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Abstract

Background: Microbial metagenomic analyses rely on an increasing number of publicly available tools. Installation,
integration, and maintenance of the tools poses significant burden on many researchers and creates a barrier to
adoption of microbiome analysis, particularly in translational settings.

Methods: To address this need we have integrated a rich collection of microbiome analysis tools into the
Genboree Microbiome Toolset and exposed them to the scientific community using the Software-as-a-Service
model via the Genboree Workbench. The Genboree Microbiome Toolset provides an interactive environment for
users at all bioinformatic experience levels in which to conduct microbiome analysis. The Toolset drives hypothesis
generation by providing a wide range of analyses including alpha diversity and beta diversity, phylogenetic
profiling, supervised machine learning, and feature selection.

Results: We validate the Toolset in two studies of the gut microbiota, one involving obese and lean twins, and the
other involving children suffering from the irritable bowel syndrome.

Conclusions: By lowering the barrier to performing a comprehensive set of microbiome analyses, the Toolset
empowers investigators to translate high-volume sequencing data into valuable biomedical discoveries.

Background

The Human Microbiome Project (HMP) aims to
improve the understanding of the microbiome and the
factors that influence the distribution and evolution of
constituent microorganisms in a healthy human popula-
tion cohort. A number of focused sub-projects within
HMP aim to detect and interpret perturbations of
microbiomes associated with human diseases [1]. These
efforts are being been aided by accelerating technical
and methodological advancements in sequencing and
computational technologies. The 16S rRNA gene has
proven to be a useful initial genomic target to identify
and differentiate distinct microbial profiles, such as
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those in human fecal samples [2]. Determining the
abundance (and inferred function) of each type of
microbe (community profiling) is less expensive using
16S rRNA than bacterial genomic DNA because only
one representative gene from each genome is examined
[3]. As the focus widens from 16S rRNA to genomic
sequencing, as the costs of sequencing decrease, and the
amounts of publically available data increase, the tech-
nological and methodological bottleneck on the road to
discoveries will shift from sequencing to bioinformatic
analysis.

The new bioinformatic bottleneck will need to be
addressed in an innovative way, particularly with regard
to translational research. In the field of metagenomics,
the productivity of translational research is increasingly
determined by the amount of effort required to integrate
large volumes of “omics” data with clinical metadata and
analyze the integrated data sets using latest tools to
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generate biomedically relevant testable hypotheses. There
are multiple mature, open source tools for 16S rRNA
gene analyses, that are well maintained and widely used
within the scientific community, such as QIIME (Quanti-
tative Insights Into Microbial Ecology) [4] and mothur
[5]. We have integrated those tools within the Genboree
Microbiome Toolset and deployed them through the
Genboree Workbench [6] using the Software-as-a-Service
model. To enable researchers to gain insight into clini-
cally relevant phenotypes, while accounting for the most
significant confounding factors, we have designed the
Genboree Microbiome Toolset to be “sample centric”.
The Toolset enables users to associate metadata with
samples for both supervised sample classification and
unsupervised analyses. The toolset also enables analyses
of alpha diversity and beta diversity, phylogenetic analy-
sis, and feature selection. The Toolset assures reproduci-
bility of results reported in journal publications and
provides default settings at each step that can be custo-
mized by the user to reflect their preference or to follow
a standard protocol.

The Toolset is deployed using the easy-to-use web-based
GUI environment of the Genboree Workbench. The
Genboree environment enables web-based collaboration
while allowing access control to sensitive data. By virtue of
integration through the Genboree Workbench, all the
functionality that is accessible interactively through the
Toolset is also accessible programmatically via a custom
REST Application Programming Interface [7,8], the
Genboree REST API, thus allowing programmatic exten-
sion, customization, and web-based integration.

Methods

The initial step in the Toolset flow is the extraction of
sequences for each sample from the input sequence files
followed by a set of quality filters, as shown in Fig. 1.
Operational Taxonomic Unit (OTU) generation is
accomplished by a multi-step OTU picking algorithm
that generates representative sequences from the com-
plete sequence data set and produces an OTU table as a
result. The OTU table provides users with a matrix of
data necessary for downstream analyses, such as alpha
diversity, beta diversity [9], classification by supervised
machine learning, and feature selection.

Linking quality filtered sequences to sample metadata
Massively parallel sequencing platforms such as 454
typically produce multiplexed sequence files that contain
sequences from more than one sample. Samples and
their associated metadata are linked to corresponding
sequences using the MID (multiplex identifier), proximal
primer, and distal primer. For the purpose of down-
stream analyses, samples may be analyzed individually
or as sample sets.
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Taxonomic classification via the Ribosomal Database
Project (RDP) Classifier

The Microbiome Toolset integrates the Ribosomal Data-
base Project (RDP) Classifier [10], which performs taxo-
nomic classification of individual 16S rRNA sequences
based on a naive Bayesian classification. The output of
RDP Classifier 2.1 (and newer) assigns each sequence to
the most specific taxon level (from the Domain to the
Genus levels). Sequence counts are then calculated for dis-
tinct taxa at each of the levels and combined to produce
absolute and relative abundance profiles at each level.

Creating the Operational Taxonomic Unit (OTU) table and
representative sequences for phylogenetic tree
reconstruction

The Microbiome Toolset integrates a range of analyses
based on OTUs, groups of sequences distinguished by
their mutual similarity. The QIIME package [4] performs
multi-step chained OTU picking using multiple third
party tools, including cd-hit [11], mothur [5], and uclust
[12]. High speed is achieved by using a rough, fast
method to collapse sequence groups that have a high
level of similarity, followed by a more computationally
demanding and rigorous OTU picking step. Chimeric
sequences, which can be falsely detected as novel organ-
isms, resulting in the artificial inflation of diversity are
detected and removed using Chimera Slayer [13]. A set
of sequences representing each OTU are used for phylo-
genetic tree reconstruction. Sequence counts per OTU
and per sample are summarized in an output OTU table,
which is a key input for downstream analyses.

Phylogenetic analysis

The Toolset enables comparison and visualization of
representative sequences in the context of a phyloge-
netic tree. For comparison, we use UniFrac to examine
differences between microbiome communities by mea-
suring the distance between sample-specific sets of taxa
in a phylogenetic tree. The phylogenetic distances esti-
mate the degree of evolutionary divergence between dif-
ferent representative sequences [14], not just the degree
of their sequence-level differences.

Phylogenetic differences may be visualized using tools
such as the interactive Tree Of Life (iTOL), which supports
upload, display, and manipulation of phylogenetic trees
[15]. The Microbiome Toolset automatically generates a
multi-level circular phylogenetic tree based on metadata
and taxonomic information via iTOL’s API. Sample-
associated metadata can be used to visually detect phyloge-
netic distribution biases in specific samples or sample sets.

Beta diversity analysis
Beta diversity analysis considers biodiversity between
groups of samples, focusing on the elements that are
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Figure 1 Genboree Microbiome Toolset Dataflow. The flow begins by producing quality filtered sequences from the 16S rRNA sequences
and the sample metadata. These can be passed to the taxonomic classification pipeline for taxonomic abundance reports or to the multi-step
OTU picking pipeline for alpha diversity, beta diversity, classification using supervised machine learning, and feature selection.
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either unique to or shared among groups of samples. The
Toolset includes the QIIME pipeline, which currently
includes 14 non-phylogenetic, 9 binary non-phylogenetic,
and 6 phylogenetic metrics. Beta diversity plots are gen-
erated for all the metrics so that the user can explore the
differences between various microbiomes. This approach
was adopted to increase the likelihood of detecting biolo-
gically significant patterns visible only when using

specific metrics. A case in point is the Canberra metric,
an equal-weight metric that standardizes the input such
that each OTU affects the distance value equally [16].
This equal-weight, non-phylogenetic method was suc-
cessfully used to distinguish between two tundra commu-
nities which could not be distinguished using chord
distance, an alternative non-phylogenetic method biased
towards largely abundant taxa [17].
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The phylogenetic-based UniFrac [14] algorithm enables
the analysis of different microbiomes by providing both a
quantitative measurement, using weighted UniFrac, and a
qualitative measurement, using unweighted UniFrac.
Quantitative measures of a phylogenetic method shows
changes in OTU abundance such as those caused by
nutrient shifts whereas qualitative measures detect differ-
ences in microbiomes based on presence or absence of
species in specific environments such as high- or low-
temperature [18].

For each beta diversity distance metric that is utilized,
the results are displayed for the top three principal coor-
dinates using Principal Coordinates Analysis (PCoA) for
both normalized and non-normalized OTU tables. Nor-
malizing the OTU tables on a sample-by-sample basis
allows the researcher to account for potential variability
in sequencing depth. PCoA plots in both 2D and 3D for-
mats are provided in embedded HTML for further analy-
sis. Beta diversity clustering has been utilized to show
that three different individuals can be discriminated
based on their distinct skin (fingertip) microbiomes
obtained from their keyboards [19].

Classification and selection of discriminating features

It is frequently of interest to identify a small and assay-
able set of OTUs that can distinguish between sets of
samples with different phenotypes. To meet this goal, a
supervised machine learning pipeline was developed and
exposed within the Toolset. The pipeline determines the
success rate of classifying groups of samples and selects
the features that best discriminate groups of samples.
The pipeline utilizes the R package randomForest [20]
for supervised learning and Boruta [21] for feature selec-
tion. The input to the pipeline consists of the OTU table
from QIIME pipeline and the sample metadata collected
using the Sample Importer.

The algorithm randomForest employs an ensemble
approach based on the Classification and Regression
Trees (CART) method. It generates and evaluates many
classification trees for discrete data or regression trees
for continuous data. The classification error rate is mea-
sured by the out-of-bag (OOB) error estimation for each
metadata category. Because randomForest does not
inherently provide for feature selection [22], we
employed the R package Boruta, a feature selection algo-
rithm built around the randomForest algorithm. The Z
score, computed by dividing the average loss of accuracy
by its standard deviation, associates an importance mea-
sure with the randomForest results. In addition to the
output files generated by the randomForest and Boruta
packages, the Toolset provides a summary file that com-
bines the OTU number, taxonomic labels generated by
RDP, metrics of OTU distribution for each metadata
group (min, max, and quartiles), Mann-Whitney [23] U
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and Z scores, box plot coordinates, and directional
change (calculated by comparing Mann-Whitney U
scores for each sample group).

The Toolset also includes an R script to visualize the
top performing features in a box plot format that mimics
the plot from Qin and Li’s study of the human gut micro-
bial gene catalogue [24]. Such plots provide concise and
informative visual summaries of directional change and
relative abundance for the most discriminating features.

Integration of the Microbiome Toolset within the
Genboree Workbench

The Microbiome Toolset is integrated within the Gen-
boree Workbench, whose user interface (UI) is a Java-
Script-driven web page displayed in the user’s web
browser. The Toolset and data are hosted on a remote ser-
ver which has access to scalable computing resources,
removing any hardware or software maintenance burden
for the user. The Workbench user interface, illustrated in
Fig. 2B, allows users to perform analysis steps summarized
in Fig. 1 using the tools from the Microbiome Toolset.
The Workbench exclusively uses Genboree REST Applica-
tion Programming Interfaces (REST APIs) to communi-
cate with the Genboree server (Fig. 2A). Hence, all the
functionality accessible via the Workbench, including the
Microbiome Toolset, is also accessible programmatically.
This design makes it possible to integrate Microbiome
Toolset functionality into local pipelines, or to extend its
functionality using custom analysis pipelines that run
locally on the users’ computers or elsewhere on the Web.

The Genboree Workbench allows users to navigate
through a plethora of data sources and match the data
to available tools. The interface exposes various data
sources to a user via a folder in the left pane (Fig. 2B-i).
The first level is that of user Groups corresponding to a
specific collaboration or more permanent groupings
such as a specific research laboratory. The next level in
the folder system contains Projects and Databases,
which further encompass Annotation Objects, Annota-
tion Tracks, Samples, Queries, and unstructured Files.
Additional information about a selected object appears
in the details panel (Fig. 2B-ii). A user can also use that
area to download data items onto a local computer.

The tool interface is drag-and-drop: tool inputs are
dragged from the folder system into the Input Data Panel
(Fig. 2B-iii) and the target databases are dragged from the
folder system into the Output Targets panel (Fig. 2B-iv).
Each tool has specific input and output requirements. If
these requirements are met, the tool is highlighted in
green in the menu and can be invoked by selecting the
tool from the menu. If the tool is not highlighted in green,
a click on the tool in the menu displays a help dialog
which will list the input and output requirements and
other useful infomation.
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The Microbiome Toolset is founded on a sample-centric
data and analysis model. Prior to performing analysis steps
using the Toolset, as illustrated in Fig. 1., the users must
establish links between input sequences and the samples
from which the sequences were derived. The Microbiome
Toolset and all other Genboree Workbench tools are
invoked with customizable default settings. The analysis
steps illustrated in Fig. 1 are seamlessly integrated in the

Microbiome Toolset pipeline and require no file format
conversions.

The inputs and outputs of specific analysis steps are
stored in Genboree Databases and Project pages.
Genboree Project pages are automatically generated by
the tools but may also be manually edited. Serving a role
similar to the role of pages in a paper-based lab-book,
Genboree Project pages include links and summaries of



Riehle et al. BVIC Bioinformatics 2012, 13(Suppl 13):511
http://www.biomedcentral.com/1471-2105/13/513/S11

previously run data sets, which include links to full
results, such as 2D and 3D beta diversity plots, groups of
alpha diversity plots, classification rates or relevant
OTUs for classification.

Results

We present two representative studies carried out using
the Genboree Microbiome Toolset. The two studies in
combination exercise all the steps outlined in Fig. 1.
The first study describes how a Microbiome Toolset
user may reproduce a previously reported analysis of
alpha diversity in obese and lean twins [25] by carrying
out analysis on publicly available data. The second study
describes how the Toolset was used in a recently pub-
lished study of the gut microbiota of children suffering
from irritable bowel syndrome [26].

Alpha diversity analysis using publicly available data

The Microbiome Toolset makes it easier to reproduce
published results from publicly available data and to
make new discoveries by performing meta-analyses of
integrated data sets. As a proof of this capability, we set
out to analyze data from a recently reported study of
core gut microbiomes in obese and lean twins [25].

Our search of the Sequence Read Archive at NCBI
using the query phrase ‘core gut microbiome in obese
and lean twins’ yielded data associated with the twin
study project SRP000319. We downloaded the experi-
mental data for the V6 16S rRNA primer region
(SRX001445), which contains 4 runs, 1.6M spots, and
205.6M bases. We were unable to obtain the MIDs from
the SRA experiment XML. We were therefore precluded
from de-multiplexing the original SFF files by the regular
method, but we were able to find a work-around to solve
this problem using de-multiplexed sequence data avail-
able on a supplemental data page from the Gordon Lab
[27]. The metadata obtained from this exercise was com-
piled for use on the Microbiome Toolset.

Alpha diversity analysis started with sequences for 10
obese and 10 lean twin individuals (a total of 100 sam-
ples). 5 samples were removed from the obese cohort
and 1 sample was removed from the lean cohort because
they had less than 1,000 sequences per sample, leaving us
with a total of 94 samples to evaluate alpha diversity. The
analysis revealed that lean samples have higher V6 16S
rRNA gene primer region alpha diversity both in terms
of species richness (Fig. 3) and Renyi profile (Fig. 4), con-
sistent with the original report by Turnbaugh, et al. [25].

A study of microbiota in children with irritable bowel
syndrome

Prior to this study [26], perturbations of the intestinal
microbiota between healthy children and children with
IBS were not well defined. The study therefore aimed to
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Figure 3 Species richness analysis for lean twin and obese twin
samples. Species richness comparison between lean twin (n=49) and
obese twin (n=45) samples. The lean twin cohort contains a higher
degree of species richness as compared to the obese twin cohort.

examine if any such perturbations could be detected. The
gastrointestinal microbiota was analyzed in 22 children
with IBS (69 samples) and 22 healthy children (71 sam-
ples) ages 7-12 for a total of 140 samples. The samples
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Figure 4 Renyi diversity profiles for lean twin and obese twin
samples. Renyi diversity profiles for lean twin (n=50) and obese
twin (n=50) samples. A non-intersecting line indicates that the
obese twin cohort has a lower diversity as compared to the lean
twin cohort.
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were analyzed for taxonomic abundance, beta diversity,
phylogenetic analysis, and classification by supervised
machine learning, as summarized in Fig. 1 and described
in previous sections.

Taxonomic abundance using the RDP pipeline

Stacked bar charts for the taxonomically binned abun-
dance data from the RDP pipeline (Fig. 5A) showed a
high amount of similarities between the IBS and healthy
gut microbiomes at the Order level. The majority of the
sequences (> 90%) from both pooled samples were classi-
fied as Bacteroidales and Clostridiales. The average
Bacteroides-to-Firmicutes ratio for the pooled IBS and
healthy pediatric stool samples (data not shown) was
similar to BMI averaged across individuals in a separate
gut microbiome study [28]. Upon removal of Bacteroi-
dales and Clostridiales from consideration, over-abun-
dance of Pasterurellales in the IBS dataset became
apparent (Fig. 5B).

Phylogenetic analysis

A phylogenetic tree (in Newick format) was produced by
invoking the QIIME pipeline tool in the Microbiome
Toolset, as described in previous sections. A visualization
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of the phylogenetic tree, along with the sample metadata
input (Fig. 6) was produced using the Interactive Tree of
Life (iTOL) [15] API from input generated by the Micro-
biome Toolset.

The phylogenetic tree (Fig. 6) does not visually reveal
differences in phylogeny by the grouping of colors based
on health within the inner ring, but it does shed some
light on the phylogenetic relationship of the combined
pediatric stool microbiome in terms of taxonomic mem-
bership (i.e. ratio of Bacteroidetes to Firmicutes) on the
outer ring.

Beta diversity analysis

Beta diversity analysis was based on 454 pyrosequencing
(V1-V3 region only, 2 replicates per samples). The Hel-
linger distance[29] was used to generate a matrix of
pairwise sample dissimilarities between communities; a
scatter plot (Fig. 7) was then generated from the matrix
of distances using Principal Coordinates Analysis. The
analysis yielded clustering corresponding to the IBS con-
stipation (IBS-C) and IBS unsubtyped (IBS-U) cohorts
when using the Hellinger distance metric. Although beta
diversity plots are useful in qualitatively evaluating com-
munity similarities and differences, to gain further
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Figure 5 Taxonomic abundance comparison between children with IBS and healthy children. The pediatric gut microbiomes of children
with IBS are characterized by greater abundance of Pasteurellales. Taxonomic classification was made using RDP classifier (Order) with 454
sequencing data. A) Percentage of all bacterial Orders represented. B) Percentage of bacterial taxa found in lower abundance (< 8% of total
bacteria). Healthy children include 29 samples from 22 subjects, IBS patients include 42 samples from 22 patients (V1-V3 region). #: Significantly
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insight by detecting the features most likely to have
caused the separation, we employed classification using
supervised machine learning and feature selection, as
discussed next.

Classification using supervised machine learning and
feature selection

RandomForest classification of the IBS-C and IBS-U sub-
types was achieved with up to 98.5% success rate. The
IBS-U group was distinguished by the presence and rela-
tive abundance of 70 OTUs, whereas the IBS-C group was
identified by the presence and relative abundance of 54
OTUs (data not shown). Most of the OTUs that facilitated
the classifications of these two IBS subtypes belong to the
genera or groups such as Bacteroides, Ruminococcus,
Lachnospiraceae Incertae Sedis, Veillonella, and Erysipelo-
trichaceae. We did not observe any extreme changes of
relative abundances from these species groups, suggesting
that the aggregate collections of species or strains (not

individual species or strains) are likely the source of the
high degree of classification.

Maximum abdominal pain levels were analyzed in
children with IBS and were classified by the maximum
pain levels during a 14-day period. High and medium
(HM) pain groups were classified by a maximum pain
level of 4 or more, whereas low and zero (LO) pain
groups represented a maximum pain level of 3 or less.
Abundance of taxa representing the lowest taxonomic
depth (Genus) that is labeled by RDP Classifier (at >
80% bootstrap cut off) was used for classification of the
two groups. As illustrated in Fig. 8, children within the
HM pain phenotype contained 4 OTUs within the fol-
lowing Genera: Bacteroides, Alistipes, and Lachonospira-
ceae Incertae Sedis.

Discussion
As demonstrated by the two key use case scenarios, the
Genboree Microbiome Toolset provides valuable insights
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taxonomic depth (Genus) that is labeled by RDP Classifier (at > 80% bootstrap cut off). The degree of abdominal pain was differentiated by the
maximum level of pain recorded during a 14-day period. Red rectangles display the HM (high- medium level) maximum abdominal pain
phenotype. Light blue rectangles display the LO (low-zero level) maximum abdominal pain phenotype. Boxes represent the first quartile, median,
and third quartile of the distribution of OTUs for each pain group. Empty circles represent outliers that are 1.5x greater than the respective
interquartile ranges. Shown are OTUs with increased levels of maximum pain in children with HM versus LO maximum abdominal pain
phenotypes.
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into microbiome diversity and identifies disease-associated
operational taxonomic units. The Toolset empowers
investigators (notably translational researchers) to carry
out a wide range of analyses including alpha diversity and
beta diversity, phylogenetic profile analysis, classification
by supervised machine learning, and feature selection.
By lowering the barrier to performing a comprehensive set
of microbiome analyses, the Toolset enables characteriza-
tion of microbiomes and the discovery of disease-asso-
ciated perturbations.

The Toolset is exposed using the Software-as-a-Service
model via the Genboree Workbench. In addition to inter-
active use, all the functionality of the Workbench is also
available programmatically using the Genboree REST
Application Programming Interfaces (REST APIs) for
web-based integration into project-specific pipelines. The
Microbiome Toolset therefore provides a web-based pro-
gramming environment for bioinformaticians in which to
conduct more advanced or custom microbiome analyses.

We foresee the Microbiome Integrated Toolset evol-
ving in multiple directions. First, based on user feedback
and progress in the field, we plan to extend and add
new pipelines for 16S rRNA genic analysis. Second, the
toolset will be extended to enable analyses based on
whole-metagenome sequencing. To achieve this aim and
accommodate rapidly increasing sequencing volumes,
the Genboree Workbench is designed to seamlessly
access cloud computing resources across the web.

Software availability and requirements

The Genboree Microbiome Toolset is part of the Gen-
boree Workbench and can be accessed at the address
http://genboree.org/java-bin/workbench.jsp. Supported
browsers are Internet Explorer versions 8 and above,
Mozilla Firefox versions 7 and above. A tutorial for the
Genboree Microbiome Toolset is available as Additional
File 1. Additional information can be found at the
address http://genboree.org/microbiome.

Additional material

Additional file 1: Tutorial for the Genboree Microbiome Toolset The
attached file contains a tutorial for the Genboree Microbiome Toolset.
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