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Abstract

In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering
true underlying structures. Similar investigations have been carried out before, but they typically relied on
approximate learning algorithms to learn the network structures. The suboptimal structures found by the
approximation methods have unknown quality and may affect the reliability of their conclusions. Our study uses an
optimal algorithm to learn Bayesian network structures from datasets generated from a set of gold standard
Bayesian networks. Because all optimal algorithms always learn equivalent networks, this ensures that only the
choice of scoring function affects the learned networks. Another shortcoming of the previous studies stems from
their use of random synthetic networks as test cases. There is no guarantee that these networks reflect real-world
data. We use real-world data to generate our gold-standard structures, so our experimental design more closely
approximates real-world situations. A major finding of our study suggests that, in contrast to results reported by
several prior works, the Minimum Description Length (MDL) (or equivalently, Bayesian information criterion (BIC))
consistently outperforms other scoring functions such as Akaike's information criterion (AIC), Bayesian Dirichlet
equivalence score (BDeu), and factorized normalized maximum likelihood (fNML) in recovering the underlying
Bayesian network structures. We believe this finding is a result of using both datasets generated from real-world
applications rather than from random processes used in previous studies and learning algorithms to select high-
scoring structures rather than selecting random models. Other findings of our study support existing work, e.g.,
large sample sizes result in learning structures closer to the true underlying structure; the BDeu score is sensitive to
the parameter settings; and the fNML performs pretty well on small datasets. We also tested a greedy hill climbing
algorithm and observed similar results as the optimal algorithm.

Introduction

Bayesian networks are compact graphical models for
representing uncertain relationships among the random
variables in a domain. Often, the relationships are
unknown and must be learned from data. A popular
approach called score-based learning [1] is to assign a
score to each Bayesian network structure according to a
scoring function and find the structure that optimizes the
score. There are many scoring functions for Bayesian net-
works, such as minimum description length (MDL) [2] (or

* Correspondence: changhe.yuan@qc.cuny.edu

t Contributed equally

'Department of Computer Science and Engineering, Mississippi State
University, Mississippi State, MS 39762, USA

Full list of author information is available at the end of the article

( BioMVed Central

equivalently, Bayesian information criterion (BIC) [3]),
Akaike’s information criterion (AIC) [4], Bayesian Dirich-
let equivalence score (BDeu) [5,6], factorized normalized
maximum likelihood (fNML) [7], and others [8,9].

The score-based approach to learning Bayesian net-
works has been shown to be NP-hard [10]; both the run-
ning time and memory usage of exact learning are
exponential in the number of variables in the worst case.
Therefore, early research mainly focused on developing
approximation methods [1,11-14]. Recently, however,
optimal learning algorithms such as dynamic program-
ming [15-17], branch and bound [18], admissible heuris-
tic search [19-21], and mathematical programming
[22,23] have been developed to learn optimal Bayesian
networks with several dozens of variables.
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Because of the different theoretical underpinnings of
these scoring functions, they typically result in different
“optimal” networks. Once a scoring function has been
selected, though, all optimal algorithms learn equivalent
networks; they only differ in running time and memory
usage. A major mystery surrounding Bayesian network
learning is which scoring function to use given that
there are so many choices. Several empirical investiga-
tions have been carried out on the performance of var-
ious scoring functions in learning Bayesian networks, e.
g. [24-26]. These studies, however, have drawbacks in
their evaluations because they used local search methods
such as K-2 [1] and Greedy Thick Thinning algorithm
[27] to select network structures, or even used randomly
generated network structures [26]. These suboptimal
structures may affect the reliability of their conclusions
regarding the model selection capability of the scoring
functions. Furthermore, these studies often generate
random synthetic networks as the test cases; experimen-
tal data thus generated may not share similar properties
as real-world data.

In this study, we use an optimal dynamic programming
algorithm [16] to learn Bayesian network structures; any
other optimal algorithm would yield the same results,
however, because only the choice of scoring function
affects the learned networks. We study the capability of
four scoring functions, MDL, AIC, BDeu, and fNML, to
recover the underlying Bayesian network structures. We
generated artificial datasets from a set of gold standard
Bayesian networks created based on real-world data,
learned optimal Bayesian networks for them using differ-
ent scoring functions, and compared the learned models
with the gold standard models based on various evalua-
tion measures. For comparison, we also included the
results of a greedy hill climbing algorithm.

Our results offer new insights into the scoring functions
in addition to confirming some other common beliefs. In
contrast to the results of existing work, a major finding of
our study suggests that the MDL/BIC score consistently
outperforms AIC, BDeu, and fNML in recovering the
underlying Bayesian network structures across various
sample sizes. Other findings of our study support existing
work. Our results confirm that the structural Hamming
distance gives a more reliable measure of the distance
between Bayesian net-work structures. We also observed
that a parameter selection greatly affects the BDeu score.
Finally, it is confirmed that fNML has good performance
when the sample sizes are relatively small. Our results
using the greedy hill climbing algorithm are similar to
those of the optimal learning algorithm, although with
higher variances, so our conclusions also hold for the
greedy algorithm.

The remainder of this paper is structured as follows.
We first review several prior empirical studies of scoring
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functions. We then provide an overview of Bayesian net-
work and structure learning. After that, we introduce
four scoring functions which we will compare. We fol-
low that with a description of the experimental design
of this study. Finally, we present the empirical results
and discuss our findings.

Prior work

Several researchers have empirically evaluated the various
scoring functions for learning Bayesian networks. In [26],
Van Allen and Greiner compared the performance of
three different model selection criteria, AIC, BIC, and
cross-validation, in finding the right balance between the
complexity of the model and the goodness of fit to the
training data. First, they randomly generated the gold stan-
dard Bayesian network structures as well as the probability
parameters. Second, they generated datasets with different
sample sizes from the networks. For each dataset, they
again randomly constructed a set of hypothesis structures
and evaluated their quality based on the scoring functions.
They found that AIC and cross-validation perform better
in avoiding over-fitting in the model selection. While BIC
may still work for large sample sizes, it can perform arbi-
trarily worse than other functions for small datasets. How-
ever, they did not use a learning algorithm to try to find
good hypothesis structures; they also randomly generated
their gold standard networks. It is unclear whether their
results stem from the scoring functions or their random
model selection technique, or whether the results can be
generalized to real-world datasets.

In Yang and Chang’s study [24], they compared the per-
formance of five different scoring functions: uniform prior
score metric (UPSM), conditional uniform prior score
metrics (CUPSM), Dirichlet prior score metric (DPSM),
BDe, and BIC. They restricted their experimental evalua-
tions on random networks with three or five nodes as well
as a benchmark network called Alarm. Then they gener-
ated random datasets from the networks. They used a K2-
like search method [1] to learn Bayesian networks. Their
greedy structure learning algorithm assumes an ordering
over the variables. Then, it greedily adds parents consis-
tent with that ordering to maximize the likelihood of the
structure and data set. Because of the ordering assumption
and the greedy approach to adding parents, it does not
guarantee finding the globally optimal structure. For eva-
luation, they use the cross-entropy (KL-Divergence) to
measure the difference between the learned networks and
the true networks. Their results indicated that UPSM,
CUPSM, DPSM and BIC are able to correctly identify the
true networks. Meanwhile, BDe and DPSM’s performance
are very sensitive to the o value. They may fail to find the
true network if the o value is not set properly. This study
shares the shortcoming of Van Allen and Greiner’s study:
their gold standard networks are randomly generated, so
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they may not accurately reflect real-world datasets.
Furthermore, their K2-like search method requires
an ordering of the variables; in real-world applications, an
ordering is often not known a priori. Therefore, it is again
unclear how their results generalize to real-world
situations.

Another related empirical work by de Jongh and
Druzdzel [25] investigates structural evaluation measures
for Bayesian networks rather than scoring functions.
They generated random datasets with different sizes
from four benchmark Bayesian networks. Then for each
combination of the network and sample size, they ran a
local search algorithm called Greedy Thick Thinning
[27] to learn Bayesian network structures and calculated
the distances between the learned networks and the
gold standard networks based on structural Hamming
distance, Hamming distance, and other measures. They
concluded that the structural Hamming distance is espe-
cially useful when looking for the causal structures.

All of these studies have drawbacks in their empirical
evaluations. In particular, the conclusions of Van Allen
and Greiner are drawn based on randomly generated
network structures. Therefore, it is unclear how reliable
their conclusions are regarding the model selection cap-
ability of the scoring functions. Additionally, the two
studies which evaluate scoring functions rely on ran-
domly generated gold standard networks; these may not
accurately reflect real-world datasets. The work of de
Jongh and Druzdzel only investigates structural evalua-
tion measures using a single scoring function; other
scoring functions may behave differently. The current
study is designed to address these concerns.

Bayesian networks

A Bayesian network encodes a joint probability distribu-
tion over a set of random variables V = {X, ..., X,}. We
consider only discrete variables in this work. Formally, a
Bayesian network B is a pair {G, ®}, where G is a direc-
ted acyclic graph (DAG) in which each node corre-
sponds to one of the random variables. The edges or
lack of them encode the conditional independence rela-
tionships among the variables. The parents of X; are
denoted P A; X; is independent of its non-descendant
variables given its parents. ® specifies the conditional
probability distributions P (X;|P A;) for each X;. Thus,
the joint probability distribution of all of the variables is
given as

P(V) = [ [ P(xilPA)

i=1

Given a dataset D = {Dy, ..., Dy }, where D, is an
instantiation of all the variables in V, Bayesian network
structure learning is the problem of learning a network
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structure from D. Assuming D is complete and discrete,
0 is maximized using frequency counts from the data
[7]. Consequently, finding the optimal Bayesian network
reduces to finding the optimal structure.

Score-based learning is a commonly used technique to
identify the optimal structure. In this approach, a scor-
ing function is used to measure the goodness of fit of a
structure to the data. The goal of the learning problem
is then to find the optimally scoring structure. The
score typically approximates the probability of the struc-
ture given the data and represents a tradeoff between
how well the network fits the data and how complex the
network is. In this work, we assume the scoring function
is decomposable [6]. That is, the score for a network
structure B can be calculated as the sum of scores for
the individual variables, where the score for a variable is
calculated based solely on the variable and its parents.
Therefore,

n
Score(B|D) = )~ Score(X;|PA;, D),
i=1

and the learning problem is to find B* where

B* = argmax Score(B|D).
B

A Bayesian network structure can represent a set of
joint probability distributions. Two network structures
are said to belong to the same equivalence class if they
represent the same set of probability distributions [28].
A scoring function which assigns the same score to net-
works in the same equivalence class is score equivalent
[6].

Unfortunately, the number of possible structures is
super-exponential in the number of variables; learning
an optimal Bayesian network from D is shown to be
NP-hard [10]. Solving the learning problem exactly
becomes impractical if the number of variables is too
large. Consequently, much early work focused on
approximate algorithms, such as greedy hill climbing
approaches [1,11], tabu search with random restarts
[13], limiting the number of parents or parameters for
each variable [14], searching in the space of equivalence
classes of network structures [29], and the optimal rein-
sertion algorithm (OR) [12]. These algorithms use local
search to find “good” networks; however, they offer no
guarantee to find the one that optimizes the scoring
function. Recently, exact algorithms for learning optimal
Bayesian networks have been developed based on
dynamic programming [15-17,30,31], branch and bound
[18], linear and integer programming (LP) [22,23], and
heuristic search [19-21]. These algorithms have enabled
us to learn optimal Bayesian networks for datasets with
dozens of variables.
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Given a scoring function, all optimal learning algo-
rithms learn equivalent networks; hence, the choice of
which optimal algorithm is used does not affect the
learned network. Consequently, these algorithms make
it possible for us to study the behavior of different scor-
ing functions in structure learning without needing to
consider the confounding factors resulting from the
choice of structure learning algorithms.

Scoring functions

Many scoring functions are in the form of a penalized
log-likelihood (LL) functions. The LL is the log prob-
ability of D given B. Under the standard i.i.d assump-
tion, the likelihood of the data given a structure can be
calculated as

N
LL(D|B) = ) " log P(Dj|B)
j

n N
=Y ) "log P(Dy|PAy),
i

where Dj; is the instantiation of X; in data point D}, and
PAj; is the instantiation of X;’s parents in D;. Adding an
arc to a network never decreases the likelihood of the net-
work. Intuitively, the extra arc is simply ignored if it does
not add any more information. The extra arcs pose at least
two problems, though. First, they may lead to overfitting of
the training data and result in poor performance on test-
ing data. Second, densely connected networks increase the
running time when using the networks for downstream
analysis, such as inference and prediction.

A penalized LL function aims to address the overfitting
problem by adding a penalty term which penalizes com-
plex networks. Therefore, even though the complex net-
works may have a very good LL score, a high penalty
term may reduce the score to be below that of a less
complex network. Here, we focus on decomposable
penalized LL (DPLL) scores, which are always of the form

n
DPLL(B, D) = LL(D|B) — > _ Penalty(X;, B, D).
i=1

There are several well-known DPLL scoring functions
for learning Bayesian networks. In this study, we con-
sider MDL, AIC, BDeu and fNML. These scoring func-
tions only differ in the penalty terms, so we will focus
on discussing the penalty terms in the following discus-
sions. In terms of memory and runtime, all of the scor-
ing functions incur similar overhead [32].

Minimum description length (MDL)
The MDL [3] scoring metric for Bayesian networks was
defined in [2,33]. MDL approaches scoring Bayesian
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networks as an information theoretic task. The basic
idea is to minimally encode D in two parts: the network
structure and the unexplained data. The model can be
encoded by storing the conditional probability tables of
all variables. This requireslmgéN * p bits, where IngN is the
expected space required to store one probability value
and p is the number of individual probability values for
all variables. The unexplained part of the data can be
explained with LL(D|B) bits. Therefore, we can write the
MDL penalty term as
PenaltyMDL(X;, B, D) = 1og1\21 p

where p; is the number of parameters for X;. For
MDL, the penalty term reflects that more complex mod-
els will require longer encodings. The penalty term for
MDL is larger than that of most other scoring functions,
so optimal MDL networks tend to be sparser than opti-
mal networks of other scoring functions. As hinted at
by its name, an optimal MDL network minimizes rather
than maximizes the scoring function. To interpret the
penalty as a subtraction, the scores must be multiplied
by -1. The Bayesian information criterion (BIC) [3] is a
scoring function whose calculation is equivalent to MDL
for Bayesian networks, but it is derived based on the
asymptotic behavior of the models, that is, BIC is based
on having a sufficiently large amount of data. Also, BIC
does not require the -1 multiplication.

Akaike’s information criterion (AIC)

Bozdogan [34] defined the AIC [4] scoring metric for
Bayesian networks. It, like BIC, is another scoring func-
tion based on the asymptotic behavior of models with
sufficiently large datasets. In terms of the equation, the
penalty for AIC differs from that of MDL by the log N
term. So the AIC penalty term is

PenaltyAIC(X;, B, D) = p;.

Because its penalty term is less than that of MDL, AIC
tends to favor more complex networks than MDL.

Bayesian Dirichlet with score equivalence and uniform
priors (BDeu)

The Bayesian Dirichlet (BD) scoring function was first
proposed by Cooper and Herskovits [1]. It computes the
joint probability of a network for a given dataset. How-
ever, the BD metric requires a user to specify a para-
meter for all possible variable-parents combinations.
Furthermore, it does not assign the same score to
equivalent structures, so it is not score equivalent. To
address the problems, a single “hyperparameter” called
the equivalent sample size was introduced, referred to as
o [6]. All of the needed parameters can be calculated
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from o and a prior distribution over network structures.
This score, called BDe, is score equivalent. Furthermore,
if one assumes all network structures are equally likely,
that is, the prior distribution over network structures is
uniform, « is the only input necessary for this scoring
function. BDe with this additional uniformity assump-
tion is called BDeu [6]. Somewhat independently, the
BDeu scoring function was also proposed earlier by
Buntine [5]. BDeu is also a decomposable penalized LL
scoring function whose penalty term is

qi 1

P(D:n|D::
PenaltyBDeu(X,-,B,D)=ZZlog (Dij|Dij)
j ok

P(Djj.|Djj, eif)’

where ¢; is the number of possible values of PA;, r; is
the number of possible values for X;, Dy is the number
of times X; = k and PA; = j in D, and ¢;; is a parameter
calculated based on the user-specified a. The original
derivations [5,6] include a more detailed description.
The density of the optimal network structure learned
with BDeu is correlated with o; low o values typically
result in sparser networks than higher o values. Recent
studies [35] have shown the behavior of BDeu is very
sensitive to a. If the density of the network to be
learned is unknown, selecting an appropriate o is
difficult.

Factorized normalized maximum likelihood (fNML)
Silander et al. developed the fNML score function to
address the problem of o selection in BDeu based on
the normalized maximum likelihood function (NML)
[7]. NML is a penalized LL scoring function in which
regret is the penalty term. Regret is calculated as

> _P(D'|B),
5

where the sum ranges over all possible datasets of size
N. Kontkanen and Myllymaki [36] showed how to effi-
ciently calculate regret for a single variable. By calculating
regret for each variable in the dataset, the NML becomes
decomposable, or factorized. fNML is given by

qi
Penalty fNML(X;, B, D) = ) " log Cy.,
k

where C;\i]i}. are the regrets. fNML is not score
equivalent.

Methods

Our empirical evaluation of the scoring functions con-
sisted of four phases. First, we created a set of Bayesian
networks from real datasets as the gold standard net-
works. Next, we generated a variety of datasets from
each of those gold standard networks by logic sampling.
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After that, we learned optimal Bayesian networks from
the sampled datasets using both an optimal algorithm
and a greedy hill climbing algorithm. Finally, we calcu-
lated a number of evaluation metrics by comparing the
learned networks with the gold standard networks.

Creating gold standard networks

We need a set of gold standard Bayesian networks as
the basis for our empirical evaluations. It is possible to
use randomly generated Bayesian networks like several
existing studies did, but we want to use models that
resemble Bayesian networks that are created for real-
world applications. There are many benchmark Baye-
sian networks available, such as Alarm, CPCS, Hepar,
etc., but these benchmark models contain too many
variables and are intractable for the current optimal
learning algorithms. Therefore, we chose to create the
gold standard networks by learning optimal Bayesian
networks for a set of UCI machine learning datasets
[37] with fewer than 25 variables. This section
describes our data processing method for the reprodu-
cibility of the results.

The raw UCI datasets contain both continuous and
discrete data, as well as missing values. Table 1
describes the detailed information for all the datasets
used in this study. Continuous values were discretized
using the minimum description length (MDL) discreti-
zation technique [38]. MDL discretization recursively
partitions a dataset S with a single variable A by seg-
menting it into two distinct sets based on a boundary
value T. The entropy between the two sets is minimal.
The entropy between the two sets is defined as

_ [S1] [S2]

E Ent(Sy) +
5o FHS g

Ent(Sz),

where S; and S, are the segments of S based on parti-
tioning at T and Ent(-) is the entropy of the single set.

The recursion stops when the information gain of
adding another partition does not exceed the cost of
encoding the two new separate classes, given as

log2 (1S — 1) . A(AT;S)

N N
A(A,T; S) = logy (3" — 2) + k x Ent(S)
—ky x Ent(S1) — ky x Ent(S3)

Gain >

where k; is the number of distinct values of A in S;.

Although the MDL discretization technique has the
same theoretical basis as the MDL scoring function, it is
otherwise unrelated. That is, using the MDL discretiza-
tion does not favor the MDL scoring function over the
others in any way.

We used a k nearest neighbors (kNN) algorithm to
impute missing values [39]. The kNN algorithm
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Table 1 Summary of gold standard networks
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Dataset Domain Instances Nodes Edges Average In-degree

Statlog (Australian Credit Approval) Industry 690 15 33 2.20
Breast Cancer Biology 699 10 20 2.00

Car Evaluation Industry 1,728 7 9 1.29
Cleveland Heart Disease Biology 303 14 22 1.57
Credit Approval Industry 690 16 35 2.19
Diabetes Biology 768 9 13 144

Glass Identification Industry 214 10 17 1.70
Statlog (Heart) Biology 270 14 21 1.50
Hepatitis Biology 155 20 36 1.80

Iris Biology 150 5 8 1.60

Nursery Industry 12,960 9 14 1.56

Statlog (Vehicle Silhouettes) Industry 846 19 40 2.11
Congressional Voting Records Political 436 17 46 2.71

This table describes all of the datasets we used in this study. Dataset gives the name of the dataset in the UCI machine learning repository. Domain gives a
rough indication of the domain of the dataset. Instances gives the number of instances in the original dataset. Nodes gives the number of variables in the dataset
(and the number of nodes in the corresponding Bayesian network). Edges gives the number of edges in the optimal Bayesian network learned from the original
dataset. This is the gold standard network used throughout the rest of the evaluation. Average In - degree gives the average number of parents of each variable

in the learned Bayesian network.

computes a missing value X, for record D; by finding
the k closest D;s (out of those records which are not
missing any values) to D; (using Euclidean distance, for
example), excluding X,,. If X,, is a continuous variable,
the value of X, is averaged for each of the Djs, and that
value is assigned to X, for D, If categorical, it is
replaced by a majority vote among the k closest neigh-
bors for X,,. We set k = 5.

After processing the datasets, we applied an optimal
learning algorithm based on the MDL scoring function
[17] to learn optimal Bayesian networks. Again, the use
of MDL score here does not affect the conclusions of
this study, as other scoring functions yielded similar
results. We used the maximum likelihood estimation
method to learn the parameters of the networks. We
took the learned networks as the gold standard net-
works and generated datasets from them.

Generating datasets from gold standard networks

After we created the gold standard networks, we gener-
ated datasets for each of these Bayesian networks with
different numbers of data points ranging from 200 and
1000 (with increments equal to 200) and from 1,000
and 10,000 (with increments equal to 1,000), for a total
of 18 sample sizes for each gold standard network. Each
data point in a dataset corresponds to one random sam-
ple drawn from the joint probability distribution of a
Bayesian network using logic sampling [40]. The basic
idea is to sample the value for each variable according
to the conditional probability distribution of the variable
given its parents. The sampling is performed in a topo-
logical order of all the variables in order that all the par-
ents already have sampled values before the child
variable is sampled.

Learning from the sampled datasets

After generating datasets from the gold standard net-
works, we learned optimal networks for all the datasets
by using the aforementioned scoring metrics. MDL, AIC
and fNML are parameterless, so we learned one network
for each combination of scoring function and dataset.
All optimal learning algorithms would learn an equiva-
lent network, so our choice of optimal learning algo-
rithm does not affect the learned network. We tried the
following « values, 0.1, 0.5, 1, 5, 10, 20, 50, 80, 100, for
the hyperparameter o of BDeu and learned a network
for each combination of o value and dataset. Thus, in
total, we learned 12 “optimal” networks for each dataset
and sample size. For comparison, we also tested a
greedy hill climbing algorithm with random restarts and
a tabu list in the same experiments.

Evaluating the learned networks

We used several structural evaluation metrics to com-
pare the performance of the different scoring functions.
Three of the evaluation metrics operate directly on the
gold standard and learned DAG structures: accuracy,
sensitivity, and average hamming distance (AHD). The
formulas for those metrics are

TP + TN
Accuracy = /
TP + TN + FP + FN
L TP
Sensitivity = ,
TP + FN
FP + FN
AHD = ,

n

where a TP is an edge in the correct direction in the
learned network, a TN is an edge in neither the learned
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nor the gold standard network, a FP is an edge in the
learned network but not in the gold standard network,
and a FN is an edge in the gold standard but not in the
learned network. Note that an edge in the wrong direc-
tion in the learned network counts as both a FP and a
FN.

We also used an evaluation metric called structural
Hamming distance (SHD). As mentioned earlier, multi-
ple structures with edges in different directions may
belong to the same equivalence class. Intuitively, the dis-
tance between Bayesian networks in the same equiva-
lence class should be zero. To accommodate this, SHD
first identifies the equivalence class to which a Bayesian
network belongs using an algorithm given by Chickering
[28]. An equivalence class is represented by a partially
directed graph (PDAG) in which some edges are direc-
ted and some undirected. The undirected edges can be
orientated arbitrary as long as no new V structure in
which multiple variables share a child is introduced.
SHD then counts the number of directed and undir-
ected edge additions, deletions, reversals and changes in
direction to transform one PDAG into the other as the
distance between two corresponding Bayesian networks.
Tsamardinos et al. [41] provide a more formal algorithm
for computing the SHD metric.

Results

In this section, we present the results of our empirical
study. We first compared the evaluation metrics in order
to select one metric for further analysis. We next looked
into the effect of the hyperparameter « on the BDeu
score. We then compared the capability of the scoring
functions in recovering the Bayesian network structures
from the sampled datasets generated from the gold stan-
dard Bayesian networks. After that, we compared the
effect of sample sizes on the performance of the scoring
functions in learning from the datasets when using both
an optimal learning algorithm and a greedy hill climbing
algorithm.

Comparison of evaluation metrics

We first compared the robustness of the evaluation mea-
sures as the sample size increases in the datasets. Theore-
tically, as the number of data points increases, the bias
introduced by the penalty term in a scoring function has
decreasing effect, and the learned model should gradually
converge to the equivalence class of the true underlying
model [29]. Figures 1 and 2 show the convergence results
for the scoring functions on the optimal networks
learned for the Statlog (Australian CreditApproval) and
Cleveland Heart Disease datasets respectively. We con-
sider an evaluation measure to have converged when add-
ing more data points does not change the value of the
metric. Our results show that the SHD metric converges

Page 7 of 16

for most of scoring functions with a small number of
data points. In contrast, AHD, accuracy and sensitivity
still fluctuate when there is a large number of samples.
We only show the results on two datasets, but the results
on the other datasets are similar. SHD exhibits better
convergence behavior because it operates on the equiva-
lence classes of networks rather than directly on the spe-
cific DAGs in question. As a simple example, suppose
the gold standard network is X — Y, but the learned net-
work is X < Y. The two networks represent the same
conditional independencies, and SHD gives a distance of
0. However AHD, accuracy, and sensitivity all consider
the arc incorrect because the arcs are oriented in differ-
ent directions. We therefore only use SHD for the rest of
our analysis.

BDeu parameterizations

We also investigated the effect of the hyperparameter o
on BDeu. We focused on both the convergence behavior
and the effect of & on recovering the gold standard net-
works. The results are shown in Figure 3 and Table 2.
While some o values give good recovery results, it is
clear that selecting either too low or too high of an «
can dramatically impact the quality of the learned net-
works. BDeu was similarly impacted by & on other data-
sets as shown in the Additional File 1 S1.xls (sheet =
results . optimal). On some of the networks, a
poorly chosen o value may prevent convergence of the
algorithms even when the sample size is large. As men-
tioned earlier, low as tend to result in sparser networks
than higher as. Unfortunately, if the density of the gold
standard network is unknown, selecting « is difficult.
Consequently, BDeu is only a good scoring function if
an expert can appropriately estimate o. Otherwise, the
learned network is either too sparse (if & is too low) or
too dense (if ¢ is too high). This analysis supports pre-
viously published results [35].

Gold standard network recovery

We studied the capability of each scoring function in
recovering the gold standard network based on the SHD
metric. In the case of BDeu, we show the behavior of
the best performing o value. Figure 4 shows that most
of the scoring functions can recover the gold standard
network on four of the datasets given a large enough
sample size and appropriate parameters (o for BDeu).
Other datasets exhibit similar behavior as shown in
Table 3 and the Additional file 1 S1.xIs (sheet =
results . optimal). In particular, we consider the
minimum distance of each scoring function and dataset.
A minimum distance of 0 means that the gold standard
network was recovered for the dataset. Small distances
indicate that the scoring function guided the learning
algorithm to find close to optimal networks.
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In contrast to the results reported by several previous
studies, we found that MDL was able to recover the
gold standard network more quickly than other scoring
functions. We observe these differences both because
we use an optimal learning algorithm and because we
use gold standard networks representing real-world
datasets. Given an appropriate o value, BDeu also con-
verged to the gold standard networks within the sample
sizes we tested. In some of the datasets, fNML con-
verged to the gold standard network very quickly, but
sometimes it converged to a different network. In con-
trast, AIC’s behavior was much more erratic. It found
the gold standard network on 8 of the datasets. But
because of its high standard deviation, we infer it never
completely converged. Figure 4 supports this conclusion.
In light of these results, we conclude that MDL is a
good scoring function because it often converges to the
gold standard network. BDeu also exhibits good beha-
vior if a suitable ¢ is known before learning.

Convergence behavior

Next, we studied the convergence behavior of each scoring
function. We did not consider whether the scoring func-
tion converged to the gold standard network; rather, we
only focused on whether the scoring function converged
to any network. In essence, this part of our study investi-
gates the effect of the size of a dataset on the scoring func-
tions. We again consult Figure 4 and Table 3 but this time
look for convergence of the scoring functions; that is, we
look to see at what point increasing sampling size does
not change SHD anymore. As the figure shows, most of
the scoring functions converged. To look for convergence
in the table, we consider the mean, minimum, maximum,
and standard deviation for the SHD statistics. We expect
that if the scoring function converged quickly, its standard
deviation will be small. This loose interpretation is robust
in that it allows us to conclude that a scoring function
converged even if SHD changes slightly from one sample
size to the next.
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Figure 2 Comparing the evaluation measures for the optimal networks learned from the Cleve datasets with different sizes. In this
figure, we compare the performance of the four evaluation metrics (SHD, AHD, accuracy and sensitivity) for the Cleve dataset.
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As previously shown [7], fNML converges with fewer
samples than the other scoring functions. Because the
mean SHD is typically small, we conclude that the net-
work to which it converges is often close to the gold
standard network. MDL converged somewhat more
slowly, but often converged to the gold standard network.
BDeu with an optimal ¢ value tends to converge quickly
to a network close to the gold standard networks; how-
ever, with a sub-optimal & value, BDeu often neither con-
verges nor comes close to the gold standard networks as
shown in Table 2. Because AIC has a very low penalty
term, more data encourages it to add more edges. Thus,
it tends to overfit the data on large sample sizes and
rarely converges. The SHD of AIC does tend to decrease
as the sampling size increases, but that trend is somewhat
inconsistent. Based on these results, fNML seems to be a
good scoring function when data is limited, while MDL is
superior when more data is present.

Comparison to greedy hill climbing
Finally, we compared the network recovery and conver-
gence ability of a greedy hill climbing learning algorithm

to those from the optimal algorithm. We performed this
analysis because, as mentioned, optimal learning algo-
rithms are limited to datasets with several dozens of
variables. While some biological datasets (such as the
Breast Cancer, Cleveland Heart Database, Diabetes, Sta-
tlog (Heart), Hepatitis and Iris datasets included in this
study) are within this limit, many others, such as gene
expression datasets, include hundreds or thousands of
variables. Greedy hill climbing algorithms have been
shown to scale to datasets of this size [14]. This part of
our study verifies that our conclusions on scoring func-
tions apply to this algorithm, as well.

We first evaluated the network recovery ability of the
scoring functions on the greedy hill climbing algorithm.
Table 4 shows that, much like the optimal learning algo-
rithms, the hill climbing algorithm typically either adds
extra edges or misses necessary edges. On the other
hand, as the small values in the Reverse and Compelled
columns show, the directionality of the edges is typically
correct. The Total SHD follows a similar trend among
the greedy hill climbing and optimal algorithms. That is,
scoring functions that performed well for the optimal
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algorithm also performed well for the hill climbing algo-
rithm. We observed similar results on the other datasets
as shown in the Additional file 1 S1.xls (sheet =
results . greedy). These results confirm that the
scoring functions have a similar impact on structure
recovery regardless of whether an optimal or greedy
algorithm is used. In almost all cases, though, the opti-
mal algorithm finds a structure closer to the true gold
standard networks, so its Total distance is always lower.
This highlights the benefit of using optimal algorithms
when possible.

We then evaluated the convergence behavior of the
scoring function on the greedy hill climbing algorithm.
As shown in Figure 5, the picture is not as clear as the
convergence behavior of the optimal algorithm in Figure
4. Nevertheless, we still see similar trends. Of the scoring
functions, fNML typically converges the quickest, though
often to a worse network than MDL. On the Breast Can-
cer and Car Evaluation datasets, MDL converges to the

gold standard network, except for a few perturbations
caused by the uncertainty of the greedy search algorithm.
BDeu also converges except for a few spikes, but it typi-
cally converges to a worse network than MDL. As with
the optimal algorithm, AIC does not converge. These
results also mirror those of the behavior we observed in
the optimal algorithm, though a bit noisier. They again
suggest that the conclusions we drew from the optimal
algorithms apply to the greedy algorithm, albeit with
some noise. We also see that the optimal algorithm gives
more consistent behavior, both in terms of quality and
consistent convergence, and should be used when
possible.

Conclusion

In this work, we have empirically investigated the ability
of four Bayesian network scoring functions (MDL, AIC,
BDeu and fNML) to recover the generating distribution
of a dataset; a gold standard Bayesian network represents
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Table 2 Summary of the effect of different o values on the performance of BDeu

a=0.1 a=0J5 a=1

GoldNet Min Mean Max STD Min Mean Max STD Min Mean Max STD
Austra 0 244 14 438 0 211 14 432 0 1.94* 14 402
Breast 0 083 8 218 0 061 5 1.50 0 061 5 1.50
Car 0 144 5 228 0 0.89 5 191 0 0.89 5 191
Cleve 1 1.83 " 243 1 1.50 7 154 1 1.44* 7 146
Crx 3 5.72% 18 4.56 3 6.06 19 546 3 572 18 491
Diabetes 1 1.72 6 171 1 1.22% 4 0.73 1 1.28 4 0.75
Glass 1 1.83 7 2.01 1 1.00* 1 0.00 1 1.00* 1 0.00
Heart 0 0.00* 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
Hepatitis 3 3.72% 13 237 3 422 12 262 6 7.06 13 2.01
Iris 1 1.83 7 172 1 144 6 1.34 1 1.33% 4 097
Nursery 1 494 8 2.75 0 439 8 277 0 4.06 8 292
Vehicle 0 0.67 9 214 0 022 4 0.94 0 0.22* 4 094
Voting 0 161 23 538 0 1.39 22 5.17 0 1.28% 19 447

oa=5 a=10 a=20
GoldNet Min Mean Max STD Min Mean Max STD Min Mean Max STD
Austra 0 361 18 581 1 13.94 21 381 14 15.39 25 311
Breast 0 0.22* 4 0.94 0 0.56 10 2.36 0 133 " 293
Car 0 0.28* 5 1.18 0 0.28 5 118 0 033 5 1.19
Cleve 4 6.601 13 2.85 9 12.56 19 218 20 2156 25 1.10
Crx 5 13.72 21 549 13 16.83 20 1.86 18 20.17 29 2.90
Diabetes 3 322 6 0.73 5 533 10 1.19 9 9.11 Il 047
Glass 7 7.89 8 032 12 14.67 15 0.84 18 19.83 20 051
Heart 1 1.00 1 0.00 1 144 2 0.51 2 222 4 0.55
Hepatitis 25 30.22 33 1.99 39 41.78 44 1.31 50 53.56 60 2.25
Iris 3 322 5 0.55 5 522 8 0.73 9 9.61 14 138
Nursery 0 3.17 8 2.64 0 2.50 8 248 0 2.39* 9 2.57
Vehicle 0 044 5 1.20 1 239 10 203 5 6.72 15 247
Voting 0 161 22 5.14 0 3.89 30 7.06 0 7.06 38 9.05

o =50 a =80 o =100
GoldNet Min Mean Max STD Min Mean Max STD Min Mean Max STD
Austra 16 1967 33 435 18 22,50 42 599 19 2417 42 5.86
Breast 2 7.44 14 335 7 1167 16 336 7 13.72 20 372
Car 0 067 8 1.88 0 1.50 8 176 0 194 8 1.66
Cleve 26 27.50 34 195 27 2972 41 327 28 30.50 42 349
Crx 19 2539 37 441 24 29.28 40 408 27 3178 44 4.35
Diabetes 13 1489 16 113 14 16.33 18 137 14 1567 18 150
Glass 18 18.11 20 047 18 2161 26 206 20 2444 26 204
Heart 4 41 5 032 4 461 5 0.50 4 494 5 024
Hepatitis 59 61.50 72 3.03 61 64.28 75 392 61 65.28 78 4.86
Iris 13 15.06 18 135 14 16.78 18 1 14 15.83 18 147
Nursery 0 2.11 1 2.78 0 2.33 10 2.81 0 261 M 313
Vehicle 14 1844 30 3.88 19 23.50 36 4.08 22 2744 39 4.15
Voting 6 22.28 43 9.78 16 30.00 52 8.60 23 3450 56 821

This table shows SHD statistics about the networks learned using the sampled datasets for the BDeu scoring function for all of the o values that we analyzed.
GoldNet gives the name of the network. We have used abbreviated names from Table 1, but the order of the datasets is the same in both tables. Min, Mean, Max
and STD give the particular statistic for SHD for all sample sizes for the given network and « value. The «a value with the lowest mean for each dataset is shown
in bold and marked with “*".
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Figure 4 Plot of structural Hamming distance of the networks learned by optimal learning algorithm from datasets with different
sample sizes. This figure plots the SHD of the networks learned by each of the scoring functions for the Breast, Crx, Car, and Diabetes datasets.
We display the results for o = 0.5 for BDeu for all datasets because it had the best behavior in terms of SHD.

Table 3 A comparison of the performance of four scoring functions in recovering the true underlying Bayesian
network structures

AIC MDL fNML BDeu
GoldNet Min Mean Max STD Min Mean Max STD Min Mean Max STD Min Mean Max STD
Austra 3 10.72 21 502 0 1.50*% 13 349 11 1244 31 4.78 0 1.94 14 402
Breast 0 1.28 6 1.64 0 061 5 1.50 0 039 4 1.14 0 0.22* 4 094
Car 0 1.00 7 1.91 0 167 5 243 5 594 6 024 0 0.28* 5 118
Cleve 2 1044 22 394 0 0.44* 5 1.34 0 0.94 12 282 1 144 7 146
Crx 9 15.28 24 420 3 4.67% 18 379 13 1444 34 494 3 572 18 456
Diabetes 0 2.00 5 141 0 0.22% 3073 0 0.22* 3073 1 1.22 4 073
Glass 0 0.00* 0 000 0 0.00* 0 000 0 0.06 1 0.24 1 1.00 1 0.00
Heart 0 0.00* 0 000 0  0.00% 0 000 0 0.00* 0 000 0 0.00* 0 000
Hepatitis 17 2183 31 4.13 0 0.44* 6 146 0 294 24 595 3 372 13 237
Iris 0 1.78 5 1.80 0 033 3097 0 0.17* 3 071 1 133 4 097
Nursery 0 3.61* 12 399 0 494 8 328 8 9.22 16 218 0 439 8 277
Vehicle 0 0.72 4 107 0 .11 16 377 0 039 1.65 0 0.22* 4 094
Voting 8 14.61 32 615 0 1.11* 16 377 0 250 31 742 0 1.28 19 447

This table shows SHD statistics about the networks learned using the sampled datasets for all scoring functions that we analyzed. For BDeu, we used the value of
o that gave the lowest mean SHD. GoldNet gives the name of the network. We have used abbreviated names from Table 1, but the order of the datasets is the
same in both tables. Min, Mean, Max and STD give the particular statistic for SHD for all sample sizes for the given network and scoring function. The scoring
function with the lowest mean for each dataset is shown in bold.
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Table 4 A Comparison of Structural Error for the suboptimal learning algorithm and the optimal learning algorithm

Greedy Hill Climbing Optimal
GoldNet Size Score Add Delete Rev Mis Total Add Delete Rev Mis Total
Austr 200 AIC 16 14 1 1 32 11 6 2 2 21
200 MDL 9 17 0 0 26 0 8 1 4 13
200 fNML " 16 0 1 28 20 7 0 4 31
200 0.1 7 17 0 1 25 0 10 0 4 14
200 0.5 9 17 0 0 26 1 9 1 3 14
200 1 9 17 0 0 26 1 9 1 3 14
200 5 Il 12 2 2 27 5 6 1 6 18
200 10 14 14 0 2 30 8 7 2 4 21
600 AIC 18 15 1 0 34 7 1 0 0 8
600 MDL 13 15 1 0 29 0 2 0 0 2
600 fNML 13 15 2 0 30 1 3 0 7 1
600 0.1 Il 15 1 1 28 0 4 0 1 5
600 0.5 12 15 1 1 29 0 3 0 1 4
600 1 12 15 1 1 29 0 3 0 1 4
600 5 14 14 1 4 33 1 2 0 0 3
600 10 15 15 0 3 33 4 3 1 9 17
1000 AIC 18 13 1 0 32 7 0 1 0 8
1000 MDL 15 15 1 0 31 0 0 0 0 0
1000 fNML 16 15 0 3 34 2 1 1 8 12
1000 0.1 15 15 1 0 31 0 0 0 0 0
1000 0.5 15 15 1 0 31 0 0 0 0 0
1000 1 15 15 1 0 31 0 0 0 0 0
1000 5 17 15 2 1 35 2 0 4 6 12
1000 10 18 15 2 1 36 4 1 1 8 14
Crx 200 AIC 20 14 0 2 36 9 2 4 3 18
200 MDL 9 16 0 3 28 1 8 0 9 18
200 fNML 16 15 1 1 33 19 5 6 4 34
200 0.1 6 16 0 3 25 1 11 0 6 18
200 0.5 10 16 0 3 29 1 8 0 9 18
200 1 9 15 0 4 28 1 7 0 10 18
200 5 13 14 1 2 30 5 6 3 5 19
200 10 19 14 2 0 35 9 4 3 3 19
600 AIC 21 14 0 0 35 8 1 2 0 11
600 MDL 14 16 0 0 30 1 3 1 0 5
600 fNML 14 14 0 4 32 3 3 1 7 14
600 0.1 Il 15 0 1 27 2 6 2 1 "
600 05 13 15 0 0 28 1 3 1 0 5
600 1 13 15 0 0 28 1 3 1 0 5
600 5 17 13 2 3 35 6 2 2 7 17
600 10 18 13 0 3 34 8 3 2 6 19
1000 AIC 21 15 0 0 36 7 1 1 0 9
1000 MDL 14 15 1 0 30 1 2 1 1 5
1000 NML 17 15 0 4 36 2 2 0 9 13
1000 0.1 14 15 0 0 29 1 3 1 1 6
1000 0.5 13 15 0 0 28 1 3 1 1 6
1000 1 13 15 0 0 28 1 3 1 1 6
1000 5 17 15 0 0 32 4 2 0 11 17
1000 10 18 14 2 4 38 6 2 1 8 17

This table gives detailed information about the structural differences between the learned and gold standard networks for the Statlog (Australian Credit Approval) and
Credit Approval datasets. It shows differences for both the greedy hill climbing and the optimal learning algorithm. GoldNet gives the name of the network. Size gives
the sample size. Score gives the scoring function. When only a number is shown, the scoring function is BDeu with that value for o.. Add gives the number of edges that
were added to the learned network that were not in the gold standard network. Delete gives the number of edges that were not in the learned network which were in
the gold standard network. Rev gives the number of edges that were oriented in the wrong direction in the equivalence class of the learned network compared to that
of the gold standard network; that is, the number of edges that were reversed. Mis gives the number of edges that were either directed in the equivalence class of the
learned network and undirected in that of the gold standard network, or vice versa; that is, it gives the number of mis-directed edges.
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Figure 5 Plot of structural Hamming distance of the networks learned by the sub-optimal learning algorithm from datasets with
different sample sizes. This figure plots the SHD of the networks learned by each of the scoring functions for the Breast, Crx, Car, and Diabetes
datasets. We display the results for oc = 0.5 for BDeu for all datasets because it had the best behavior in terms of SHD.

this distribution. We used an optimal structure learning
algorithm to ensure approximation algorithms did not
affect the learned networks. All optimal learning algo-
rithms would learn an equivalent network, so our choice
of optimal algorithm did not affect our results or conclu-
sions. Then, we controlled scoring function and sample
sizes to test their effect on the quality of the learned net-
works. We also considered four different evaluation
metrics: accuracy, sensitivity, AHD and SHD. In addition,
we evaluated a greedy hill climbing algorithm to ensure
that our conclusions are valid for algorithms which can
learn networks with hundreds or thousands of variables.
As a result of our investigation, we discovered that
SHD is more well-behaved than the other evaluation
metrics because it considers equivalence classes when
comparing structures rather than the specific DAGs.
Our most surprising result was that MDL was better
able to recover gold standard networks than other scor-
ing functions given sufficient data. As expected, BDeu’s
performance was highly dependent on the selected o
parameter, which can be difficult to estimate a priori.

We also confirmed that fNML converges even with few
samples. Throughout our analysis, we found AIC’s beha-
vior erratic and unpredictable. The greedy hill climbing
algorithm exhibited similar behavior, so we conclude
that our results hold for this algorithm, as well.

We plan to extend this work in several ways. We can
use synthetic networks to more carefully control the
properties of our gold standard networks. Unlike pre-
vious studies, though, we will not rely on random net-
work generation; instead, we will handcraft a variety of
networks to reflect a variety of real-world datasets. We
will also incorporate other scoring metrics, such as MIT
[8], and objectives, such as prediction [9], into our study.

Additional material

Additional file 1: Detailed empirical results and free software
packages. The file (S1.xls) contains detailed empirical results from testing
the various combinations of the scoring functions, sample sizes, and
learning algorithms (sheet = results . optimal, results .
greedy). It also contains a list of free software packages used in this
study (sheet = Software).
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