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Abstract

Background: In the context of drug discovery and development, much effort has been exerted to determine
which conformers of a given molecule are responsible for the observed biological activity. In this work we aimed
to predict bioactive conformers using a variant of supervised learning, named multiple-instance learning. A single
molecule, treated as a bag of conformers, is biologically active if and only if at least one of its conformers, treated
as an instance, is responsible for the observed bioactivity; and a molecule is inactive if none of its conformers is
responsible for the observed bioactivity. The implementation requires instance-based embedding, and joint feature
selection and classification. The goal of the present project is to implement multiple-instance learning in drug
activity prediction, and subsequently to identify the bioactive conformers for each molecule.

Methods: We encoded the 3-dimensional structures using pharmacophore fingerprints which are binary
strings, and accomplished instance-based embedding using calculated dissimilarity distances. Four dissimilarity
measures were employed and their performances were compared. 1-norm SVM was used for joint feature
selection and classification. The approach was applied to four data sets, and the best proposed model for
each data set was determined by using the dissimilarity measure yielding the smallest number of selected
features.

Results: The predictive abilities of the proposed approach were compared with three classical predictive models
without instance-based embedding. The proposed approach produced the best predictive models for one data set
and second best predictive models for the rest of the data sets, based on the external validations. To validate the
ability of the proposed approach to find bioactive conformers, 12 small molecules with co-crystallized structures
were seeded in one data set. 10 out of 12 co-crystallized structures were indeed identified as significant
conformers using the proposed approach.

Conclusions: The proposed approach was proven not to suffer from overfitting and to be highly competitive with
classical predictive models, so it is very powerful for drug activity prediction. The approach was also validated as a
useful method for pursuit of bioactive conformers.
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Background

In the context of drug discovery research, it is challen-
ging but of great importance to be able to determine
which 3-dimensional (3D) shapes (so-called conformers)
of a given molecule are responsible for its observed bio-
logical activity. Due to structural flexibility, a molecule
may adopt a wide range of conformers and the identifi-
cation of the bioactive conformers is extremely impor-
tant in order to understand the recognition mechanism
between small molecules and proteins, which is crucial
in drug discovery and development. Until now, the most
reliable approach to obtain the bioactive conformer is to
use the X-ray crystal structure of a ligand-protein com-
plex; however, the number of such structures is limited
because of the experimental difficulty in obtaining the
crystals, especially for transmembrane proteins, such as
G protein-coupled receptors (GPCR) [1,2] and mem-
brane transporters. We were interested to apply to this
problem a machine-learning approach which does not
require crystal structures, named multiple-instance
learning (MIL) via embedded instance selection
(MILES). MILES has been demonstrated as an efficient
and accurate approach to solve different multiple-
instance problems [3], in particular, to predict drug
activity using Musk data sets. In the context of drug
activity prediction, MILES enables the construction of a
quantitative structure-activity relationship (QSAR)
model, and subsequently the identification of bioactive
conformers.
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MIL is a variant of supervised learning, and it has been
applied for a variety of learning problems including drug
activity prediction [4], image database retrieval [5], text
categorization [6], and natural scene classification [7]. In
the context of drug activity prediction, the observed biolo-
gical activity is associated with a single molecule (bag)
without knowing which conformer or conformers
(instances) are responsible. Furthermore, a molecule is
biologically active if and only if at least one of its confor-
mers is responsible for the observed bioactivity; and the
molecule is inactive if none of its conformers is responsi-
ble (Figure 1). A difficulty in implementation arises from
the fact that different molecules have a different number
of conformers, since some molecules having multiple rota-
table bonds are highly flexible and others with rigid struc-
tures only have a small numbers of conformers.

The overall strategy for structural and data mining
using MILES (Figure 2) is summarized here. First of all, a
complete sampling of conformational space provides a
large number of conformers for each molecule. The
molecules are themselves each already labelled as either
positive or negative. However, the labels for the confor-
mers are unavailable during the model generation. Each
conformer is denoted by a unique pharmacophore finger-
print which is a superior feature-based 3D descriptor
unveiling structural similarity and diversity [8-11]. The
pharmacophore fingerprint is encoded into a binary
string which indicates the presence or absence of a
match to individual pharmacophore models. Since the

Bioactive Conformers

Figure 1 Cartoon representation of the relationship between molecules and conformers. M, / = 1, 2, 3, 4 represent the molecules (bags),
circled by dashed lines. The solid triangles in My, circles in M,, squares in M3, and stars in M, represent conformers for different molecules.
Molecules 2, 3, and 4 were biologically active since they had at least one bioactive conformer, whereas molecule 1 was inactive since none of its
conformers was bioactive. The distance between two molecules, M; and M;, was calculated by the minimum distance D(M;, M3).
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Figure 2 Overview of the MILES approach. (1) Structure preprocessing and conformational sampling. (2) Creating pharmacophore fingerprints
and significance analysis of pharmacophore models. (3) Instance-based feature mapping based on structural similarity measures. (4) Joint feature
selection and classification using 1-norm SVM.

exhaustively enumerated fingerprints have millions of
bits, which may be beyond computational limits, a signifi-
cance analysis of pharmacophore models [12] is
employed to determine the optimal subset of bits of the
fingerprint. Subsequently, MILES converts the MIL to a
standard supervised learning problem by embedding bags
(molecules) into an instance-based (conformer-based)
feature space via structural dissimilarity measures [13].
Finally, 1-norm SVM is applied to select the most impor-
tant features, identifying the highly significant confor-
mers which help the most to distinguish active and
inactive molecules, and, simultaneously, to construct a
predictive classification model.

In the present work, MILES has been applied to study
the biological activities of several sets of molecules inter-
acting with different receptor targets including glycogen
synthase kinase-3 (GSK-3), cannabinoid receptors (CBrs),
and P-glycoprotein (P-gp). All of these receptors have
been emerging as increasingly important therapeutic tar-
gets. GSK-3 is a multifunctional serine/threonine protein
kinase involved in the regulation of a wide range of

cellular functions, including glucose metabolism, neuronal
processes, chronic inflammation, cell proliferation and
apoptosis [14]. CBrs are a class of GPCRs and have been
targeted for various disease conditions such as obesity,
drug abuse disorders, inflammatory diseases, anorexia and
vomiting [15]. P-gp, a membrane transporter, is responsi-
ble for drug efflux and multidrug resistance, especially to
cancer drugs [16]. Except for GSK-3, the other proteins
are membrane-associated and there is no available crystal
structure for them. The identification of bioactive confor-
mers for the molecules targeting membrane-associated
proteins using MILES could be highly informative and
desirable. Identified conformers can be used in various
drug discovery approaches such as scaffold hopping, target
fishing, and 3D structural alignment for 3D quantitative
structure-activity relationship (QSAR) studies.

Based on our calculations, MILES is highly competitive
with the classical QSAR approaches which do not include
instance-based feature mapping in terms of predictive abil-
ities. Meanwhile, we have validated that MILES has the
ability to identify a subset of highly relevant conformers,
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including the bioactive conformers, which contribute to
the classification of active and inactive molecules.

Methods

Data set preparation

Four different data sets were compiled through exten-
sive literature search. Data set I includes all molecules
exhibiting inhibitory activities for human GSK-3. Data
sets II and III contain molecules modulating the intra-
cellular activities of human CBrs. Since there are two
identified CBr subtypes, CB1 and CB2, two different
data sets were prepared to study the protein-small mole-
cule interactions of the receptors separately. Some of the
molecules which have reported binding affinities for
both CB subtypes were included in both data sets II and
II1. Data set IV contained compounds which had been
tested as substrates of P-gp.

The molecules collected for each data set were
labelled as either positive or negative. A positive mole-
cule has a high binding affinity with the target protein,
whereas a negative molecule has a low binding affinity.
A single cutoff value has been widely used in the devel-
opment of classification models. However, it is inaccu-
rate to use a single cutoff value for the separation of
continuous biological activities in the context of drug
activity prediction. The biological activities are repre-
sented by continuous numbers, and the small differences
between the values above and below the cutoff value
cannot imply the distinct nature of binding affinity.
Furthermore, the small difference in the bioassay results
may arise from systematic errors introduced by different
experimental protocols used in different labs, so it can-
not be used as solid evidence for the classification of
molecules. Therefore, multiple cutoff values were
employed to separate molecules into positive and nega-
tive classes.

For data set I, the molecules were categorized into
positive and negative molecules using cutoff values of
ICs50 < 50 nM and ICs¢ = 500 nM, respectively. The
molecules having inhibitory activities between the two
cutoff values were considered as moderately active
molecules, and were discarded from the data set. The
wide margin between the two cutoff values was used to
account for the variances in biological assays. For data
set II and III, the molecules were classified as positive if
the K; < 50 nM or IC5y < 100 nM or EC5q9 < 100 nM
(ICsp is approximately twice as large as K; based on the
definition); and the molecules were classified as negative
if the K; > 500 nM or ICsy = 1000 nM or ECs5y > 1000
nM. The labels for the molecules in data set IV indi-
cated whether or not the molecule is a substrate for the
target protein. They were obtained from the literature
[12].
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Division of training and test set

External validation was achieved using an independent
test set. The split of the data set into training and test
sets was carried out using Kohonen self-organizing
maps (SOM) in Canvas 1.4 from Schrodinger Suite
2011. The SOM is trained using unsupervised learning
to produce a square 2D grid map from the high dimen-
sional input space. Each grid cell (neuron) contains a
cluster of structurally similar molecules defined by the
input vectors. The SOM takes advantage of clustering
capabilities so that the selected training set can repre-
sent the independent test set in terms of the input space
and chemical domains. Molecular pharmacophore fin-
gerprints were used to describe the relevant structural
information of the molecules and were used as input
variables to build the SOM. The grid size of the map
depends on the number of molecules in the data set.
For data sets I, II, and III, the Kohonen maps built
included 10 x 10 neurons and 500 epochs. For the data
set IV, a Kohonen map consisting of 8 x 8 neurons and
500 epochs was built. The molecules were then stratified
and sampled from each neuron to select the training
and test set molecules.

Preprocessing and conformational sampling

The molecules (bags) can be represented by M,, i = 1, ...,
! where [ is the total number of molecules. The 3D
molecular structures were generated using the Ligprep
module from Schrédinger Suite 2011, and then sub-
jected to preprocessing to enumerate all the possible
tautomers. The protonation states of ionizable groups
were set to match pH = 7.4, and the stereochemistry
was retained from the original 3D structures. In order
to explore the conformational space exhaustively, the
mixed torsional/low mode sampling method was
employed, using MacroModel from Schrédinger Suite
2011. The torsional sampling involves multiple Monte
Carlo minimum searches for global exploration, and the
low mode conformational search allows for automatic
local exploration. The torsional increment for each rota-
table bond was set to 15° and the maximum number of
total steps for torsional sampling was 1,000. The energy
window for saving structures was set to 83.7 kJ/mol
(20 kcal/mol). The small torsional increment and wide
energy window were employed to provide a reasonable
coverage of the conformational space. Each enumerated
conformer was energy minimized to eliminate unreason-
able geometries and reduce internal steric clashes, using
the Polak-Ribiére conjugate gradient method with a gra-
dient convergence threshold of 0.05 and a maximum of
500 iterations. To remove redundant conformations, the
maximum atom deviation cutoff was set to 1.5 A. As a
result, each molecule M; has several possible conformers
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Cy; j =1, .., n; where n; is the number of conformers
(instances) for molecule i.

In order to validate that MILES can identify the bioac-
tive conformers, we seeded 12 co-crystallized confor-
mers, one for each of 12 molecules, in the set of
sampled conformers for data set I. The validation pro-
cess will be described in the following sections.

Generation of pharmacophore fingerprints

The pharmacophore fingerprint as a measure of molecular
similarity and diversity based on 3D pharmacophoric
shape was enumerated using Canvas 1.4 from Schrédinger
Suite 2011. Each pharmacophore fingerprint associated
with a unique conformer can be represented by a binary
string, such as P;; = {py, ..., P -..» P} and encodes quanti-
tative structural information for conformer C;, where each
bit value p;, k = 1, ..., m indicates the presence or absence
of a match to a single pharmacophore model, representing
a unique 3D arrangement of a number of pharmacophore
features. If the conformer fits the pharmacophore model
for a particular &, in other words if the functional groups
of the conformer fully overlap on all the pharmacophore
features in the model, p; equals 1; otherwise, py equals 0.
As a result, each conformer is associated with a unique
pharmacophore fingerprint as a conformational signature,
which enables us to describe quantitatively the 3D struc-
tural information. The pharmacophore features employed
in the models consist of hydrogen bond donor (D), hydro-
gen bond acceptor (A), hydrophobic group (H), negatively
charged group (N), positively charged group (P), and aro-
matic ring (A). In the present study, only four-feature
based models were employed in order to allow a reason-
able description of 3D orientation of the structures and
retain information about molecular chirality, which is lost
in three-feature based models. Different combinations of
four out of six pharmacophore features were exhaustively
enumerated and inter-feature distances were varied from
2.0 A t0 20.0 A to form the different pharmacophore mod-
els. Each pharmacophore feature was treated as a bin with
width 2.0 A, and the bin overlap threshold was 1.0 A. To
fit to a model the conformer must fit to each of the four
features in the model. The maximum distance between
pharmacophore features was set to 20.0 A in order to be
able to cover the largest molecular structures in the data-
bases. The originally enumerated fingerprints were subject
to occurrence-based filtering to remove the pharmaco-
phore models present in less than 5% of the total number
of molecules, since the pharmacophore models with a very
low occurrence are not useful for discriminating between
positive and negative classes.

Significance analysis of pharmacophore models
The post-filtered pharmacophore fingerprints still have
too many bits that lack information content, as indicated
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by too many ‘0’ values. Therefore a nonparametric super-
vised learning approach, motivated by the significance
analysis of microarrays (SAM) algorithm proposed by
Tibshirani et al. [17], was applied to elucidate a consis-
tent pattern from the numerous bits of pharmacophore
fingerprints. The detailed implementation and customi-
zation of the relevant procedures has been described in
[12]. The ranking score for each pharmacophore model
was computed based on a two-class ¢-statistic, which cal-
culates the ratio of the difference of occurrences of that
model in positive and negative classes and compares to
the standard deviation of occurrence measures. Pharma-
cophore models with ranking scores greater than a
threshold have statistical significance, where the thresh-
old was computed at the 90th percentile among 500 ran-
dom permutations of the class labels across all the
molecules. In order to distinguish truly significant and
falsely significant pharmacophore models, that ranking
score serving as a true score was then compared with a
reference score computed from the same set of random
permutations. If the difference between the true score
and the reference score exceeds a cutoff threshold (called
A) then the pharmacophore model is truly significant;
otherwise it is falsely significant.

Instance-based feature mapping

MILES provides a framework to convert a MIL problem
to a standard supervised learning problem via instance-
based embedding. All the conformers (instances) belong
to the instance-based feature space. For convenience, all
conformers in all molecules were lined up together, and
were re-indexed in the embedded feature space as C', r =
1, ..., n where n = Zf.zl n; - Instance-based feature map-
ping can be accomplished using calculated structural dis-
similarities. Different binary string distance measures
were tested, including the Soergel distance, Dice distance,
Manhattan distance, and Rogers-Tanimoto distance
(Table 1). The range of each dissimilarity measure was

Table 1 Metrics used for dissimilarity measurements

Dissimilarity Measure Definition®
b+c
Soergel
a+b+c
b+c
Dice
2a+b+c
b+c
Manhattan
a+b+c+d
2x (b+c)

Rogers-Tanimoto

a+d+2x (b+c)

9 Let P1 and P2 be two pharmacophore fingerprints, a be the count of bits
which are set to 1 in both P1 and P2, b be the count of bits which are set to
1in P1 but not in P2, ¢ be the count of bits which are set to 1 in P2 but not
in P1, and d be the count of bits which are set to 0 in both P1 and P2. So a is
called the number of total matches, b and c are called the number of single
matches, and d is called the number of no matches.
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normalized to be [0, 1] by definition. Given a conformer
C;; denoted by a binary string Py, the dissimilarity mea-
sure, denoted as D(C;;, C'), is calculated based on the
number of occurrences of bit matches. Since one mole-
cule is defined as a bag of multiple conformers
(instances), the dissimilarity measure for a molecule,
denoted as D(M;, C"), is calculated based on the mini-
mum distance using the closest instance in the bag
for M;:

D (Mi, CT) = min D (Cij, CT) (1)
]

The minimum distance calculation (Figure 1) extends
the idea of the diverse density framework proposed for
instance-based learning [18].

Joint feature selection and classification

Since the molecules in the training sets are highly flexible,
instance-based embedding, which provides a framework to
convert a MIL problem to a traditional supervised learning
problem, may produce a very high dimensional feature
space. But many features are redundant or irrelevant, and
do not play an important role in the classification of mole-
cules as positive or negative. So an efficient feature selec-
tion model is required for selection of an optimal subset
of instance-based features. Considering its excellent per-
formance in many applications [19], the 1-norm SVM
method was chosen as a joint approach to construct classi-
fiers and to select important features simultaneously. The
prediction model can be formulated as a linear classifier,

y = sign (w"m +b) 2)

where y denotes the class label as either positive or
negative; w and b are model parameters which are opti-
mized during model generation; and m corresponds to a
molecule (bag), which is defined by an n-dimensional
vector of dissimilarities calculated using (1), i.e., dissimi-
larities with respect to all conformers in all molecules.
The domain to (2) is therefore the space of R”, where # is
the sum of all conformers in all molecules. The SVM
approach constructs classifiers based on hyperplanes by
minimizing a regularized training error, {iraining

AP [.] +€training (3)

where P[] is a regularizer, and A is the regularization
parameter, the only tuning parameter to be optimized
by the user. In 1-norm SVM, the regularizer is chosen
to be the 1-norm of the weight vector,

lolly =) lor. @

1-norm regularization favors sparse solutions, i.e., it
drives many components of w to zero.
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Once the optimal solution, with values ®* and b*, is
obtained, the magnitude of its component @, indicates
the significance of the r-th feature (conformer) in the
instance-based feature space. The features correspond-
ing to non-zero entries in w* are selected as important
features, which are given as a set I' = {r: |a);‘| > 0}).
They are needed for the classification problem of inter-
est

y = sign (Zrer‘ wfD (M;, C") + b*) . (5)

Note that (2) is equivalent to (5) where all weights
with 0 values are ignored. The domain of (5) is R’], a
subspace of R”, defined by conformers whose weights
are nonzero. The features selected as important are
called prototype conformers. The plus or minus sign of
o] indicates the positive or negative contribution,
respectively, of the r-th prototype conformer to the
putative bioactive conformers for each individual
molecule.

Our formulation of MILES works directly on a dissim-
ilarity mapping, which is different from a similarity
mapping described by Chen, et al. [3]. One can trans-
form a dissimilarity mapping to a similarity mapping via
an exponential function. However, this would introduce
an additional super parameter, o. Although, a proper
choice of ¢ could improve the performance of a model,
the selection of a proper value for ¢ increases the com-
putational cost significantly. Hence we use a dissimilar-
ity mapping to reduce the computational cost.

Identification of bioactive conformers

One appealing advantage of the MILES algorithm is that
it can identify the most significant instances in a bag
according to their contributions to the classification of
that bag. In the context of drug activity prediction, we
can identify the most significant conformers, called the
bioactive conformers, for each molecule. The putative
bioactive conformers are the conformers that contribu-
ted the most to the classification of positive and nega-
tive molecules.

The identification of bioactive conformers can be
accomplished with the assistance of the prototype con-
formers mentioned above (Figure 3). Given a molecule
M; with its conformers C;;, j = 1, ..., n;, we define an
index set ¥ = {j*: j* = argmin; D(Cy, C"), r € T}), which
includes the index for conformers closest to each proto-
type conformer. Hence, ¥ defines a minimal set of con-
formers, called significant conformers, which are
responsible for the classification of M;. By definition,
each prototype conformer in set I' has a single confor-
mer in set X closest to it, but each significant conformer
in set ¥ may have multiple prototype conformers in set
I' closest to it. So we need to define an index set for
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Prototype Conformers with positive contributions

Bioactive conformer

prototype conformers.

Prototype Conformers with negative contributions

Figure 3 Identification of bioactive conformers. Molecule i was circled by a dashed line and its conformers were represented by solid
triangles. The plus circles represent the positively contributing prototype conformers and the minus circles represent the negatively contributing
prototype conformers. The identification of bioactive conformers was accomplished by calculating the total contributions from the closest

f(Ciy) = Z w;D(Cyj, C7)

rEl"J,--

each significant conformer in set ¥ that includes the
index for the prototype conformers closest to it, which
is given as I = {r:7 € I',j* = argmin;D (Cy, C")}). As
a result, the contribution of each significant conformer
to the classification of molecule can be calculated as

f(Cy) = Z oD (Cy, C") (6)

reljx

where f (Cij*) denotes the contribution of the confor-
mer Cj to the classification of the molecule M;. The
conformer in set ¥ making the highest contribution is
selected as a bioactive conformer.

In order to validate the ability of MILES to identify
the bioactive conformers, the contributions f (Cjy) for
the 12 seeded conformers, which were taken directly
from co-crystallized complex structures, were calculated
and ranked among all the conformers sampled for those
12 molecules.

Classical QSAR methods without instance-based
embedding

In order to examine the predictive performance of MILES,
conventional classification approaches based on classical
QSAR principles without instance-based embedding were
tested for comparison. Since one molecule is defined as a
bag of multiple conformers (instances), the pharmaco-
phore fingerprint associated with a single molecule was
obtained from the binary union of all of the pharmaco-
phore fingerprints associated with the conformers of that

molecule. The same occurrence-based filtering and signifi-
cance analysis of pharmacophore fingerprints were per-
formed to select the optimal subsets of the fingerprints
which constituted the feature space for the classical QSAR
studies. Three widely used classification algorithms includ-
ing decision tree (DT) [20], 1-norm SVM [19], and ran-
dom forest [21] were employed for comparison with
MILES-SVM. The decision tree is a greedy method based
on a recursive partitioning algorithm. The classification
trees were constructed using the ‘classregtree’ function
implemented in Matlab R2011b. The tree-based classifica-
tion method can account well for multiple binding
mechanisms [12]. Gini’s diversity index was used for
recursive partitioning, and the minimal number of mole-
cules per tree leaf was set as 3 to terminate tree growing.
The 1-norm SVM model is a statistical learning theory
derived from the structural risk minimization principle
and Vapnik-Chervonenkis (VC) dimension [22]. It is dif-
ferent from the tree-based method and served as an alter-
native comparison. Since the major drawback of DT is its
low prediction caused by the overfitted tree-based struc-
ture, the ensemble learning method, random forests [21],
can deliver improved prediction while retaining the
appealing properties of tree-based methods. It is a collec-
tion of decision trees which are grown from bootstrapping
samples of the original data without tree pruning, and has
been demonstrated as one of the most powerful tools
available for data exploration [23]. The Matlab implemen-
tation (randomforest-matlab v0.02) was used with default
parameters.



Fu et al. BMC Bioinformatics 2012, 13(Suppl 15):S3
http://www.biomedcentral.com/1471-2105/13/515/S3

Results and discussion

Data set preparation and division

According to the criteria used to label positive and
negative molecules, the number of molecules in each of
two classes was balanced for four data sets. Data set I
has 266 molecules as positive and 258 molecules as
negative; data set II has 253 molecules as positive and
284 molecules as negative; data set III has 307 mole-
cules as positive and 188 molecules as negative; and
data set IV has 122 molecules as positive and 128 mole-
cules as negative. In terms of division of training and
test sets, a stratified sampling was used to partition all
four data sets into training and test sets at ratios around
3:1, respectively (Table 2).

Conformational sampling

The molecules in different data sets had various confor-
mational flexibilities, so the average number of confor-
mers for each molecule was distinct for the four data sets
(Table 3). The average number of conformers for each
molecule was 43 in data set I, 89 in data set II, 86 in data
set III, and 211 in data set IV. So the molecules in data
set IV had the highest conformational flexibility. The fea-
ture space constructed through instance-based embed-
ding only consisted of the instances from training bags,
in other words, the conformers from the molecules in the
training set. The molecules in the test set were not used
in the construction of the instance-based feature space.
SO Hiraining in Table 3 indicates the number of instance-
based features used for embedding.

Significance analysis of pharmacophore models
Millions of pharmacophore models were originally enum-
erated for each data set, and the largest number of phar-
macophore models was generated for data set IV. This
correlated with the observation that the molecules in data
set IV have the highest conformational flexibility. After
occurrence-based filtering, only a small portion of the
pharmacophore models was retained for each data set. For
instance, 13% was retained for data set I, 9% for both data
sets IT and III, and 1% for data set IV (Table 3).
Significance analysis was subsequently performed upon
those retained pharmacophore models. The threshold
values were set to 100 equally spaced intervals from 0 to
the largest difference between the ranking scores and

Table 2 Data set statistics
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Table 3 Conformational sampling and pharmacophore
fingerprints

Data ntraininga ntestb mpre- mpost- msignificante A*f
c d
set filtering filtering
| 17249 5399 1872521 243721 2979 1.77
Il 35434 12333 1670985 155220 14002 540
Ll 32528 9942 1636254 145996 1542 1.80
1\ 41960 10746 13687602 161018 3467 1.66

? The number of conformers in the training set; ® the number of conformers
in the test set; © the number of pharmacophore bits in the fingerprint
originally enumerated; ¢ the number of pharmacophore bits in the fingerprint
after filtering; ¢ the number of bits in the optimal subset of the
pharmacophore fingerprint; * the optimal threshold value to select truly
significant pharmacophore bits.

reference scores. As the threshold value increases in a
bottom-up manner, the number of falsely significant
pharmacophore models decreases, and the number of
truly significant models remains roughly constant. So the
optimal threshold values (A*) for each data set can be
obtained when the number of falsely significant pharma-
cophore models drops to zero (Table 3). Subsequently,
the optimal subsets of the pharmacophore fingerprint
bits were obtained for four data sets (Table 3). Only a
very small portion of the fingerprint bits were significant
for classification, namely 1% in data set I, 9% in data set
II, 1% in data set III, and 2% in data set IV.

In the context of MIL, the optimal subsets of the binary
strings were used to calculate the dissimilarity between
two conformers for instance-based feature mapping. For
the classical QSAR methods, the optimal subsets of the
fingerprints were used as the 3D descriptors in the phar-
macophore-based feature space for building classification
models.

Predictive performance of MILES and classical QSAR
methods

In the MILES model, the only tuning parameter A was
determined by a grid search. Five replications of 5-fold
cross-validation were performed to assess the classification
accuracies at each point over a fixed grid which ranged
from 27® to 2° with exponential increment in base 2. The
median values for the 5 replications were used to find the
optimal tuning parameters. During the cross-validation,
the instance-based feature space was dynamically defined,
which means that the conformers from the molecules in

Data set No. of molecules in training set No. of molecules in test set Total no. of molecules
Positive Negative Positive Negative
1 199 188 67 70 524
1} 191 210 62 74 537
11l 247 131 60 57 495
[\ 94 93 28 35 250
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the internal test set, after random split of the training set,
were excluded from the feature space. As a result, the
optimal tuning parameters as well as the number of proto-
type conformers were obtained for four dissimilarity mea-
sures (Table 4).

Based on the internal validation, the classification
accuracies were similar within each data set using four
different dissimilarity measures. However, the numbers
of prototype conformers selected were much different.
For instance, in data set I and II, Manhattan distance
yielded the smallest subset of selected prototype confor-
mers, but in data set III and IV, Rogers-Tanimoto
yielded the smallest subset. Furthermore, Soergel dis-
tance yielded the largest subset for all the four data sets.
The dissimilarity measure which yielded the smallest
number of selected prototype conformers was chosen as
the best MILES model and used later for comparison
with classical QSAR models without instance-based
embedding.

After finding the optimal A, a MILES model was iden-
tified from the training set and applied to the test set.
In addition to comparing classification accuracy,
denoted as the proportion of correct predictions, Mat-
thews Correlation Coefficient (MCC) [24] was also
employed as a complementary indicator for the predic-
tive performance. MCC is defined as:

TP x TN — FP x FN

MCC =
V(TP + FP) (TP + EN) (TN + FP) (TN + FN)

(7)

where TP is true positive, TN is true negative, FP is
false positive, and FN is false negative. MCC not only

Table 4 Optimization of tuning parameter A for MILES

b

Data set Dissimilarity measure Cross-validation? A n
| Soergel 0.777 8000 196
Dice 0.761 4400 165
Manhattan® 0.803 4400 130
Rogers-Tanimoto 0.801 4000 153
Il Soergel 0.865 0001 103
Dice 0.865 0001 85

Manhattan® 0877 0022 63
Rogers-Tanimoto 0.868 0069 72
1 Soergel 0.899 0.001 94
Dice 0.901 0.001 75

Manhattan 0934 0550 63
Rogers-Tanimoto© 0.935 4400 46
\" Soergel 0.579 0003 125
Dice 0.544 0031 111

Manhattan 0.690 0550 87
Rogers-Tanimoto® 0.689 6.800 78

? The median classification accuracy for 5 replications of 5-fold cross-
validation; ® the number of prototype conformers selected in the set I'; © The
model selected based on the number of prototype conformers.

Page 9 of 12

takes into account true positives and true negatives as
classification accuracy does, but also false positives and
false negatives. Thus it is considered as a balanced mea-
sure of the performance of binary classification (Table 5).

In accordance to classification accuracy and MCC, the
performance of different dissimilarity measures was
dataset-specific. For data set I, both the Manhattan and
Rogers-Tanimoto distances were top-ranked and per-
formed equally well on the test set, whereas on the
training set, the Soergel and Dice distances performed
much better than the Rogers-Tanimoto and Manhattan
distances, and the Rogers-Tanimoto distance performed
slightly better than the Manhattan distance. In addition,
the results did not change after removing the 12 seeded
conformers which were used for the validation of identi-
fying bioactive conformers. For data set II, the Manhat-
tan distance was top-ranked on both training set and
test set. For data set III, the Dice distance was top-
ranked on both training and test sets. For data set IV,
the Rogers-Tanimoto distance performed much better
on the test set, but on the training set it was not the
top-ranked dissimilarity measure. It is interesting that
for data sets I, II, and III the differences in the predic-
tive performances of the four dissimilarity measures
were very small, whereas for data set IV the differences
were much larger. This may be caused by the high
structural diversity in data set IV. The small difference
in dissimilarity measures had a big impact on the pre-
dictive performance. The other interesting observation
was that the classification accuracy and MCC provided
the same indications for the predictive performance,

Table 5 Predictive performance for different dissimilarity
measures

Data set Dissimilarity measure  Training set Test set
Accuracy MCC Accuracy MCC
| Soergel 0972 0944 0854 0714
Dice 0979 0959 0825 0653
Manhattan? 0941 0881 0861 0725
Rogers-Tanimoto 0.961 0.923 0.861 0.725
] Soergel 0965 0933 0860 0725
Dice 0965 0933 0868  0.745
Manhattan? 0978 0956 0904 0807
Rogers-Tanimoto 0973 0.946 0.897 0.793
1] Soergel 0989 0977 0846 0706
Dice 0989 0977 0855 0717
Manhattan 0979 0954 0838 0686
Rogers-Tanimoto? 0.947 0.885 0.846 0.711
v Soergel 0904 0823 0667 0301
Dice 0904 0823 0635 0307
Manhattan 0957 0918 0714 0433
Rogers-Tanimoto? 0.898 0811 0.794 0.584

? The model selected based on the number of prototype conformers.
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which means that the data sets in the present work were
highly balanced and good for benchmark studies.

After comparing the predictive performance of differ-
ent dissimilarity measures in the MILES model, the pre-
dictive performance of MILES models was compared
with that of conventional classification approaches,
which are based on classical QSAR principles without
instance-based embedding. To find the optimal A for 1-
norm SVM on the basis of classical QSAR principles,
the same procedure was employed, which resulted in
the minimal subset of the most important pharmaco-
phore models (Table 6).

For data set I, the 1-norm SVM without instance-based
embedding overfit the training set, producing perfect pre-
diction on the training set and poor prediction on the test
set. However, MILES performed fairly well on both the
training and test sets without overfitting. MILES per-
formed much better than decision trees and slightly worse
than random forests in terms of the predictive power on
the test set. For data set II, MILES was highly competitive
with the other classical QSAR methods, yielding the sec-
ond best prediction on both training and test sets, while
1-norm SVM without embedding provided the best pre-
diction on the training set but suffered from overfitting
and decision trees produced the best prediction on the
test set. For data set III, MILES performed slightly worse
than random forests, but better than the other two meth-
ods, based on the predictions on the test set. Although
MILES using Dice distance was not selected, since it
yielded a large number of selected prototype conformers,
it performed equally as well as random forests on the test
set. For data set IV, MILES significantly outperformed the
other approaches based on the predictions on the test set.
For all the data sets, 1-norm SVM without embedding
overfit the training set, yielding the best predictions on the
training sets and relatively low predictions on the test sets.
However, after instance-based embedding, MILES per-
formed fairly well on both training and test sets without
overfitting, and its predictive power was highly comparable
with other conventional QSAR approaches (Table 7). It
was interesting that the classification accuracy and MCC
provided the same indications again, even for the compari-
son of different QSAR approaches.

Table 6 Optimization of tuning parameter A for 1-norm
SVM

Data set Cross-validation? A n®
| 0.693 0.001 223
] 0.880 2.000 80
1 0912 0016 77
\" 0.598 0.125 89

“ The median classification accuracy for 5 replications of 5-fold cross-
validation; ® the number of important pharmacophore bits.
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Table 7 Predictive performance for different models

Data set Methods Training set Test set
Accuracy MCC  Accuracy MCC
| MILES? 0.941 0.881 0.861 0.725
Decision tree 0915 0.830 0.781 0.569
1-norm SVM 1.000 1.000 0.832 0.668
Random forest 0.995 0.990 0.891 0.783
] MILES? 0978 0.956 0.904 0.807
Decision tree 0.955 0913 0919 0.837
1-norm SVM 0.980 0.961 0.882 0.765
Random forest 0.945 0.896 0.868 0.754
]} MILES® 0.947 0.885 0.846 0711
Decision tree 0.966 0.924 0.838 0.682
1-norm SVM 0.995 0.988 0812 0.624
Random forest 0.982 0.959 0.855 0.717
\" MILES® 0.898 0811 0.794 0.584
Decision tree 0914 0.829 0.698 0.398
1-norm SVM 0.952 0.906 0.714 0418
Random forest 0.936 0.877 0.698 0.392

9 Manhattan dissimilarity measure; ® Rogers-Tanimoto dissimilarity measure.

Identification of bioactive conformers

After examining the predictive ability of MILES, we tested
the ability of MILES in the pursuit of the bioactive confor-
mers. Due to the lack of experimental data, the validation
can only be made for the molecules in data set I. We
made use of 12 co-crystallized structures of GSK-3 with
bound small molecules, which adopt bioactive conformers
in the complex structures (Table 8). See additional file 1
for the chemical structures of 12 small molecules. The
direct comparison between the structures of the co-crys-
tallized conformers and the ones from conformational

Table 8 Validations on the prediction of bioactive
conformers

ID® Name® PDB ID° Contribution® Rank® n/
23 AR 1Q5K 2.792 3 117
37  Benzoimidazole-1 205K 0 NAZ 138
50 Jonjon-1 20Ws3 2.827 6 38
59 LM-4 1Q3W 0.858 1 2
60 LM-5 1UV5 11.941 1 3
77 LM-29 1041 8576 2 7
97 Maleimide 1ROE 0 NA 9 121
98 OxaD-0 3F7Z 10.629 1 53
99 OxaD-00 3GB2 4.637 2 9
153 Pyzo-11 3L1S 10.371 1 Il
198 RM-0 10Q4L 5.568 2 25
199 Staurosporine 1Q3D 22.359 1 5

9 Molecule index in the data set; ® molecular name in the data set; € Protein
Data Bank index for the protein structure from which the experimental
conformer was extracted; ¢ contribution Cij* calculated using equation
6; ¢ the rank in the set of contributions; " the number of conformers for each
molecule; 9 the rank cannot be determined and the conformer was predicted
to be irrelevant to classification based on the MILES method.
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sampling is difficult and sometimes impossible, since the
conformational sampling plus structural minimization
may not provide the exact same conformations found in
the co-crystallized complex, due to the lack of protein
environment in the conformational search process. So we
adopted an indirect validation method. We seeded the 12
co-crystallized conformers in the set of sampled confor-
mers generated through extensive exploration of confor-
mational space. Then we calculated their contributions
f (Cij*) to the classification of the relevant positive mole-
cules as described above (Table 8).

Three out of 12 molecules are highly flexible, adopting
more than 100 conformers. For these three, MILES only
correctly predicted one co-crystallized conformer as the
third most significant conformer contributing to the clas-
sification of the molecule named AR. It incorrectly pre-
dicted the other two co-crystallized conformers as
irrelevant conformers in terms of the contribution to the
classification of benzoimidazole-1 and maleimide.

But for the molecules adopting less than 100 confor-
mers, which had relatively rigid structures, MILES cor-
rectly predicted all the co-crystallized conformers as
significant conformers for the classification of positive
molecules. Five co-crystallized conformers were pre-
dicted to be the most significant conformers, i.e., the
bioactive conformers; three co-crystallized conformers
were predicted to be the second most significant confor-
mers; and one co-crystallized conformer was predicted to
be the sixth most significant conformer, based on the cal-
culations of f (Cjy+). So the pursuit of bioactive confor-
mers is easy for relatively rigid molecules and relatively
more difficult for the highly flexible ones.

Conclusions

We have successfully implemented a multiple-instance
learning (MIL) framework, multiple-instance learning
via embedded instance selection (MILES), for drug
activity prediction. The molecules and relevant confor-
mers were described using superior 3D descriptors,
pharmacophore fingerprints, encoded as binary strings.
The instance-based embedding was accomplished using
dissimilarity measures designed for calculations on bin-
ary strings. The joint feature selection and classification
was accomplished using a wrapper model based on 1-
norm SVM. We have used the approach for the predic-
tion of the labels of molecules interacting with four
therapeutic targets, including GSK-3, CBrs, and P-gp.
Based on the predictive performance, our proposed
approach was highly competitive with conventional clas-
sification approaches based on classical QSAR principle.
However, the proposed method, unlike conventional
classification approaches, can also predict the contribu-
tions of individual conformers for each molecule and
further can identify the putative bioactive conformer.
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These unique characteristics make the proposed method
very useful for the pursuit of biologically significant con-
formers. Finally, we have validated that the proposed
approach is highly useful in the pursuit of bioactive
conformers.

Additional material

Additional file 1: This file contains the chemical structures of 12 co-
crystallized molecules (from GSK-3 structures) in PDB database,
associated with the ID number, names, and PDB ID.

List of abbreviations used

MIL: multiple-instance learning; MILES: multiple-instance learning via
embedded instance selection; SYM: support vector machine; QSAR:
quantitative structure-activity relationship; GSK-3: glycogen synthase kinase-3;
GPCR: G protein-coupled receptor; P-gp: P-glycoprotein; SOM: self-organizing
map; MCC: Mathews correlation coefficient.
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