systematic collection of pathway information not only

in the form of pathway databases but also including
inter-association between pathway, disease, drug, and
organ specificity is crucial, because 1) it provides a
bridge between pathway, disease, drug and organ, and 2)
this bridge can not only capture relevant biological path-
ways but also provide disease, drug target, and organ
specificity information. For “inter-association”, we refer
to a biological connection between two or more biologi-
cal components on basis of intermediary genes (dotted
lines in Figure 1).
A component is a biomedical concept such as pathway,

disease, drug and organ (nodes in Figure 1). Some pilot
studies about this kind of connections have been done in
the past. For example, Li et al. investigated disease rela-
tionships based on their shared pathways [12]. First, they
extracted disease associated genes by literature mining.
Then, they connected diseases to biological pathways
through overlapping genes. Lastly, they built a disease
network by connecting diseases sharing common path-
ways. Smith et al. combined pathway analysis and drug
analysis to identify common biological pathways and
drug targets across multiple respiratory viruses based on
human host gene expression analysis. Their study sug-
gested that multiple and diverse respiratory viruses
invoked several common host response pathways [13].
One study found that disease candidate genes were func-
tionally related in the form of protein complexes or bio-
logical pathways and complex disease ensued from the
malfunction of one or a few specific signaling pathways
[14]. Another study aimed to explore complex relation-
ships among diseases, drugs, genes, and target proteins
altogether [15] and found that mapping the polypharma-
cology network onto the human disease-gene network
revealed not only that drugs commonly acted on multiple
targets but also that drug targets were often involved
with multiple diseases. Berger and Iyengar also discussed
how analysis of biological networks had contributed to
the genesis of systems pharmacology and how these stu-
dies had improved global understanding of drug targets
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[16]. They described that an emerging area of pharmacol-
ogy, systems pharmacology, which utilizes biological net-
work analysis of drug action as one of its approaches, is
becoming increasingly important in: providing new
approaches for drug discovery for complex diseases; con-
sidering drug actions and side effects in the context of
the regulatory networks within which the drug targets
and disease gene products function; understanding the
relationships between drug action and disease suscept-
ibility genes; and increasing knowledge of the mechan-
isms underlying the multiple actions of drugs [16].
Therefore we created the Integrated Pathway Analysis

Database for Systematic Enrichment Analysis (IPAD) for
users to query information about genes, diseases, drugs,
organ specificity, and signaling and metabolic pathways.
First, we integrated data from four kinds of sources: 1)

pathway databases from BioCarta [4], KEGG [5], NCI-
Nature curated [6], and Reactome [7], 2) disease data-
bases from CTD http://ctdbase.org/[17] and PharmGKB
http://www.pharmgkb.org[18], 3) drug databases from
DrugBank httP://www.drugbank.ca[19] and PharmGKB
[18], and 4) organ-specific genes/proteins from HOMER
http://discern.uits.iu.edu:8340/Homer/index.html[20].
Next, we created inter-association between pathway, dis-
ease, drug, and organ specificity. Then, we built a web
interface for users to perform 1) enrichment analysis
from genes/proteins/molecules, and 2) inter-association
analysis from a pathway, disease, drug and organ. Lastly,
we presented three case studies: 1) breast cancer related
markers, 2) brain-specific markers, and 3) prostate can-
cer model to demonstrate that the IPAD can enable
users to analyze enrichment and inter-association

Figure 1 Data Integration Process. The whole data integration process was divided into three steps: 1) associations of molecule-pathway,
molecule-disease, molecule-drug, molecule-organ; 2) inter-association analysis between pathway, disease, drug and organ; and 3) enrichment
analysis and inter-association analysis: 3a) self-validation and 3b) identification of previously undiscovered components by the enrichment
analysis.
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between pathway, disease, drug and organ, to discover
previously undiscovered pathway, disease, drug and
organ, and to validate the enrichments.
The Integrated Pathway Analysis Database for Systema-

tic Enrichment Analysis (IPAD), located at http://bioinfo.
hsc.unt.edu/ipad is a comprehensive database covering
about 22,498 genes, 25,469 proteins, 1956 pathways, 6704
diseases, 5615 drugs, and 52 organs integrated from data-
bases including the BioCarta [4], KEGG [5], NCI-Nature
curated [6], Reactome [7], CTD [17], PharmGKB [18],
DrugBank [19], PharmGKB [18], and HOMER [20].
It is the first comprehensive database that can be used to

analyze, discover, and validate enrichment and inter-asso-
ciation between pathway, disease, drug and organ. The
inter-associations allow further identification of enriched
pathways, diseases, drugs and organs. The quality of the
database is validated on a “gold standard” constructed
from reputable and reliable sources. The ability to choose
multiple quantitative parameters (p-value, Absolute
Enrichment Value (AE), Relative Enrichment Value (RE),
and Mean Jaccard Index (MJI)) provides us with powerful
statistics and computation to accurately calculate enrich-
ment and inter-association. And the cross-linking of mul-
tiple data sources enables subsequent validation.

Results
Database content statistics
By integrating pathway, disease, drug, and organ specificity
databases including BioCarta [4], KEGG [5], NCI-Nature
curated [6], Reactome [7], CTD [17], PharmGKB [18],
DrugBank [19], and Homer [20], we have developed
IPAD, the Integrated Pathway Analysis Database for sys-
tematic enrichment analysis. As of the current release
(May 2012), IPAD contains 25,469 proteins (IPI IDs),
22,498 genes (gene IDs), 1956 pathways covering 11663
genes, 6,704 diseases covering 17925 genes, 5,615 drugs
covering 3735 genes, and 52 organs covering 5599 genes
(Table 1). A comparison of pathways in IPAD against sev-
eral common pathway data sources is shown in Table 2.

P-value distribution of inter-association
We performed statistical testing using p-value described
in the method section to describe the inter-association
between pathway, disease, drug and organ in IPAD
(Figure 2a and Figure 2b). Although the majority of asso-
ciations are not significant (p-value close to 1), there are
still some which are significant (p-value ≤ 10-5). Compo-
nent similarity can also be measured by Absolute Expres-
sion Value (AE), Relative Expression Value (RE) and
Mean Jaccard Index (MJI). The four measurements (p-
value, AE, RE, MJI) can complement each other and
compensate for the weaknesses inherent in each alone to
create better criteria for enrichment analysis.

The inter-association between the 52 organs in Figure 3
shows that the heart and muscle have strongest associa-
tion with a smallest p-value:2.51e-7 (1-log10p-value = 7.6)
and 14 genes in common. The other strong associations
occur between spleen and liver (20 genes in common,
p-value = 1.69e-6, and 1-log10p-value = 6.77), and bone
marrow and bone (7 genes in common, p-value = 2.15e-4,
and 1-log10p-value = 4.67).

General online features
In Figure 4, we show the user interfaces of the web-
based online version of IPAD. It supports standard and
powerful search options that allow users to specify a list
of genes/proteins as the query input. Some interesting
features of IPAD include the ability to browse for path-
way, disease, drug, and organ with tabs in one page,
search by keyword in the Search Box over the table, and
set the p-value cutoff in the enrichment threshold box
to select enriched pathway sets, disease sets, drug sets
and organ sets.
In response to the query input, IPAD can retrieve a list

of related components (pathways, diseases, drugs, and
organs) in a highly flexible table, with which users can
further explore details about inter-association between the
components. For example, users can browse the inter-
association between each component’s molecule and path-
way, disease, drug and organ by clicking on the link in the
column of molecule, and look through the component-
related inter-association between pathway, disease, drug
and organ by clicking on the inter-association icon in the
last column. There are totally sixteen types of inter-asso-
ciations between pathway, disease, drug and organ in
IPAD: Pathway-Pathway, Pathway-Disease, Pathway-Drug,
Pathway-Organ, Disease-Pathway, Disease-Disease, Dis-
ease-Drug, Disease-Organ, Drug-Pathway, Drug-Disease,

Table 1 Current Statistics of Database

Total Number Count

genes 22,498 GeneIDs

proteins 25,469 UniProtIDs

Pathways 1956 (BioCarta:310,KEGG:247, NCI-Nature curated:222,
Reactome:1177)

Molecules in
Pathway

11663

Diseases 6704(CTD:5892, PharmGKB:812)

Molecules in
Disease

17925

Drugs 5615(DrugBank:4604, PharmGKB:1011)

Molecules in
Drug

3735

Organs 52

Molecules in
Organ

5599
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Drug-Drug, Drug-Organ, Organ-Pathway, Organ-Disease,
Organ-Drug, and Organ-Organ. User queried inter-asso-
ciation pathway/disease/drug/organ data stored in IPAD
can also be freely downloaded as tab-delimited text files
using links below each enrichment or inter-association
table.

Assessment of IPAD
Assessing the capabilities of any pathway/disease/drug/
organ enrichment analysis in real experiments is a chal-
lenge in itself because the full truth of what really occurred
between the components and how they are actually inter-
associated, if at all, may never be known. In the absence of
a “gold standard” - a reference standard against which to
establish the performance of the filter, the best alternative
is to analyze the results of the enrichment analysis method
in the context of the existing biological knowledge [21].
We first used two identified studies to illustrate how well
the significant pathways/diseases/drugs/organs identified
by the enrichment analysis and inter-association analysis
of IPAD fit with the existing biological knowledge. Then
we constructed a “gold standard” of 30161 known associa-
tions and used it to assess the inter-association analysis of
IPAD.

Assessment of enrichment analysis
The absence of a definitive answer regarding the involve-
ment of a particular pathway/disease/drug/organ in a
given condition makes it impossible to calculate exact
values for sensitivity, specificity, ROCs, etc. Therefore, we
compared the result of IPAD’s enrichment analysis and
inter-association analysis and tested whether the signifi-
cant pathways/diseases/drugs/organs fit with the existing
biological context. This type of assessment is the current
best practice in this area of enrichment analysis [22].
In the first dataset, we assessed the features of IPAD by

testing the inter-association between breast cancer mar-
kers related pathway, disease, drug and organ. Breast can-
cer is a cancer that starts in the tissues of the breast. We
first downloaded the 15 breast cancer related genes from

the Cancer Gene Census [23]: AKT1, BAP1, BRCA2,
CCND1, CDH1, EP300, ERBB2, ETV6, GATA3, MAP2K4,
NTRK3, PBRM1, PIK3CA, RB1, and TP53. The top 5
associated drugs (p-value ≤ 9.9 × 10-3, AE ≥ 2.57, RE ≥
13.51 and MJI ≥ 0.154; PA451581 tamoxifen,
PA131301952 gefitinib, PA152241907 lapatinib, PA449509
estrogens, and PA449383 docetaxel) we identified using
IPAD are all reportedly linked to breast cancer by pre-
viously published papers (Table 3). For example, most
women with estrogen-sensitive breast cancer benefit from
the drug tamoxifen [24]. This drug blocks the effects of
estrogen, which can help breast cancer cells survive and
grow. Green et al. tested whether Gefinitib as an orally
active selective EGFR inhibitor might benefit advanced
breast cancer (ABC) patients either with acquired hor-
mone resistance or with hormone receptor (HR)-negative
tumors. They concluded that at a dose of 500 mg/day,
gefitinib monotherapy resulted in a low Clinical Benefit
Rate (CBR) and no tumor response was identified [25].
Lapatinib is used as a treatment for treatment-naive
women with breast cancer, ER+/EGFR+/HER2+ breast
cancer patients (now often called “triple positive”) and
patients who have HER2-positive advanced breast cancer
that has progressed after previous treatment with other
chemotherapeutic agents, such as anthracycline, taxane-
derived drugs, or trastuzumab [26]. Estrogen is a hormone
that is necessary for the normal development and growth
of the breasts and organs important for childbearing. For
example, several weeks after a study suggested that
women who take estrogen-only hormone replacement to
treat menopause symptoms may be at lower risk for devel-
oping breast cancer, another, much-larger study found
that when used for longer than 10 years, estrogen-only
regimens actually raise a woman’s long-term risk for
breast cancer [27]. Docetaxel (given with doxorubicin and
cyclophosphamide) is recommended as a possible adjuvant
treatment for women with early node-positive breast can-
cer. For example, Martin et al. compared docetaxel plus
doxorubicin and cyclophosphamide (TAC) with fluoroura-
cil plus doxorubicin and cyclophosphamide (FAC) as

Table 2 A Comparison of Human Pathways in IPAD against Several Common Pathway Data Sources

BioCarta[4] KEGG[5] NCI-Nature curated[6] Reactome[7] IPAD

Pathway coverage 310 247 222 1177 1956

Molecule coverage 1372 9238 2561 5668 11663

Last Updated 2010 Mar 2012 July 2010 Jan 2011 Mar 2012

Curation Type Manual Manual Manual Manual Integrated

Disease Association No Yes No No Yes

Drug Association No Yes No No Yes

Organ Specificity Association No No No No Yes

Inter-associations Quantitative No No No No Yes

Enrichment Score Quantitative No No No No Yes

Similarity No No No No Yes
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Figure 2 p-value Distribution of Inter-association. The y-axis is the scaled density of p-value which is calculated by Fisher Exact test. (a) p-
value Distribution of Inter-association between pathway-pathway, disease-disease, drug-drug, and organ-organ. (b) p-value Distribution of Inter-
association between pathway, disease, drug, and organ.
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adjuvant chemotherapy for operable node-positive breast
cancer and found that adjuvant chemotherapy with TAC
significantly improves the rates of disease-free and overall
survival among women with operable node-positive breast
cancer [28].

By the pathway analysis (p-value ≤ 1.69 × 10-4, AE ≥
3.03, RE ≥ 20.01 and MJI ≥ 0.158), we identified 18
associated pathways of which most are linked with can-
cer such as hsa05212 Pancreatic cancer, hsa05213 Endo-
metrial cancer, hsa05215 Prostate cancer, hsa05223

Figure 3 Heatmap of Inter-associations between 52 Organs. x-axis and y-axis are both 52 organs. The degrees of redness and blackness in
each cell represent increase of association between organs. The legend above the heatmap indicates the range of association between organs.
The association between organs is expressed by 1 minus log10 of p-value. It is nonlinear color scale from white to red to black, correspondingly,
indicating the value of 1-log10(p-value) scales from 1 to 7.6.
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Non-small cell lung cancer, hsa05218 Melanoma,
hsa05219 Bladder cancer, hsa05200 Pathways in cancer,
hsa05214 Glioma, hsa05220 Chronic myeloid leukemia,
hsa05222 Small cell lung cancer, and hsa05210 Colorec-
tal cancer (Table 3). We also discovered 107 diseases
(p-value ≤ 1.59 × 10-4, AE ≥ 4.35, RE ≥ 6.31 and MJI ≥
0.17, Table 3, the top 12 diseases were shown due to
space limitation). Most of them are linked with cancer
such as MESH:D002528 Cerebellar Neoplasms, MESH:
D016510 Corneal Neovascularization, MESH:D002282
Adenocarcinoma, Bronchiolo-Alveolar, MESH:D044483
Intestinal Polyposis, PA443756 Colonic Neoplasms,
PA445062 Neoplasms, MESH:D003123 Colorectal

Neoplasms, Hereditary Nonpolyposis, and MESH:
D046152 Gastrointestinal Stromal Tumors.
By the inter-association, we found that the number 1

pathway (hsa05212, pancreatic cancer) we identified
from the enrichment analysis is also highly associated
with the pathway (hsa05200, pathways in cancer,
p-value = 3.04 × 10-66, 46 orders of magnitude more
significant than the pathway-pathway p-value threshold
2.13 × 10-19), disease (MESH:D046152 Gastrointestinal
Stromal Tumors, p-value = 1.89 × 10-32, 25 orders of
magnitude more significant than the pathway-disease
p-value threshold 1.28 × 10-6), and drug (PA450191
lecithin, p-value = 4.55 × 10-11, 7 orders of magnitude

Figure 4 Web Interface Structure. a) Query by genes or proteins. For example, UniGene IDs, Entrez gene IDs, gene names, UniProt IDs, UniProt
Accessions or IPI IDs are all supported. To enter multiple values, delimit them by comma, semi-colon, line or space. b,c,d,e) search result. In the
enrichment analysis table, it shows Pathway ID (Disease ID, Drug ID, Organ ID), Pathway Name (Disease Name, Drug Name, Organ Name), Molecule,
significance (AE, RE, N, MJI, p-value), and inter-association. For each enriched component, users can further browse the inter-association between its
molecule and pathway, disease, drug and organ by clicking on the link in the column of molecule, and its inter-association between pathway, disease,
drug and organ by clicking on the inter-association icon in the last column. f) molecule inter-association. It shows molecule, Gene Symbol, Pathway ID
(Disease ID, Drug ID, Organ ID), and Pathway Name (Disease Name, Drug Name, Organ Name). g,h,i,j) inter-association between pathway, disease, drug
and organ. It shows associations between Pathway-Pathway, Pathway-Disease, Pathway-Drug, Pathway-Organ, Disease-Pathway, Disease-Disease,
Disease-Drug, Disease-Organ, Drug-Pathway, Drug-Disease, Drug-Drug, Drug-Organ, Organ-Pathway, Organ-Disease, Organ-Drug, Organ-Organ, and
their significance (AE, RE, MJI, p-value).
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more significant than the pathway-drug p-value thresh-
old 5.73 × 10-4). Highly is measured by p-value. When
the individual p-values are at least three orders of mag-
nitude lower than current used p-value threshold, they
are called “highly significant.”
The pathway “hsa05200, pathways in cancer” and disease

“MESH:D046152 Gastrointestinal Stromal Tumors” are
already included in our previous enrichment analysis and
were validated by the inter-association analysis. The drug
PA450191 lecithin was filtered out in the enrichment

analysis due to its insignificant measurement (p-value =
0.0472, AE = 2, RE = 9.04, MJI = 0.0884) and was discov-
ered by the inter-association analysis as a previously undis-
covered drug (p-value = 4.55 × 10-11, AE = 14, RE = 14.53,
MJI = 0.2334). Similarly, the number 1 disease (MESH:
D002528 Cerebellar Neoplasms) was found to be inter-
associated with hsa05200 Pathways in cancer (validated,
p-value = 6.86 × 10-42, AE = 79, RE = 9.39, MJI = 0.2536),
MESH:D016410 Lymphoma, T-Cell, Cutaneous (pre-
viously undiscovered, p-value = 3.76 × 10-100, AE = 320,

Table 3 Enrichment Analysis of Breast Cancer Related Markers

PathwayID PathwayName N P-value AE RE MJI

hsa05212 Pancreatic cancer 72 3.74E-08 7 75.59 0.2819

hsa05213 Endometrial cancer 53 1.07E-07 6 88.02 0.2566

hsa05215 Prostate cancer 100 1.07E-07 7 54.43 0.2683

hsa05223 Non-small cell lung cancer 60 1.60E-07 6 77.75 0.25

hsa05218 Melanoma 72 3.55E-07 6 64.79 0.2417

hsa05200 Pathways in cancer 348 1.02E-06 9 20.11 0.3129

hsa05219 Bladder cancer 42 1.02E-06 5 92.56 0.2262

h_RacCycDPathway Influence of Ras and Rho proteins on G1 to S Transition 26 6.66E-06 4 119.62 0.2103

hsa05214 Glioma 69 6.66E-06 5 56.34 0.2029

hsa05220 Chronic myeloid leukemia 74 7.91E-06 5 52.54 0.2005

hsa05166 HTLV-I infection 272 1.71E-05 7 20.01 0.2462

hsa05222 Small cell lung cancer 90 1.71E-05 5 43.2 0.1944

200124 E-cadherin signaling in the nascent adherens junction 39 2.10E-05 4 79.75 0.1846

200141 FOXM1 transcription factor network 41 2.37E-05 4 75.86 0.1821

200190 a6b1 and a6b4 Integrin signaling 46 3.40E-05 4 67.61 0.1768

hsa04110 Cell cycle 124 5.80E-05 5 31.35 0.1868

hsa05210 Colorectal cancer 62 8.23E-05 4 50.16 0.1656

200041 Signaling events mediated by Hepatocyte Growth Factor Receptor (c-Met) 80 1.67E-05 4 38.88 0.1583

DiseaseID DiseaseName N P-value AE RE MJI

MESH:D002528 Cerebellar Neoplasms 332 6.34E-07 9 32.39 0.3136

MESH:D020967 Myotonic Disorders 278 1.87E-05 7 30.09 0.2459

MESH:D042883 Choledocholithiasis 157 1.87E-05 6 45.67 0.2191

MESH:D002282 Adenocarcinoma, Bronchiolo-Alveolar 339 3.44E-05 7 24.68 0.2437

MESH:D009134 Muscular Atrophy, Spinal 1119 3.44E-05 11 11.75 0.3716

MESH:D016510 Corneal Neovascularization 669 3.44E-05 9 16.08 0.3067

MESH:D044483 Intestinal Polyposis 120 4.42E-05 5 49.79 0.1875

PA443756 Colonic Neoplasms 122 4.42E-05 5 48.98 0.1872

PA445062 Neoplasms 237 4.42E-05 6 30.25 0.2127

MESH:D007972 Leukoplakia, Oral 238 4.42E-05 6 30.13 0.2126

MESH:D003123 Colorectal Neoplasms, Hereditary Nonpolyposis 126 4.42E-05 5 47.42 0.1865

MESH:D046152 Gastrointestinal Stromal Tumors 148 8.01E-05 5 40.37 0.1836

DrugID DrugName N P-value AE RE MJI

PA451581 tamoxifen 74 1.83E-03 5 18.03 0.2124

PA131301952 gefitinib 39 1.83E-03 4 27.36 0.1941

PA152241907 lapatinib 14 1.83E-03 3 57.17 0.2143

PA449383 docetaxel 77 9.81E-03 4 13.86 0.1688

PA449509 estrogens 79 9.89E-03 4 13.51 0.1682

OrganID OrganName N P-value AE RE MJI

larynx larynx 88 1.97E-2 2 25.45 0.2114
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RE = 6.15, MJI = 0.5389), and PA449780 glutathione (pre-
viously undiscovered, p-value = 4.41 × 10-18, AE = 37,
RE = 8.20, MJI = 0.3173); and the number 1 drug
(PA451581 tamoxifen) was found to be inter-associated
with 211859 Biological oxidations (previously undiscov-
ered, p-value = 9.31 × 10-25, AE = 24, RE = 30.06, MJI =
0.2654), PA443560 Breast Neoplasms (previously undis-
covered, p-value = 3.26 × 10-50, AE = 49, RE = 35.43,
MJI = 0.4042), and PA449503 estradiol (previously undis-
covered, p-value = 1.2 × 10-21, AE = 30, RE = 15.45, MJI =
0.3558).
Another dataset we used to assess the enrichment ana-

lysis is with the “self-validation” in Case Study 1. The
self-validation makes the result of enrichment analysis
more reliable and meaningful and consistent with the
existing biological context. If a result of enrichment ana-
lysis can be validated by its subsequent inter-association
analysis, it is also validated that the enrichment analysis
and inter-association analysis are consistent and are both
somewhat reliable.

Assessment of inter-associated analysis
We constructed a “gold standard” of 30161 inter-associa-
tions (247 Pathway-Drug; 274 Drug-Drug; 23659 Pathway-
Disease; 405 Organ-Disease; 2826 Drug-Disease; 2750 Dis-
ease-Disease) from KEGG [5], CTD [17], PharmGKB [18],
DrugBank [19], and Disease Ontology http://do-wiki.
nubic.northwestern.edu/do-wiki/index.php/Main_Page
[29]. We evaluated the performance of inter-association
analysis method for the above six types of inter-associa-
tions (Figure 5). Pathway-Disease inter-associations have
the highest specificity (92.4%), and Organ-Disease inter-
associations have the highest sensitivity (87.9%) and
F_measure (78.4%).
Compared to sensitivity, specificity and accuracy, the

prediction rates are relatively low because the size of test-
ing set are much larger than that of the “gold standard”
set. When more “gold standards” of inter-associations
become available in the future, the prediction rates and
F_measure can be improved because the currently unpre-
dicted pairs will be able to be predicted correctly. Figure 5
also gives a global evaluation for all 30161 inter-associa-
tions (Precision 60.73%, Accuracy 89.90%, Sensitivity
78.69%, Specificity 91.72%, F_measure 68.56%). Overall,
the balanced F_measure (68.56%) shows our inter-associa-
tion analysis method is reliable and can be used for further
enrichment analysis.

Case Studies
We show two case studies of increasing complexity and
biological significance to achieve two goals: 1) to demon-
strate the IPAD’s ability to self-validate by using it to per-
form enrichment analysis and inter-association analysis on
the 369 brain-specific markers, and 2) to demonstrate the

ability of IPAD to identify previously undiscovered compo-
nents by the enrichment analysis based on differentially
expressed genes identified from a prostate cancer study.

Case Study 1: Self-validation with inter-association
analysis
The highly associated relationships between pathway, dis-
ease, drug and organ can be used to validate the identified
enriched pathway, disease, drug and organ candidates. The
more dense and complex the inter-association between the
four components, the more reliable and robust the identi-
fied candidates. In order to demonstrate the self-validation
of IPAD, we first performed enrichment analysis on the
369 brain-specific markers we extracted from Homer [20]
and then used the inter-association analysis in IPAD to
validate the traditional enrichment analysis. We identified
16 enriched pathways (p-value ≤ 5.67 × 1056, AE ≥ 4.86,
RE ≥ 7.42 and MJI ≥ 0. 107), 92 enriched diseases (p-value
≤ 4.52 × 10-7, AE ≥ 28.55, RE ≥ 1.31 and MJI ≥ 0.10),
7 enriched drugs (p-value ≤ 2.49 × 10-7, AE ≥ 8.06, RE ≥
26.98 and MJI ≥ 0.30), and 1 enriched organ (p-value ≤
0.05, AE ≥ 260, RE ≥ 15.42 and MJI ≥ 0.85) (Table 4, only
10 diseases are shown due to space limitation). All compo-
nents were validated by the inter-association analysis
except that only 88 out of 92 diseases were validated. Due
to space limitation, we selected the top 10 diseases and
other components to draw a circular view. The circular
view of the 16 pathways, 7 drugs, 1 organ and top 10 dis-
eases shows that all these 34 components are inter-asso-
ciated with at least one other component (Figure 6). The
table visualization was created by the tableviewer utility
script, which is included in Circos [30]. We set the four
text colors: palegreen, chocolate, royalblue, and magenta
which stand for the four components: pathway, disease,
drug, and organ, respectively. We transformed the extent
of association between two components by using 1 minus
log10 of p-value and set links with variable thickness
representing the extent of inter-associations. The direction
of association (A->B) is represented by a ribbon’s end
touching A and its other end not touching B.
The 10 identified diseases: 1) MESH:D001764, Blephar-

ospasm, 2) MESH:D012563, Schizophrenia, Paranoid, 3)
MESH:D002385, Cataplexy, 4) MESH:D020187, REM
Sleep Behavior Disorder, 5) MESH:D020821, Dystonic
Disorders, 6) MESH:D015877, Miosis, 7) MESH:D001925,
Brain Damage, Chronic, 8) MESH:D000341, Affective Dis-
orders, Psychotic, 9) MESH:D007415, Intestinal Obstruc-
tion, and 10) MESH:D011681, Pupil Disorders, have on
average 766 inter-associations between pathway, disease,
drug and organ, which shows a strong association with
those 369 brain-specific markers.
A blepharospasm is any abnormal contraction or

twitch of the eyelid. There have been several important
advances in understanding the brain mechanisms
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associated with blepharospasm. Baker et al. identified
blinking-induced functional magnetic resonance imaging
(fMRI) activation patterns in five benign essential ble-
pharospasm (BEB) patients and five age-matched control
subjects and concluded that the activations observed
might represent a hyperactive cortical circuit linking
visual cortex, limbic system, supplementary motor cor-
tex, cerebellum, and supranuclear motor pathways
innervating the periorbital muscles [31]. Antal et al.
examined whether magnetic or electrical stimulation of
the brain could improve the involuntary closure of the
eyelids in patients with blepharospasm or Meige syn-
drome [32].
Schizophrenia is a brain disorder that affects the way a

person acts, thinks, and sees the world. People with schi-
zophrenia have an altered perception of reality, often a sig-
nificant loss of contact with reality. Chen et al. utilized a
multivariate approach to identify genomic risk compo-
nents associated with brain function abnormalities in schi-
zophrenia [33]. They first derived 5157 candidate single

nucleotide polymorphisms (SNPs) from genome-wide
array based on their possible connections with schizophre-
nia and further investigated for their associations with
brain activations captured with functional magnetic reso-
nance imaging (fMRI) during a sensorimotor task. Then,
they identified 222 SNPs which showed significant differ-
ence between 92 schizophrenia patients and 116 healthy
controls. Their further pathway analysis showed that the
genes associated with the identified SNPs participated in
four neurotransmitter pathways: GABA receptor signaling,
dopamine receptor signaling, neuregulin signaling and glu-
tamate receptor signaling. Their finding is consistent with
our inter-association analysis from the 369 brain-specific
markers.
Our 16 pathways identified by inter-association analysis

using IPAD contains 1) Neurotransmitter Receptor Bind-
ing And Downstream Transmission In The Postsynaptic
Cell, 2) Neuroactive ligand-receptor interaction, 3)
GABAergic synapse, 4) GABA receptor activation, 5) Glu-
tamate Binding, Activation of AMPA Receptors and

Figure 5 Assessment of Different Associations. The bar plot shows sensitivity, specificity, prediction, accuracy, and F_measure of pathway-
drug, drug-drug, pathway-disease, organ-disease, drug-disease, disease-disease, and all associations as a whole.
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Synaptic Plasticity, 6) Neurotransmitter Release Cycle, 7)
GABA synthesis, release, reuptake and degradation, 8)
Class C/3 (Metabotropic glutamate/pheromone receptors),
and 9) GABA A receptor activation etc.

The other 7 diseases (except Intestinal Obstruction)
also show strong links with brain, such as Cataplexy
[34], REM Sleep Behavior Disorder [35], Dystonic Disor-
ders [36], Miosis [37], Brain Damage [38], Chronic [39],

Table 4 Enrichment Analysis of Brain-Specific Markers

Rank PathwayID PathwayName N Pvalue AE RE MJI

1 112315 Transmission across Chemical Synapses 190 0 27 17.26 0.2117

2 112316 Neuronal System 283 0 32 13.74 0.2232

3 hsa04723 Retrograde endocannabinoid signaling 116 4.68E-14 18 18.85 0.1713

4 112314 Neurotransmitter Receptor Binding And Downstream Transmission In The
Postsynaptic Cell

136 4.48E-13 18 16.08 0.1599

5 hsa04727 GABAergic synapse 98 5.48E-13 16 19.84 0.165

6 hsa04080 Neuroactive ligand-receptor interaction 401 4.42E-12 26 7.88 0.1678

7 977441 GABA A receptor activation 12 7.38E-09 7 70.87 0.3281

8 975298 Ligand-gated ion channel transport 25 1.41E-08 8 38.88 0.2017

9 977443 GABA receptor activation 53 1.30E-07 9 20.63 0.1318

10 hsa04724 Glutamatergic synapse 134 2.62E-07 12 10.88 0.1073

11 983712 Ion channel transport 61 3.20E-07 9 17.92 0.1206

12 420499 Class C/3 (Metabotropic glutamate/pheromone receptors) 15 5.19E-07 6 48.6 0.2313

13 888590 GABA synthesis, release, reuptake and degradation 19 1.52E-06 6 38.37 0.1891

14 399719 Trafficking of AMPA receptors 30 1.33E-05 6 24.3 0.1313

15 399721 Glutamate Binding, Activation of AMPA Receptors and Synaptic Plasticity 30 1.33E-05 6 24.3 0.1313

16 112310 Neurotransmitter Release Cycle 36 3.03E-05 6 20.25 0.1146

Rank DiseaseID DiseaseName N Pvalue AE RE MJI

1 MESH:
D001764

Blepharospasm 699 0 45 5.52 0.1398

2 MESH:
D012563

Schizophrenia, Paranoid 649 3.18E-12 40 5.29 0.1265

3 MESH:
D002385

Cataplexy 723 1.33E-11 41 4.86 0.1264

4 MESH:
D020187

REM Sleep Behavior Disorder 506 1.44E-11 34 5.76 0.1149

5 MESH:
D020821

Dystonic Disorders 837 4.52E-10 41 4.2 0.1226

6 MESH:
D015877

Miosis 1000 1.94E-09 44 3.77 0.1273

7 MESH:
D001925

Brain Damage, Chronic 1732 1.20E-08 59 2.92 0.1582

8 MESH:
D000341

Affective Disorders, Psychotic 700 1.50E-08 34 4.17 0.1056

9 MESH:
D007415

Intestinal Obstruction 1293 2.33E-08 48 3.18 0.1334

10 MESH:
D011681

Pupil Disorders 1612 2.61E-08 55 2.93 0.1486

Rank DrugID DrugName N Pvalue AE RE MJI

1 DB01595 Nitrazepam 20 2.92E-08 10 29.64 0.3294

2 DB00349 Clobazam 19 4.26E-08 9 28.08 0.3083

3 DB00475 Chlordiazepoxide 19 4.26E-08 9 28.08 0.3083

4 DB00683 Midazolam 19 4.26E-08 9 28.08 0.3083

5 DB00690 Flurazepam 19 4.26E-08 9 28.08 0.3083

6 DB00842 Oxazepam 19 4.26E-08 9 28.08 0.3083

7 DB01558 Bromazepam 19 4.26E-08 9 28.08 0.3083

Rank OrganID OrganName N Pvalue AE RE MJI

1 brain brain 363 0 260 15.42 0.8581
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Affective Disorders [40], Psychotic [41], and Pupil Disor-
ders [42].
The 7 identified drugs: 1) DB00349, Clobazam, 2)

DB00475, Chlordiazepoxide, 3) DB00683, Midazolam, 4)
DB00690, Flurazepam, 5) DB00842, Oxazepam, 6)
DB01558, Bromazepam, and 7) DB01595, Nitrazepam
have on average 63 inter-associations between pathway,
disease, drug and organ. They show strong links with
brain, such as 1) Clobazam [43], 2) Chlordiazepoxide
[44], 3) Midazolam [45], 4) Flurazepam [46], 5) Oxaze-
pam [47], 6) Bromazepam [48], and 7) Nitrazepam [49].
In conclusion, this case study shows that the self-vali-

dation of IPAD is an innovation of traditional enrich-
ment analysis and can be useful for validating any
pathways, diseases, drugs or organs that users identify
with their own data and methods.

Case Study 2: Identification of previously undiscovered
components by IPAD
RNA-seq is an emerging technology for surveying gene
expression and transcriptome content by directly sequen-
cing the mRNA molecules in a sample. RNA-seq can pro-
vide gene expression measurements and is regarded as an
attractive approach to analyze a transcriptome in an
unbiased and comprehensive manner. In this case study,
we demonstrate the use of IPAD to identify previously
undiscovered components by the enrichment analysis
based on differentially expressed genes identified from the
transcriptional profiling sequencing data [50]. The original
purpose is to provide a general guide for analysis of gene
expression and alternative splicing by deep sequencing. In
the prostate cancer study, the prostate cancer cell line
LNCap was treated with androgen/DHT. Mock-treated
and androgen-stimulated LNCap cells were sequenced
using the Illumina 1G Genome Analyzer. For the mock-
treated cells, there were four lanes totaling ~10 million
reads. For the DHT-treated cells, there were three lanes
totaling ~7 million reads. All replicates were technical
replicates. Samples labeled s1 through s4 are from mock-
treated cells. Samples labeled s5, s6, and s8 are from
DHT-treated cells. The read sequences are stored in
FASTA files. The sequence IDs break down as follows:
seq_(unique sequence id)_(number of times this sequence
was seen in this lane). We first downloaded the publicly
available transcriptional profiling sequencing data from
the author’s Web Site at http://yeolab.ucsd.edu/yeolab/
Papers.html and computed the digital gene expression,
next identified 278 differentially expressed genes in RNA-
seq data from hormone treated prostate cancer cell line
samples, then performed the enrichment analysis of the
278 genes with IPAD, and lastly carried out the inter-asso-
ciation analysis for these enriched components with IPAD.
In total, we identified 11 enriched pathways (p-value ≤

5 × 10-2,AE ≥ 3.45, RE ≥ 1.95 and MJI ≥ 0.040), 100

diseases(p-value ≤ 1.6 × 10-3, AE ≥ 68.35, RE ≥ 1.30 and
MJI ≥ 0.147), and 2 organs (p-value ≤ 1.9 × 10-2,AE ≥
4.38, RE ≥ 5.45 and MJI ≥ 0.080) for the 278 genes. And
the further inter-association analysis of IPAD identified
10 pathways, 8 diseases, 2 drugs and 1 organs which are
not previously discovered by the enrichment analysis of
IPAD (Table 5).
We found that some of these components that were pre-

viously undiscovered but identified by inter-association
analysis still showed strong association with prostate can-
cer. For example, previous studies reported that the top
5 drugs we identified with inter-association analysis: doce-
taxel, glutathione, gefitinib, rosiglitazone, and carboplatin
were all associated with prostate cancer. Docetaxel is a
drug used in men whose prostate cancer no longer
responds to hormone therapy. Tannock et al. compared
docetaxel plus prednisone in men with advanced, hor-
mone-refractory prostate cancer with mitoxantrone plus
prednisone. They found that treatment with docetaxel
every three weeks led to superior survival and improved
rates of response in terms of pain, serum PSA level, and
quality of life, as compared with mitoxantrone plus pre-
dnisone, when given with prednisone [51]. The deficiency
in the glutathione enzyme system has been proposed to
increase the likelihood of developing both an enlarged
prostate and prostate cancer. Nelson discovered a genetic
defect in prostate cancer cell prevents the body from pro-
ducing glutathione S-transferase (GST), an enzyme needed
by the liver to detoxify harmful chemicals [52]. The func-
tion of a particular glutathione enzyme glutathione-S-
transferase-pi-i (GSTP1) is almost universally lost in both
cancerous and pre-cancerous prostate cells. The inactiva-
tion of this glutathione enzyme is an early event in the
development of prostate cancer. Many studies have linked
the loss of GSTP 1 to malignant transformation of pro-
static tissues [52].
One study found that gefitinib and bicalutamide

showed synergistic effects in primary cultures of prostate
cancer derived from androgen-dependent naive patients
[53]. Another study discovered that gefitinib-trastuzumab
combination showed promising clinical activity in hor-
mone refractory prostate cancer [54]. Smith et al.
assessed the biological activity of rosiglitazone, a peroxi-
some proliferator-activated receptor gamma agonist that
has been approved to treat type 2 diabetes, in men with
recurrent prostate carcinoma using change in prostate
specific antigen (PSA) doubling time (PSADT) as the pri-
mary outcome variable and concluded that Rosiglitazone
did not increase PSADT or prolong the time to disease
progression more than placebo in men with a rising PSA
level after radical prostatectomy and/or radiation therapy
[55]. But Rosiglitazone was found to suppress human
lung carcinoma cell growth through PPARg-dependent
and PPARg-independent signal pathways [56]. The
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number 3 drug, Carboplatin is a chemotherapy agent
used for treatment of many types of cancer. Some studies
examined the efficacy of carboplatin as a second line che-
motherapy agent (after the failure of taxotere) as well as
along with taxotere therapy for men with advanced pros-
tate cancer [57,58]. A phase II study assessed the out-
come and predictive factors for prognosis and toxicity
following intermittent chemotherapy with docetaxel,
estramustine phosphate, and carboplatin (DEC) in
patients with castrate resistant prostate cancer (CRPC)

and found that combination chemotherapy with DEC has
a potential effect on CRPC with acceptable toxicity [59].
Jeske et al. conducted a retrospective, bi-institutional
review of patients with advanced CRPC treated with car-
boplatin plus paclitaxel after docetaxel and concluded
that Carboplatin/paclitaxel chemotherapy following doc-
etaxel in metastatic CRPC is well tolerated with favorable
PSA response rates and survival and the combination
is a viable option after progression on docetaxel-based
therapy [60].

Figure 6 A Circular View of the Inter-association Analysis of 369 Brain-Specific Markers. The text colors for the four components: pathway,
disease, drug, and organ are palegreen, Chocolate, royalblue, and magenta, respectively. Links with variable thickness represent the extent of
association between two components which is 1 minus log10 of p-value. The direction of association (A->B) is represented by a ribbon’s end
touching A and its other end not touching B.
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This case study shows that compared to traditional
enrichment analysis, the IPAD’s inter-association analy-
sis can be more powerful and useful in identification of
previously undiscovered pathways, diseases, drugs or
organ specification.

Conclusion
We developed IPAD as an integrated database system to
analyze, identify, and validate pathway, disease, drug,
organ specificity and their inter-associations. IPAD inte-
grates many different types of pathway, disease, drug and
organ-specificity information: pathway gene relationship
from the BioCarta [4], KEGG [5], NCI-Nature curated [6],
and Reactome [7] database; disease gene relationship from
the CTD [17] and PharmGKB [18] database; drug gene
relationship from the DrugBank [19] and PharmGKB [18]
database; and organ-specific genes/proteins from the
HOMER [20] databases.
Enriched pathways, diseases, drugs, organs and their

inter-associations can be searched, displayed, and down-
loaded from our online user interface. The current IPAD
database can help users address a wide range of pathway
related, disease related, drug related and organ specificity
related questions in human disease studies. We also devel-
oped a statistical method for similarity measurement and
statistics and described two criteria for setting the thresh-
old parameters, which can be extended to other enrich-
ment applications. Lastly, our database was evaluated by
comparison to other known databases, a constructed “gold
standard” of 30161 known associations, and two case
studies.

Discussion
In this paper, we have demonstrated that IPAD can be
used to discover, analyze, and validate pathway, disease,
drug, and organ specificity from experimental data. We
illustrated the features of IPAD by testing the inter-
association between breast cancer markers related path-
way, disease, drug and organ. In Case Study 1, we
demonstrated the IPAD’s ability to self-validate by using
it to perform enrichment analysis and inter-association
analysis on the 369 brain-specific markers. In Case
Study 2, we further demonstrated the ability of IPAD to
identify previously undiscovered components by the
enrichment analysis based on differentially expressed
genes identified from a prostate cancer study.
Selecting the appropriate statistical parameters for

enrichment analysis and inter-association analysis is
important. We presented a novel algorithm to measure
relationships among the annotation terms based on p-
value, Absolute Expression Value (AE), Relative Expression
Value (RE) and Mean Jaccard Index (MJI). We also
described the two criteria for setting the threshold para-
meters: 1) p-value below the 5% quantile and 2) 1 sigma

lower control limits for AE, RE and MJI. However, defin-
ing each threshold parameter and implementing them
effectively can be still challenging. Because the gene list
size affects the enrichment score and the sizes of four
types of component are largely different (Table 1, 11663
molecules in 1956 Pathways, 17925 molecules in 6704 dis-
eases, 3735 molecules in 5615 drugs, and 5599 molecules
in 52 organs).
In our website we provide all results for users to cut off

according to the specificity of their input data. The num-
ber of enriched component sets depends on the structure
of the data and the problem space. If no enriched compo-
nent sets or a very large number of enriched component
sets pass the thresholds, users first check whether too
few or too many genes are loaded. If there are no such
issues, users can tighten up the thresholds for too many
significant component sets and relax them for no signifi-
cant component sets.
In this paper, we introduced organ-pathway, organ-dis-

ease, organ-drug, organ-organ inter-associations for the
first time. An organ actually means organ specificity in
the paper. An organ is a group of tissues that perform a
specific function or group of functions. Organ specificity
is referred as the specificity of level of expression of a
gene or protein in a certain type of organ. Identification
of the association of organ-gene, organ-pathway, organ-
disease, organ-drug, and organ-organ can be helpful in
the discovery potentially therapeutic genes related to spe-
cific organs, measuring and understanding the function
and characteristics of cells and tissues in an organ from
the perspective of cooperative network, disease diagnosis,
and drug target, indicating important clues about gene
function, network signaling, disease treatment and drug
target, and monitoring organ integrity both during precli-
nical toxicological assessment and clinical safety testing
of investigational drugs.

Methods
Data sources
We show an overview of the data integration process in
Figure 1. Pathway data in IPAD were collected from the
four most commonly used sources, i.e., BioCarta [4],
KEGG [5], NCI-Nature curated [6], and Reactome [7].
The BioCarta [4] includes expert-curated interactive

graphic models of many pathways from diverse fields
like apoptosis, cell cycle, cell signaling, development,
immunology, neuroscience, adhesion, and metabolism.
BioCarta data from June 2004 was imported from its
website.
The KEGG [5] pathway is a collection of manually

drawn pathway maps containing the knowledge on the
molecular interaction and reaction networks in Metabo-
lism, Genetic Information Processing, Environmental
Information Processing, Cellular Processes, Organismal
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Systems, Human Diseases, and Drug Development. The
KEGG data was downloaded from its ftp site.
The NCI-Nature curated [6] are created by Nature

Publishing Group editors and reviewed by experts in the
field. Biomolecules are annotated with UniProt protein
identifiers and relevant post-translational modifications.
Interactions are annotated with evidence codes and
references. The NCI-Nature curated data was down-
loaded from its website.
Reactome [7] is an expert-authored, peer-reviewed

knowledgebase of human reactions and pathways that
provides infrastructure for computation and data mining
across the biologic reaction network. Human pathways
from Reactome were downloaded from its website.
Disease data in IPAD was downloaded from two dif-

ferent sources: CTD [17] and PharmGKB [18]. The
Comparative Toxicogenomics Database CTD [17] is a
public website and research tool that curates scientific
data describing relationships between chemicals, genes,
and human diseases. The Pharmacogenetics Knowledge
Base (PharmGKB) [18] is curate knowledgebase about
the impact of genetic variation on drug response with

focus on clinical interpretation of variants associated
with drug response, drug dosing guidelines and genetic
tests, drug-centered pathways, important PGx gene sum-
maries, and relationships among genes, drugs and
diseases.
Drug data in IPAD were downloaded from two differ-

ent sources, DrugBank [19] and PharmGKB [18]. The
DrugBank database [19] is a unique bioinformatics and
cheminformatics resource that combines detailed drug
(i.e. chemical, pharmacological and pharmaceutical) data
with comprehensive drug target (i.e. sequence, structure,
and pathway) information.
The organ specificity in IPAD was downloaded from

HOMER [20]. HOMER [20] is an integrated Human
Organ-specific Molecular Electronic Repository, defining
human organ-specific genes/proteins and covering about
22,598 proteins, 52 organs, and 4,290 diseases integrated
and filtered from organ-specific proteins/genes and dis-
ease databases like dbEST [61], TiSGeD [62], HPA [63],
CTD [17], and Disease Ontology [29].
We used PERL to parse the text data we downloaded

and a light-weight implementation of the Document

Table 5 Identification of Previously Undiscovered Components by IPAD

PathwayID PathwayName p-value AE RE MJI C

1430728 Metabolism 4.32E-35 525 2.19 0.34 93

556833 Metabolism of lipids and lipoproteins 1.00E-13 175 2.25 0.27 91

453279 Mitotic G1-G1/S phases 2.41E-42 47 27.44 0.33 87

200137 AP-1 transcription factor network 2.36E-06 44 2.97 0.32 87

453279 Mitotic G1-G1/S phases 2.77E-09 78 2.73 0.30 87

200120 Direct p53 effectors 6.09E-07 70 2.4 0.27 85

69278 Cell Cycle, Mitotic 1.81E-14 166 2.37 0.28 82

1640170 Cell Cycle 1.51E-12 183 2.11 0.26 80

535734 Fatty acid, triacylglycerol, and ketone body metabolism 1.38E-07 81 2.35 0.26 79

71291 Metabolism of amino acids and derivatives 7.54E-15 120 2.9 0.33 76

DiseaseID DiseaseName p-value AE RE MJI C

MESH:D015228 Hypertriglyceridemia 1.60E-192 4573 2.09 0.77 79

MESH:D009468 Neuromuscular Diseases 4.34E-07 117 2.04 0.41 74

MESH:D009468 Neuromuscular Diseases 2.16E-293 4573 2.52 0.82 74

MESH:D052016 Mucositis 4.99E-199 4572 2.11 0.77 72

MESH:D002543 Cerebral Hemorrhage 7.21E-128 4572 1.8 0.73 72

MESH:D006463 Hemolytic-Uremic Syndrome 3.65E-215 4570 2.18 0.78 72

MESH:D020246 Venous Thrombosis 6.59E-106 4573 1.71 0.72 70

MESH:D013923 Thromboembolism 1.78E-123 4573 1.79 0.73 70

DrugID DrugName p-value AE RE MJI C

PA449383 Docetaxel 3.08E-02 52 1.89 0.36 24

PA449780 Glutathione 1.74E-10 20 10.48 0.24 13

PA131301952 Gefitinib 8.52E-17 29.88 10.84 0.395 8

PA451283 Rosiglitazone 7.73E-22 41.4 10.58 0.386 5

PA448803 Carboplatin 2.57E-15 27 11.36 0.397 5

OrganID OrganName p-value AE RE MJI C

liver Liver 1.82E-17 179 2.72 0.40 84
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Object Model interface in Python 2.7.l [64], xml.dom.
minidom to parse the XML format data.

Similarity measure for the inter-association analysis
The Jaccard Index measures similarity between pathways,
diseases, drugs and organs, and is defined as the size of
the intersection divided by the size of the union of the
component sets. The component similarity measure can
be defined as the extent of overlaps, e.g., common number
of genes/proteins, shared between two different compo-
nents [65]. In IPAD, we have four types of components:
pathway, disease, drug and organ.
The component-component similarity score JIi,j is

defined as Jaccard Index,

JIi,j =
|Pi ∩ Pj|
|Pi ∪ Pj| i = 1...N, j = 1...M,

where, N, M denotes total number of components. Pi
and Pj denote two different components, Pi and Pj can
be the same or different type, while |Pi| and |Pj| are the
numbers of molecules in these two components. Their
intersection Pi ∩Pj is the set of all molecules that appear
in both Pi and Pj, while their union Pi ∪Pj is the set of
all molecules either appearing in the Pi or in the Pj.
Duplicates are eliminated in the intersection set and
union set.
Similarly, we define the left component-component

similarity score LJIi,j as Left Jaccard Index,

LJIi,j =
|Pi ∩ Pj|

min(|Pi|, |Pj|) i = 1...N, j = 1...M,

the right component-component similarity score RJIi,j
as Right Jaccard Index,

RJIi,j =
|Pi ∩ Pj|

max(|Pi|, |Pj|) i = 1...N, j = 1...M,

and the mean component-component similarity score
MJIi,j as Mean Jaccard Index,

MJIi,j =
LJIi,j + RJIi,j

2
i = 1...N, j = 1...M.

With the equations above, we can calculate similarity
scores (Jaccard Index, Left Jaccard Index, Right Jaccard
Index, and Mean Jaccard Index) for pathway-pathway,
disease-disease, drug-drug, organ-organ, pathway-dis-
ease, pathway-drug, pathway-organ, disease-drug, dis-
ease-organ, and drug-organ associations.

Statistics for the inter-association analysis
In addition to similarity scores, we developed a statistic
model based on Fisher Exact test [66,67] and number of
genes involved in a component for systematic enrichment

analysis. When members of two independent groups can
fall into one of two mutually exclusive categories, Fisher
Exact test [66,67] is used to determine whether the pro-
portions of those falling into each category differs by
group. In IPAD enrichment system, Fisher Exact test is
adopted to measure the gene-enrichment in annotation
terms and the enrichment between components. Given p
to be the probability of success in a Bernoulli trial where
one gene in component i falls in component j, the prob-
ability of x successes is

P(x) = Cx
Lp

x(1 − p)L−x,

Where L is the total number of genes in component i,
M is the total number of genes in component j, N is the
total number of genes in the type of component, p =
M/N, x is the number of genes corresponding to com-
ponent i in component j, and Cx

L is the number of possi-
ble combinations of x genes from a set of L genes.
The p-value for component i in component j is the

probability of obtaining a test statistic at least as
extreme as the one observed, given that the null hypoth-
esis that there is no enrichment between component i
and component j is true, and calculated according to
the following formula

Pvalve =
∑M

x
P(x).

To prevent multiple testing problem from happening,
IPAD adjust the p-value by Benjamini & Hochberg
method [68].
The absolute enrichment value (AE) of component i in

component j is defined as x, the number of genes corre-
sponding to component i in component j. The expected
enrichment value (EE) of component i in component j
is defined as the expected number of genes of compo-
nent i in component j under the null hypothesis that
the component i and component j are independent of
each other.

EE = L · M
N
.

The relative enrichment value (RE) of component i in
component j is defined as AE/EE.
We define inter-associations as enriched ones if they

satisfy the thresholds in table 6 (i.e. for Pathway-Path-
way association: p-value ≤ 2.13-19, RE ≥ 3.131, AE ≥ 9
and MJI ≥ 0.328; and so on). We determine the para-
meters based on the following two criteria: 1) Associa-
tions with p-value below the 5% quantile are chosen as
enriched associations based on the p-value distribution
of inter-association in the Figure 2 and the comparison
of the five quantile thresholds in Table 7. 2) 1-sigma
limits (1-standard error) are used to set the lower
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control limits for AE, RE and MJI. There are no upper
control limits for AE, RE and MJI. AE, RE and MJI must
be greater than or equal to one standard deviation from
their means. Associations falling below the lower control
limits are considered to be not stably enriched.
P-value below the 5% quantile performs better than

other p-value thresholds with a balanced F_measure and
an appropriate total number of inter-associations (Table
7). First, the threshold (p-value ≤ Quantile 3%) is too
strict. It filters out about half of the inter-associations
that are identified by the threshold (p-value ≤ Quantile
7%). Secondly, the thresholds (p-value ≤ Quantile 6%)
and (p-value ≤ Quantile 7%) cannot perform better in
F_measure than the threshold (p-value ≤ Quantile 5%).
Finally, we choose (p-value ≤ Quantile 5%) as the best
threshold because we can identify 23% more inter-asso-
ciations with (p-value ≤ Quantile 5%) than with (p-value
≤ Quantile 4%), although the F_measure of the thresh-
old (p-value ≤ Quantile 4%) is a little bit higher than
that of the threshold (p-value ≤ Quantile 5%).
Further comparison between four sigma thresholds

(Table 8) shows that 1-sigma threshold to set the lower
control limits for AE, RE and MJI can have the better
prediction performance than other sigma thresholds.

Similarity measure and statistics for the enrichment
analysis
If a user’s gene list is treated as a component, then the
similarity measures and the statistics for genes-pathway,
genes-disease, genes-drug and genes-organ can be simi-
larly computed with the equations in the sections:
“Similarity Measure for the Inter-association Analysis”
and “Statistics for the Inter-association Analysis”.

Performance measurements
A “gold standard” of 30161 inter-associations (247 Path-
way-Drug; 274 Drug-Drug; 23659 Pathway-Disease; 405
Organ-Disease; 2826 Drug-Disease; 2750 Disease-Dis-
ease) was constructed from KEGG [5], CTD [17],
PharmGKB [18], DrugBank [19], and Disease Ontology
[29] for performance evaluation purpose only. The fol-
lowing measurements were involved in our evaluation.
(1) Sensitivity (also called recall) is the proportion of
actual positive pairs which are correctly identified; (2)
Specificity measures the proportion of negative pairs
which are correctly identified; (3) Precision is the prob-
ability of correct positive prediction; (4) F_measure is
the harmonic mean of precision and recall; (5) Accuracy
is the proportion of correctly predicted pairs.

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Precision =
TP

TP + FP

F measure =
2 ∗ Precision ∗ Sensitivity

Precision + Sensitivity

Accuracy =
TP + TN

TP + TN + FP + FN

Online IPAD server design
The online version of IPAD database is a typical 3-tier
web application [69], with an SQL Server2008R2 data-
base at the backend database service layer, Apache/PHP
server scripts to the middleware application web server
layer, and CSS-driven web pages presented on the
browser.

Table 6 Thresholds for Inter-association Analysis in IPAD

Typea Typeb p-value≤ AE≥ RE≥ MJI≥

pathway Pathway 2.13E-19 9.000 3.131 0.328

Pathway Disease 1.28E-06 3.000 1.268 0.127

Pathway Disease 5.73E-04 2.168 2.133 0.193

Pathway Organ 5.00E-02 1.132 1.970 0.109

Disease Pathway 1.02E-05 3.000 1.254 0.140

Disease Disease 4.19E-72 73.538 1.370 0.393

Disease Drug 5.00E-02 2.000 1.422 0.171

Disease Organ 5.00E-02 1.000 1.313 0.121

Drug Pathway 1.60E-05 2.666 2.468 0.141

Drug Disease 6.51E-03 1.000 1.358 0.133

Drug Drug 1.59E-05 3.000 3.391 0.333

Drug Organ 5.00E-02 2.678 3.856 0.201

Organ Pathway 4.01E-02 1.000 2.018 0.056

Organ Disease 6.27E-03 2.000 1.384 0.085

Organ Drug 5.00E-02 2.206 3.093 0.155

Organ Organ 5.00E-02 7.000 4.279 0.095

Table 7 A Comparison of the Five Quantile Thresholds

# Associations In Pathway #Associations In Disease #Associations In Drug #Associations In Organ #total F_measure

Quantile 3% 111374 594647 119170 3627 828818 60.75%

Quantile 4% 148455 786699 124467 4471 1064092 68.58%

Quantile 5% 185474 984366 130029 4471 1304340 68.56%

Quantile 6% 222175 1176166 135915 4471 1538727 68.18%

Quantile 7% 259592 1367923 143947 4471 1775933 66.92%
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Table 8 A Comparison of the Four Sigma Thresholds

# Associations In Pathway #Associations In Disease #Associations In Drug #Associations In Organ #total F_measure

0.5 Sigma 117535 644957 58579 2222 823293 60.58%

1 Sigma 185474 984366 130029 4471 1304340 68.56%

2 Sigma 223000 1215652 156337 5329 1600318 67.78%

3 Sigma 223000 1215652 156337 5329 1600318 67.78%

Figure 7 Relational Metadata Model. The datasets derived by the data generation pipeline are filled in gray.
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The result tables derived from the data generation
steps were imported into the SQL Server2008R2 database
(Figure 7). The pathway-gene, disease-gene, drug-gene,
organ-gene, pathway-disease, pathway-drug, pathway-
organ, disease-drug, organ-disease, organ-drug tables
enable users to query the database with different IDs.
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