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Abstract

We present the preparation, resources, results and analysis of three tasks of the BioNLP Shared Task 2011: the main
tasks on Infectious Diseases (ID) and Epigenetics and Post-translational Modifications (EPI), and the supporting task
on Entity Relations (REL). The two main tasks represent extensions of the event extraction model introduced in the
BioNLP Shared Task 2009 (ST'09) to two new areas of biomedical scientific literature, each motivated by the needs
of specific biocuration tasks. The ID task concerns the molecular mechanisms of infection, virulence and resistance,
focusing in particular on the functions of a class of signaling systems that are ubiquitous in bacteria. The EPI task is
dedicated to the extraction of statements regarding chemical modifications of DNA and proteins, with particular
emphasis on changes relating to the epigenetic control of gene expression. By contrast to these two application-
oriented main tasks, the REL task seeks to support extraction in general by separating challenges relating to part-of
relations into a subproblem that can be addressed by independent systems. Seven groups participated in each of
the two main tasks and four groups in the supporting task. The participating systems indicated advances in the
capability of event extraction methods and demonstrated generalization in many aspects: from abstracts to full
texts, from previously considered subdomains to new ones, and from the ST'09 extraction targets to other entities
and events. The highest performance achieved in the supporting task REL, 58% F-score, is broadly comparable with
levels reported for other relation extraction tasks. For the ID task, the highest-performing system achieved 56% F-
score, comparable to the state-of-the-art performance at the established ST'09 task. In the EPI task, the best result
was 53% F-score for the full set of extraction targets and 69% F-score for a reduced set of core extraction targets,
approaching a level of performance sufficient for user-facing applications. In this study, we extend on previously
reported results and perform further analyses of the outputs of the participating systems. We place specific
emphasis on aspects of system performance relating to real-world applicability, considering alternate evaluation
metrics and performing additional manual analysis of system outputs. We further demonstrate that the strengths of
extraction systems can be combined to improve on the performance achieved by any system in isolation. The
manually annotated corpora, supporting resources, and evaluation tools for all tasks are available from http://www.
bionlp-st.org and the tasks continue as open challenges for all interested parties.

Background

The biomedical scientific literature is growing at an
exponential rate, far outstripping the capacity of indivi-
dual researchers to fully process in any but the narrow-
est of subfields. To address the challenges of
information overload and to improve access to the
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wealth of knowledge in this literature, there have been
substantial efforts over the previous 15 years to develop
automatic methods for the analysis of medical and bio-
molecular scientific publications [1,2].

Much of this work has focused on information extrac-
tion (IE) and text mining, applying natural language
processing (NLP) methods to analyse domain texts,
extract structured, computer-readable representations of
key information, and compile extracted information into
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knowledge bases. Until recently, domain IE efforts con-
centrated primarily on foundational tasks, such as entity
mention detection, and on the extraction of simple
representations of entity associations, most typically the
detection of mentions of names of proteins and the
extraction of protein mention pairs representing pro-
tein-protein interactions.

However, in recent years there has been increasing
interest in the application of more expressive represen-
tations in domain IE to address the requirements of
tasks such as pathway curation, Gene Ontology term
annotation, and semantic literature search [3,4]. To sup-
port the development and evaluation of methods for
such tasks, a number of recently introduced corpus
resources have been manually annotated using event
representations that capture structured associations of
arbitrary numbers of participants in specific roles [5-10].
The community took a decisive step toward the intro-
duction of practical tools capable of extracting informa-
tion using such representations in the BioNLP Shared
Task 2009 (BioNLP ST’09) [11,51].

Shared tasks have been instrumental in the develop-
ment of general domain IE technology by introducing
new tasks, resources and evaluation standards [12,13].
Also in the biomedical domain, shared tasks such as
JNLPBA [14], LLL [15], TREC Genomics [16] and Bio-
Creative [17-19] have played a central role in focusing
the efforts of the community to new timely tasks and
challenges. The BioNLP ST’09, the first shared task in
its series, sought to advance the state of the art in struc-
tured event extraction by providing a shared task defini-
tion and annotated data as well as evaluation criteria
and tools for the task. The task met with enthusiastic
response from the community: 24 groups participated in
the task, proposing a variety of approaches for auto-
matic event extraction. Interest in event extraction con-
tinued past the original shared task, whose data and
setup have supported further advances in extraction
methods and the introduction of automatically anno-
tated literature-scale resources [20-26].

Although successful in introducing structured event
representations to the general community and promot-
ing the development of practically applicable methods
for event extraction, the resources of the BioNLP ST’09
were somewhat limited in their scope. The task data
was prepared on the basis of the GENIA corpus [6,27],
an annotated resource of publication abstracts in the
domain of transcription factors in human blood cells,
and the event types targeted in the task were chosen by
relevance to its topics. These limitations raised the ques-
tion whether the findings of the shared task and the
methods introduced to address the task can generalize
beyond this narrow domain. To address such questions,
generalization was chosen as the main theme of the
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second event in the series, the BioNLP Shared Task
2011 (BioNLP ST’11) [28]. This was emphasized in task
selection and design and data preparation, targeting new
domains, an extended set of extraction targets, and new
text types, including full-text articles.

In this paper, we present three of the eight tasks in
BioNLP ST’11, including two tasks that attracted the
widest participation among newly introduced main
tasks, EPI and ID. The Epigenetics and Post-transla-
tional Modifications (EPI) task focuses on events relat-
ing to epigenetic change and encompasses also common
protein post-translational modifications, reactions that
are critical for the control or gene expression and pro-
tein function. The Infectious Diseases (ID) task concerns
the biomolecular mechanisms of infection, virulence and
resistance, focusing in particular on the functions of a
class of signaling systems that are ubiquitous in bacteria
but as of yet incompletely understood. In addition to
these two main tasks, we introduce the Entity Relations
(REL) supporting task, which seeks to assist extraction
in general by separating challenges relating to part-of
relations into a subproblem that can be addressed by
independent systems whose analyses can then be used
to support the recognition of various event extraction
targets.

Each of these tasks follows the general design of the
BioNLP ST’09, providing participants with an extensive,
fully annotated corpus with manually curated examples
of the extraction targets for method development and
training, with evaluation of final submissions received
from participants against a separate held-out test set
prepared in similar fashion.

We extend on the EPI, ID and REL task results pre-
viously reported in the BioNLP Shared Task 2011 work-
shop proceedings [29-32] in particular in performing
further analyses of the outputs of the participating sys-
tems, placing specific emphasis on aspects of event
extraction system performance relating to real-world
applicability, considering alternate evaluation metrics
and performing additional manual analysis of system
outputs. We further demonstrate that the strengths of
extraction systems can be combined to improve on the
performance achieved by any system in isolation.

In the following, we first briefly motivate each of the
EPI, ID and REL tasks and introduce the task setting.
We then describe the task data annotation and evalua-
tion criteria before presenting the results of each task.
Finally, we present an extended analysis of the outputs
of the participating systems.

EPI task

The Epigenetics and Post-translational Modifications
(EPI) task is an information extraction task focusing on
events relating to epigenetic change, including DNA
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methylation and histone methylation and acetylation
(see e.g. [33,34]), as well as other common protein post-
translational modifications (PTMs) [35]. PTMs are che-
mical modifications of the amino acid residues of pro-
teins, and DNA methylation a parallel modification of
the nucleotides on DNA. While these modifications are
chemically simple reactions and can thus be straightfor-
wardly represented in full detail, they have a crucial role
in the regulation of gene expression and protein func-
tion: the modifications can alter the conformation of
DNA or proteins and thus control their ability to associ-
ate with other molecules, making PTMs key steps in
protein biosynthesis for introducing the full range of
protein functions. For instance, protein phosphorylation
- the attachment of phosphate - is a common mechan-
ism for activating or inactivating enzymes by altering
the conformation of protein active sites [36,37], and
protein ubiquitination - the post-translational attach-
ment of the small protein ubiquitin - is the first step of
a major mechanism for the destruction (breakdown) of
many proteins [38].

Many of the PTMs targeted in the EPI task involve
modification of histone, a core protein that forms an
octameric complex that has a crucial role in packaging
chromosomal DNA. The level of methylation and acety-
lation of histones controls the tightness of the chroma-
tin structure, and only “unwound” chromatin exposes
the gene packed around the histone core to the tran-
scriptional machinery. Since histone modification is of
substantial current interest in epigenetics, we designed
aspects of the EPI task to capture the full detail in
which histone modification events are stated in text.
Finally, the DNA methylation of gene regulatory ele-
ments controls the expression of the gene by altering
the affinity with which DNA-binding proteins (including
transcription factors) bind, and highly methylated genes
are not transcribed at all [39,40]. DNA methylation can
thus “switch off” genes in a way that is reversible
through DNA demethylation.

The specificity with which protein modifications can
be described in text makes them promising IE targets
(see Figure 1), and there have been many studies of
automatic extraction of PTMs from the scientific litera-
ture in support of modification database curation
[41-44]. However, these have generally targeted only sin-
gle PTM types such as phosphorylation or ubiquitina-
tion, frequently using highly customized rule-based
systems that are not readily adaptable to other extrac-
tion targets. The BioNLP ST’09 involved the extraction
of nine event types including one PTM type, PHOS-
PHORYLATION, which was found to be the single most
reliably extracted event type in the task, with the best-
performing system for the type achieving 83% F-score in
its extraction [45]. The results suggest both that the
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event representation is well applicable to PTM extrac-
tion and that current extraction methods are capable of
reliable PTM extraction. Many of the most successful
systems participating in the ST’09 further involved gen-
eral machine learning-based approaches, suggesting that
their scope could be extended to PTM extraction more
broadly. The EPI task follows up on these opportunities,
introducing specific, strongly biologically motivated
extraction targets that are expected to be both feasible
for high-accuracy event extraction, relevant to the needs
of present-day molecular biology, and closely applicable
to biomolecular database curation needs.

ID task

The Infectious Diseases (ID) task is an event extraction
task focusing on the biomolecular mechanisms of infec-
tious diseases. The task concentrates on the specific
domain of two-component systems (TCSs, or two-com-
ponent regulatory systems), a mechanism widely used by
bacteria to sense and respond to the environment [46].
Typical TCSs consist of two proteins, a membrane-asso-
ciated sensor kinase and a cytoplasmic response regula-
tor. The sensor kinase monitors changes in the
environment while the response regulator mediates an
adaptive response, usually through differential expres-
sion of target genes [47]. TCSs have many functions,
but those of particular interest for infectious disease
researchers include virulence, response to antibiotics,
quorum sensing, and bacterial cell attachment [48]. Not
all TCS functions are well known: in some cases, TCSs
are involved in metabolic processes that are difficult to
precisely characterize [49]. TCSs are of interest also as
drugs designed to disrupt TCSs may reduce the viru-
lence of bacteria without killing it, thus avoiding the
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potential selective pressure of antibiotics lethal to some
pathogenic bacteria [50]. Information extraction techni-
ques may support better understanding of these funda-
mental systems by identifying and structuring the
molecular processes underlying two component
signaling.

The ID task seeks to support efforts to build a sys-
temic understanding of the molecular-level pathways
relating to these mechanisms of infectious diseases by
adapting the BioNLP ST’09 event extraction model to
domain scientific publications. The adaptation of the
model originally introduced to represent biomolecular
events relating to transcription factors in human blood
cells to a domain that centrally concerns both bacteria
and their hosts involves a variety of novel challenges,
such as events concerning whole organisms, the chemi-
cal environment of bacteria, prokaryote-specific con-
cepts (e.g. regulons as units of gene regulation), as well
as the effects of biomolecules on larger-scale processes
involving hosts, such as virulence. In addition to sup-
porting an application of significant public health inter-
est, the ID task also provides opportunities to study the
ability of event extraction technology to generalize in a
number of aspects.

REL supporting task

The Entity Relations (REL) supporting task focuses on
the extraction of specific binary relations between biomo-
lecular entities. The motivation for the task draws in part
from analysis of the results of the BioNLP ST’09, which
suggested that events that involve coreference or entity
relations represent particular challenges for extraction
[51]. To help address these challenges and encourage
modular extraction approaches, increased sharing of suc-
cessful solutions, and an efficient division of labor, the
two were separated into independent supporting tasks on
Coreference (CO) [52,53] and Entity Relations [32] for
BioNLP ST’11. To allow participants in main tasks to
benefit from successful approaches to the supporting
tasks, the ST’11 was arranged in two distinct stages, with
supporting tasks carried out before the main tasks.

Methods

In this section, we introduce the general representation
of the IE tasks, the specific realization of this representa-
tion applied in each task, and the task evaluation
criteria.

Representation

While the EPI, ID and REL tasks differ substantially in
the specifics of their extraction targets, the three share
the same basic representation of extracted information,
an extension of the representation introduced for the
BioNLP ST’09 [11] and applied also in the ST’11 GE
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task [53,54]. In this section, we first present the shared
aspects of this event representation, in particular the
four annotation primitives entities, relations, events and
event modifications, briefly illustrate the format in which
these are stored in the task, and then describe the speci-
fic set of annotations involved in each of the tasks.
Entities

All of the tasks build on the basis of entity annotations,
which capture mentions of entities of interest in text
using a simple typed-span representation. Each entity
annotation consists of a type (e.g. PROTEIN) and a
(start, end) offset pair identifying the span of text con-
taining the entity mention. The entity annotations thus
mark contiguous sequences of characters. All entity
annotations further follow the constraint that no two
entities of the same type overlap in their spans, and that
the spans of no two overlapping annotations cross. By
contrast, entity annotation spans may be nested so that
one span completely contains another. Figure 2a shows
examples of entity annotation.

Entity mention detection and normalization are argu-
ably the most frequently studied IE-related tasks in the
domain, and the target of numerous previous and
ongoing shared tasks [14,55-58]. Further, a wealth of
systems addressing these tasks have been introduced (e.
g. [59-62]). To focus on the novel aspects of event
extraction, the BioNLP Shared Task series has adopted
the general policy of providing task participants with
manual “gold standard” annotation identifying the pri-
mary entities relevant to each task as a starting point for
extraction, thus isolating effects of entity mention detec-
tion from IE performance.

The three tasks presented in this paper share the defi-
nitions of two entity types, PROTEIN and ENTITY,
defined similarly as for the BioNLP ST 2009. Mentions
of specific names of genes and gene products are anno-
tated as PROTEIN in all tasks, with some task-specific
exceptions to the precise scope of the annotation (see
the sections on each task). Gold annotation for PRO-
TEIN entities is provided to participants in all tasks.
The generic type ENTITY, by contrast, is defined for
marking additional entity annotations generated by par-
ticipants, such as the specific protein domains or DNA
regions involved in modification or binding events.
Annotations of this type are only provided in training
data, and must thus be detected for test data by systems
addressing the full main tasks or the supporting task.
The non-specific type ENTITY is selected in part to
reduce the demands of this entity recognition compo-
nent of the tasks by removing the need to differentiate
between specific types.

Relations
Relations are typed binary associations of entities and
may be either directed or undirected. While relations
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are only a target of extraction in the REL task, all of the
three tasks involve a specific relation, EQUIV. This is a
binary, symmetric, transitive relation that defines two
entities to be equivalent [63]. The relation is used in the
gold annotation to mark local aliases such as the full
and abbreviated forms of a protein name as referring to
the same real-world entity. In evaluation, references to
any of a set of equivalent entities are treated identically.
Figure 2b shows examples of equiv annotation.

In addition to the general EQUIV relation, the REL
task defines directed part-of relations that are the targets
of extraction in the supporting task, introduced in the
section defining the task.

Events

Events are typed, n-ary associations of entities or other
events, each identified as participating in a specific
role. Events are bound to specific expressions in text
(the event trigger or text binding) and are primary
objects of annotation; that is, annotations may refer to
event annotations. Event triggers identify the word or
words stating the occurrence of the event in text. Like
entities, triggers are represented using a (start, end)
offset pair. Event types (e.g. BINDING, ACETYLA-
TION) are drawn from a fixed set separately defined
for each task. Each event typically takes one or more
arguments (participants in specific roles): for example,
an ACETYLATION event may be defined as requiring a
single Theme identifying the PROTEIN entity that is
acetylated. Events may involve other events as partici-
pants, thus creating complex event structures. For
example, a REGULATION event may have a BINDING
event as its Theme, thus specifying a compound

“regulation of binding” event. Figure 2c shows exam-
ples of event annotation.

The main tasks differ in the details of event argu-
ments, but share the definition of the basic core argu-
ment roles Theme and Cause as well as the additional
argument role Site. As the terms suggest, Theme identi-
fies the participant or participants that undergo the pri-
mary effects of the event, and Cause a participant that
causes the event to occur. Site identifies a specific part
of another participant that is involved in the event, such
as the modified residue in a PHOSPHORYLATION event.
Event arguments may be specified as being either man-
datory or optional, where mandatory arguments must be
identified for an event to be extracted. Events typically
take a mandatory Theme, reflecting a specificity con-
straint on the extracted information: while statements
regarding e.g. the phosphorylation of specific proteins
are targeted for extraction, statements regarding phos-
phorylation in general are not.

The event arguments vary by event type and task, and
the specification of event types and arguments largely
defines the differences between the different main tasks
of the BioNLP ST’11.

Event modifications

Event modification annotations are used to specify
further aspects of event statements beyond the core pro-
positional content, for example identifying an event as
being negated. Event modifications are represented as
simple binary “flags” attached to events. Both of the
main event extraction tasks EPI and ID follow the
BioNLP ST’09 setting in defining two event modification
extraction targets: NEGATION and SPECULATION. The
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former marks an event as being explicitly negated (e.g.
H2A is not methylated) and the latter as stated in a
speculative context (e.g. H2A may be methylated). An
event may be simultaneously marked as both negated
and speculated (e.g. H2A may not be methylated).
Unlike in the representation used for events and the
cue-scope model applied for negation and speculation
annotation in e.g. the BioScope corpus and the CoNLL
2010 shared task [64,65], no “trigger expressions” are
marked for event modifications.

Format

The above presentation of the represented information
content abstracts away the specific file format in which
this information is stored in the task. While secondary
to this information content, the specifics of the format
may be of interest for assessing the technical require-
ments of the task; we thus include in Figure 3 an illus-
tration of the applied file format. In brief, this is a
standoff annotation format in which all references to the
text are stored as offsets. Each annotation is given an ID
that is used to refer to that annotation, and the ID
assignment follows a simple scheme to assist identifying
entity types (e.g. IDs beginning with “E” for events). For
a detailed description of the format, we refer to the
BioNLP ST’09 overview [51].

EPI task setting

The EPI task focuses on the extraction of information
on statements regarding change in the chemical modifi-
cation state of proteins and DNA. The task involves the
two generally applied entity types PROTEIN and
ENTITY, where annotations of the PROTEIN type are
provided as part of the input. By contrast to its standard
entity definition, the EPI task introduces considerable
novelty in the targeted events, involving a total of 14
event types and two participant roles not considered in
other BioNLP ST’11 tasks. Table 1 summarizes the tar-
geted event types and their arguments. In addition to

T M T e S
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& by Mle. [...]
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Figure 3 lllustration of file format for a simple event structure.
"TID" abbreviates for “trigger ID".
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the standard Theme, Cause and Site, EPI defines the
task-specific arguments Sidechain and Contextgene.

Sidechain, specific to GLYCOSYLATION and DEGLY-
COSYLATION among the targeted events, identifies the
moiety attached or removed in the event (in glycosyla-
tion, the sugar). Note that while arguments similar to
Sidechain could be defined for other event types also,
their extraction would provide no additional informa-
tion: the attached molecule is always acetyl in acetyla-
tion, methyl in methylation, etc. Contextgene, specific to
ACETYLATION and METHYLATION events and their
reverse reactions, identifies the gene whose expression is
controlled by these modifications. This argument applies
specifically for histone protein modification: the modifi-
cation of the histones that form the nucleosomes that
structure DNA are key to the epigenetic control of the
expression of the genes encoded in that segment of
DNA. Theme is required for all events in the EPI task,
but the Site, Sidechain and Contextgene arguments are
not mandatory, and should only be extracted when
explicitly stated. For CATALYSIS events, representing
the catalysis of protein or DNA modification by another
protein, both Theme and Cause are mandatory. Figure 4
illustrates some of the EPI task extraction targets.

While the EPI task setting has few extraction targets
in common with the BioNLP ST’09 and the ST’11 GE
task, its entity types follow the same scheme as these
tasks and the general definition aims to preserve com-
patibility with their setting. The basic modification
events in EPI are defined similarly to the PHOSPHORY -
LATION event type targeted in ST’09, and while CATA-
LYSIS is a new event type, it is related to the ST’09
POSITIVE REGULATION type by a class-subclass rela-
tion: any CATALYSIS event is a POSITIVE REGULA-
TION event in the ST’09 task terms (but not vice versa).

As described in the section on representation, the EPI
task targets also the two event modifications NEGATION
and SPECULATION, and involves EQUIV relations in its
evaluation. The task extraction targets do not include
any relations.

ID task setting

The ID task concerns the molecular mechanisms of
infectious diseases, which involve various associations
between multiple types of molecular entities, disease-
causing microorganisms and other organisms under-
going the diseases. To support the extraction of infor-
mation from domain publications, the task extends
the basic entity types with multiple new categories.
The ID event types extend on those defined in the
BioNLP ST’09, broadening the scope of previously
defined entities to encompass the new entity types
and introducing a new class of events, high-level bio-
logical processes.
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Table 1 EPI event types and their arguments

Type Core arguments Additional arguments
HYDROXYLATION Theme(PROTEIN) Site(ENTITY)

DEHYDROXYLATION Theme(PROTEIN) Site(ENTITY)

PHOSPHORYLATION Theme(PROTEIN) Site(ENTITY)
DEPHOSPHORYLATION Theme(PROTEIN) Site(ENTITY)

UBIQUITINATION Theme(PROTEIN) Site(ENTITY)
DEUBIQUITINATION Theme(PROTEIN) Site(ENTITY)

DNA METHYLATION Theme(PROTEIN) Site(ENTITY)

DNA DEMETHYLATION Theme(PROTEIN) Site(ENTITY)

GLYCOSYLATION Theme(PROTEIN) Site(ENTITY), Sidechain(ENTITY)
DEGLYCOSYLATION Theme(PROTEIN) Site(ENTITY), Sidechain(ENTITY)
ACETYLATION Theme(PROTEIN) Site(ENTITY), Contextgene(PROTEIN)
DEACETYLATION Theme(PROTEIN) Site(ENTITY), Contextgene(PROTEIN)
METHYLATION Theme(PROTEIN) Site(ENTITY), Contextgene(PROTEIN)
DEMETHYLATION Theme(PROTEIN) Site(ENTITY), Contextgene(PROTEIN)
CATALYSIS Theme(Event), Cause(PROTEIN)

The type of entity allowed as argument is specified in parenthesis.

In addition to PROTEIN, the ID task defines four
additional types of core entities: TWO- COMPONENT -
SYSTEM, REGULON-OPERON, CHEMICAL and ORGAN-
ISM. As in the other tasks, mentions of names of genes
and their products (RNA and proteins) are annotated
with the PROTEIN type. Two-component systems, con-
sisting of two proteins, frequently have names derived
from the names of the proteins involved (e.g. PhoP-
PhoR or SsrA/SsrB). Mentions of TCSs are annotated as
TWO-COMPONENT -SYSTEM, nesting PROTEIN annota-
tions if present. Regulons and operons are collections of
genes whose expression is jointly regulated. Like the
names of TCSs, their names may derive from the names
of the involved genes and proteins, and are annotated as
embedding PROTEIN annotations when they do. The
annotation does not differentiate between the two,
marking both with a single type REGULON-OPERON.

In addition to these three classes relating to genes and
proteins, the core entity annotation recognizes the
classes CHEMICAL and ORGANISM. All mentions of
formal and informal names of atoms, inorganic com-
pounds, carbohydrates and lipids as well as organic
compounds other than amino acid and nucleic acid
compounds (i.e. gene/protein-related compounds) are
annotated as CHEMICAL. Mentions of names of
families, genera, species and strains, as well as non-
name references with comparable specificity are

annotated as ORGANISM. The recognition of these core
entities is not part of the ID task: gold annotation for
these entities is provided to participants also for test
data. As in the other tasks, the non-specific type
ENTITY is defined for marking entities that specify
additional details of events, ENTITY annotations are not
provided for test data and must be detected by partici-
pants addressing the full task.

The primary extraction targets of the ID task are the
event types summarized in Table 2. These are a superset
of those targeted in the BioNLP ST’09 and the ST’11 GE
task [54]. This design makes it possible to study aspects
of domain adaptation by having the same extraction tar-
gets in two subdomains of biomedicine, that of tran-
scription factors in human blood cells (GE) and
infectious diseases. The events in the ID task extend on
those of GE in the inclusion of additional entity types as
participants in previously considered event types and
the introduction of the new PROCESS type. The seman-
tics of these events are defined (as in GE) with reference
to the community-standard Gene Ontology [66]. We
refer to [6,11] for the ST’09/GE definitions.

The definitions of the first four types in Table 2 are
otherwise unchanged from the ST’09 definitions except
that GENE EXPRESSION and TRANSCRIPTION extend
on the former definition in recognizing REGULON -
OPERON as an alternative unit of expression.

Them
éThmu Hydroxylation
[Proteim) "™ ~{Hydroxylationy” """ Entlt)‘l

[Entity) \Glycosylation} >"“ ~*[Entity)

PTMs identified in adiponectin include hydroxylation of proline and lysine and glycosylation of hydroxylysines.,

Figure 4 Example EPI event annotation. Three stated post-translational modifications of adiponectin are captured through three events, two
of which differ only in their Site arguments. (Simplied from PMID 16497731).




Pyysalo et al. BMC Bioinformatics 2012, 13(Suppl 11):52
http://www.biomedcentral.com/1471-2105/13/511/S2

Table 2 ID event types and their arguments
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Type Core arguments Additional arguments

GENE EXPRESSION Theme(PROTEIN or REGULON-OPERON)

TRANSCRIPTION Theme(PROTEIN or REGULON-OPERON)

PROTEIN CATABOLISM Theme(PROTEIN)

PHOSPHORYLATION Theme(PROTEIN) Site(ENTITY)

LOCALIZATION Theme(Core entity) AtLoc(ENTITY), ToLoc(ENTITY)
BINDING Theme(Core entity)+ Site(ENTITY)+

PROCESS Participant(Core entity)?

REGULATION Theme(Core entity/Event), Cause(Core entity/Event)? Site(ENTITY), CSite(ENTITY)

POSITIVE REGULATION
NEGATIVE REGULATION

Theme(Core entity/Event), Cause(Core entity/Event)?
Theme(Core entity/Event), Cause(Core entity/Event)?

Site(ENTITY), CSite(ENTITY)
Site(ENTITY), CSite(ENTITY)

The type of entity allowed as argument is specified in parenthesis. “Core entity” is any of PROTEIN, TWO- COMPONENT - SYSTEM, REGULON-OPERON, CHEMICAL,
or ORGANISM. Arguments that can be filled multiple times marked with “+”, non-mandatory core arguments with “?” (all additional arguments are non-

mandatory).

LOCALIZATION, taking only PROTEIN type arguments
in the ST’09 definition, is allowed to take any core entity
argument. This expanded definition remains consistent
with the scope of the corresponding GO term
(GO:0051179). BINDING is similarly extended, giving it
a scope largely consistent with GO:0005488 (binding)
but also encompassing GO:0007155 (cell adhesion) (e.g.
a bacterium binding another) and protein-organism
binding. The three regulation types (REGULATION,
POSITIVE REGULATION, and NEGATIVE REGULA-
TION) likewise allow the new core entity types as argu-
ments, but their definitions are otherwise unchanged
from those in ST’09, that is, the GENIA ontology defini-
tions. As in these resources, regulation types are used
not only for the biological sense but also to capture
statements of general causality [6]. As in ST’09, all
events of types discussed above require a Theme argu-
ment: only events involving an explicitly stated theme
(of an appropriate type) should be extracted. All other
arguments are optional.

The PROCESS type, new to ID, is used to annotate
high-level processes such as virulence, infection and
resistance that involve infectious organisms. This type
differs from the others in that it has no mandatory argu-
ments: the targeted processes should be extracted even
if they have no explicitly stated participants, reflecting
that they are of interest even without the further specifi-
cation. When stated, the involved participants are cap-
tured using the generic role type Participant. Figure 5
shows an illustration of some of the ID task extraction
targets.

We term the first five event types in Table 2 taking
exactly one Theme argument as their core argument
simple events. In analysis we further differentiate non-
regulation events (the first seven) and regulation (the
last three). The latter category is known to represent
particular challenges for extraction in involving nested
event structures where events take events as arguments.

The ID task event modifications and relations are
defined similarly as for GE and EPI: the two modifica-
tions NEGATION and SPECULATION are targeted for
extraction in the full task, and EQUIV relations are used
in evaluation, but no relations are included among
extraction targets.

REL task setting

The REL task aims to support the main event extraction
tasks by isolating the recognition of entity relations as
an independent subtask whose results can be used to
resolve event structures. Following the results and analy-
sis from previous studies [67,68], in the design of the
REL task we chose to limit the task specifically to rela-
tions involving a gene/protein named entity (NE) and
one other entity. Fixing one entity involved in each rela-
tion to an NE helps assure that the relations are
“anchored” to real-world entities, and the specific choice
of the gene/protein NE class further provides a category
with several existing systems and substantial ongoing
efforts addressing the identification of those referents
through named entity recognition and normalization.

The recognition of biologically relevant associations of
gene/protein NEs is a key focus of the main event
extraction tasks of the shared task. As marking identify-
ing mentions of these entities (PROTEIN annotations)
are further included as part of the input of the main
tasks, the availability of these annotations could be
assumed also in the REL task without introducing addi-
tional requirements on the task input. However, in the

TWo-comp-sys —Cau

“ause-
Prot, “\{Positive regulation)” "o *[Progess)— APt —*Grganism

SalK/SalR, aTCS,is essential for full virulence of Streptococcus suis Serotype 2.

Figure 5 Example ID event annotation. The association of a TCS
with an organism is captured through an event structure involving
a PROCESS ('virulence”) and POSITIVE REGULATION. Regulation
types are used to capture also statements of general causality such
as “is essential for" here. (Simplified from PMC ID 2358977).
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REL task setting, only one participant in each binary
relation is a gene/protein NE, while the other can be
either a non-name reference such as promoter or the
name of an entity not of the gene/protein type (e.g. a
protein complex). Motivated in part by the design goal
to avoid introducing additional assumptions on input
and the relatively limited number of existing methods
for the detection of such entity references, their detec-
tion is included in the task: participants must recognize
these secondary entities in addition to extracting the
relations they participate in. These entities are assigned
the generic type ENTITY.

The general task setting encompasses a rich set of
potential relation extraction targets. For REL, we aimed
to select relations that minimize overlap between the
targets of other BioNLP ST’11 tasks while maintaining
relevance as a supporting goal. As the main tasks pri-
marily target events ("things that happen”) involving
change in entities, we chose to focus in the REL task on
what we have previously termed “static relations” [67],
that is, relations such as part-of that hold between enti-
ties without necessary implication of causality or change.
A previous study further indicated that this class of rela-
tions may benefit event extraction [69]. We based our
choice of specific target relations on previous studies of
entity relations domain texts [67,68], which indicated
that part-whole relations are by far the most frequent
class of relevant relations for the task setting and pro-
posed a classification of these relations for biomedical
entities. We further found that - in terms of the taxon-
omy of Winston et al. [70] - object-component and col-
lection-member relations account for the great majority
of part-of relations relevant to the domain. For REL, we
chose to omit collection-member relations in part to
minimize overlap with the targets of the coreference
task. Instead, we focused on two specific types of object-
component relations, that holding between a gene or
protein and its part (domains, regions, promoters,
amino acids, etc.) and that between a protein and a
complex that it is a subunit of. Following the biological
motivation and the general practice in the shared task
to term genes and gene products PROTEIN for simpli-
city, we named these two relations PROTEIN-COMPO-
NENT and SUBUNIT-COMPLEX. Figure 6 shows an
illustration of a simple relation with an associated event
(not part of REL). Events with Site arguments such as
that shown in the figure are targeted in the GE, EPI,
and ID tasks that REL is intended to support.

Corpora

Each of the three tasks makes use of manual annota-
tions created specifically for the shared task, either
entirely or in primary part. This section presents the
three corpus resources on which these tasks are based.
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| “Site > Entity]* PCo\Protein)
r——A—\-

—_—

'Methylation of lysine 9 on histone H3.

Figure 6 Example REL relation annotation. Simple REL
annotation example showing a PROTEIN-COMPONENT (PR-CO)
relation between “histone H3" and “lysine 9". An associated
METHYLATION event and its arguments (shaded, not part of the

REL task targets) shown for context.

EPI corpus

The primary EPI task data were annotated specifically
for the BioNLP Shared Task 2011 and are not based on
any previously released resource. Before starting this
annotation effort, we performed two preparatory studies
using related, previously released datasets: one consider-
ing the extraction of four protein post-translational
modification event types [8], with reference to annota-
tions originally created for the Protein Information
Resource (PIR) [71,72], and one studying the annotation
and extraction of DNA methylation events [10], with
reference to annotations created for the PubMeth
[73,74] database. The EPI corpus text selection and
annotation scheme were then defined following the
understanding formed in these studies.

EPI document selection

The texts for the EPI task corpus were drawn from
PubMed abstracts. In selecting the primary corpus texts,
we aimed to gather a representative sample of all
PubMed documents relevant to selected modification
events, avoiding bias toward, for example, specific
genes/proteins, species, forms of event expression, or
subdomains. We primarily targeted DNA methylation
and the “prominent PTM types” identified in [8]. We
defined the following document selection protocol: for
each of the targeted event types,

1. Select a random sample of PubMed abstracts
annotated with the MeSH term corresponding to the
target event (e.g. Acetylation)

2. Automatically tag protein/gene entity mentions in
the selected abstracts, removing abstracts where
fewer than a specific cutoff are found

3. Perform manual filtering removing documents not
relevant to the targeted topic (optional).

MeSH is a controlled vocabulary of over 25,000 terms
that is used to manually annotate each document in
PubMed. By performing initial document retrieval using
MeSH terms it is possible to select relevant documents
without bias toward specific expressions in text. While
search for documents tagged with e.g. the Acetyla-
tion MeSH term is sufficient to select documents
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relevant to the modification, not all such documents
necessarily concern specifically protein modification,
necessitating a filtering step. Following preliminary
experiments, we chose to apply the BANNER named
entity tagger [59] trained on the GENETAG corpus [75]
and to filter documents where fewer than five entities
were identified. Finally, for some modification types this
protocol selected also a substantial number of non-rele-
vant documents. In these cases a manual filtering step
was performed prior to full annotation to avoid creating
detailed annotation for large numbers of non-relevant
abstracts.

This primary corpus text selection protocol does not
explicitly target reverse reactions such as deacetylation,
and the total number of these events in the resulting
corpus was low for many types. To be able to measure
the extraction performance for these types, we defined a
secondary selection protocol that augmented the pri-
mary protocol with a regular expression-based filter
removing documents that did not (likely) contain men-
tions of reverse reactions. This protocol was used to
select a secondary set of test abstracts enriched in men-
tions of reverse reactions. Performance on this second-
ary test set was also evaluated, but is not part of the
primary task evaluation. Results on the secondary test
set are reported to provide additional perspective the
performance of systems at the EPI task.

EPI annotation

Annotation was performed manually. The gene/protein
entities automatically detected in the document selec-
tion step were provided to annotators for reference for
creating PROTEIN annotations, but all entity annota-
tions were checked and revised to conform to the speci-
fic guidelines for the task (Due to differences in
annotation criteria [76], substantial annotation was
required). For the annotation of PROTEIN entities, we
adopted the GENIA gene/gene product (GGP) annota-
tion guidelines [77], adding one specific exception: while
the primary guidelines require that only specific indivi-
dual gene or gene product names are annotated, we
allowed also the annotation of mentions of histone pro-
tein families or the entire histone superfamily to capture
histone modification events also in cases where only the
family is mentioned.

All event annotations were created from scratch with-
out automatic support to avoid bias toward specific
automatic extraction methods or approaches. The event
annotation follows the GENIA event corpus annotation
guidelines [78] as they apply to protein modifications,
with CATALYSIS being annotated following the criteria
for the POSITIVE REGULATION event type, with the
additional constraints that the Cause of the event is a
PROTEIN entity and the form of regulation is catalysis
of a modification reaction. The manual annotation was
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performed by three experienced annotators with a mole-
cular biology background. Annotator training and the
overall annotation process was organized and supervised
by an annotator with extensive experience in domain
event annotation (TO).

After completion of primary annotation, we performed
a final check targeting simple human errors using an
automatic extraction system as follows: High-confidence
system predictions differing from gold annotations were
provided to a human annotator for re-evaluation (not
used directly to change corpus data). To further reduce
the risk of bias, we only informed the annotator of the
entities involved, not of the predicted event structure.
This correction process resulted in the revision of
approximately 2% of the event annotations. To evaluate
the consistency of the annotation, we performed inde-
pendent event annotation (taking PROTEIN annotations
as given) for a random sample of 10% of the corpus
documents. Comparison of the two manually created
sets of event annotations under the primary task evalua-
tion criteria gave an F-score of 82% for the full task and
89% for the core task (due to symmetry of precision/
recall and the applied criteria, this score was not
affected by the choice of which set of annotations to
consider as “gold” for the comparison). We found that
CATALYSIS events were particularly challenging, show-
ing just 65% agreement for the core task.

Table 3 shows the statistics of the primary EPI task
data. We note that while the corpus is broadly compar-
able in size to the BioNLP ST’09 dataset [11] in terms
of the number of abstracts and annotated entities, the
number of annotated events in the EPI corpus is
approximately 20% of that in the ST’09 dataset, reflect-
ing the more focused event types.

ID corpus

The ID task data were newly annotated for the BioNLP
Shared Task and are not based on any previously
released resource. Annotation was performed by two
teams, one in Tsujii laboratory (University of Tokyo)
and one in Virginia Bioinformatics Institute (Virginia
Tech). The entity and event annotation design was
guided by previous studies on NER and event extraction
in a closely related domain [79,80].

Table 3 Statistics of the EPI corpus

Item Train Devel Test Total
Abstract 600 200 400 1,200
Word 127,312 43,497 82,819 253,628
Protein 7,595 2,499 5,096 15,190
Event 1,852 601 1,261 3,714
Modification 173 79 117 369

Test set statistics shown only for the primary test data.
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ID document selection

The training and test data were drawn from the primary
text content of recent full-text PMC open access docu-
ments selected by infectious diseases domain experts
(Virginia Tech team) as representative publications on
two-component regulatory systems. Table 4 presents
some characteristics of the corpus composition. To
focus efforts on natural language text likely to express
novel information, we excluded tables, figures and their
captions, as well as methods sections, acknowledgments,
authors’ contributions, and similar meta-content.

ID annotation

Annotation was performed in two primary stages, one
for marking core entities and the other for events and
secondary entities. As a preliminary processing step,
initial sentence segmentation was performed with the
GENIA Sentence Splitter [81]. Segmentation errors were
corrected during core entity annotation.

Core entity annotation was performed from the basis
of an automatic annotation created using selected exist-
ing taggers for the target entities. The following tools
and settings were adopted, with parameters tuned on
initial annotation for two documents:

PROTEIN: NeMine [82] trained on the JNLPBA data
[14] with threshold 0.05, filtered to only GENE and
Protein types.

ORGANISM: Linnaeus [83] with “variant matching” for
species names variants.

CHEMICAL: OSCAR3 [84] with confidence 90%.

TWO-COMPONENT-SYSTEM: Custom regular
expressions.

Initial automatic tagging was not applied for entities of
the REGULON-OPERON type or the generic ENTITY
type (for additional event arguments). All automatically
generated annotations were at least confirmed through
manual inspection, and the majority of the automatic
annotations were revised in manual annotation. Table 5
summarizes the tagging performance of the automatic
tools as measured against the final human-annotated
training and development datasets. It should be noted
that these results are low in part due to differences in

Table 4 ID corpus composition

Journal # Published
PLoS Pathogens 9 2006-2010
PLOS One 7 2008-2010
BMC Genomics 3 2008-2010
PLoS Genetics 2 2007-2010
Open Microbiology J. 2 2008-2010
BMC Microbiology 2 2008-2009
Other 5 2007-2008

Journals in which selected articles were published with number of articles (#)
and publication years.
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Table 5 Automatic tagging performance for ID core
entities

Entity type prec. rec. F

PROTEIN 54.64 39.64 4595
CHEMICAL 3224 19.05 23.95
ORGANISM 90.38 4770 62.44
TWO-COMPONENT-SYSTEM 87.69 47.24 6140

annotation criteria (see e.g. [76]) and to data tagged
using the ID task annotation guidelines not being
applied for training; training on the newly annotated
data is expected to allow notably more accurate tagging.
Annotation for the task extraction targets - events and
event modifications - was created entirely manually
without automatic annotation support to avoid any pos-
sible bias toward specific extraction methods or
approaches. The Tsujii laboratory team organized the
annotation effort, with a coordinating annotator with
extensive experience in event annotation leading annota-
tor training and annotation scheme development, simi-
larly as for the EPI corpus annotation. Detailed
annotation guidelines [85] extending on the GENIA
annotation guidelines [78] were developed jointly with
all annotators and refined throughout the annotation
effort. Based on measurements of inter-annotator con-
sistency between annotations independently created by
the two teams, made throughout annotator training and
primary annotation (excluding final corpus cleanup), we
estimate the consistency of the final entity annotation to
be no lower than 90% F-score and that of the event
annotation to be no lower than 75% F-score for the pri-
mary evaluation criteria (see the section on Evaluation).
ID datasets and statistics
Initial annotation was produced for the selected sections
in 33 full-text articles, of which 30 were selected for the
final dataset as representative of the extraction targets.
These documents were split into training, development
and test sets of 15, 5 and 10 documents, respectively.
Participants were provided with all training and develop-
ment set annotations and test set core entity annota-
tions. The overall statistics of the datasets are given in
Table 6.

Table 6 Statistics of the ID corpus

Item Train Devel Test Total
Article 15 5 10 30
Sentence 2,484 709 1,925 5118
Word 74,439 21,225 57,489 153,153
Core entity 6,525 1,976 4,239 12,740
Event 2,088 691 1,371 4,150
Modification 95 45 74 214
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As the corpus consists of full-text documents, it con-
tains a somewhat limited number of articles, but in
other terms it is of broadly comparable size to the lar-
gest of the BioNLP ST corpora: the corpus word count,
for example, corresponds to that of a corpus of approxi-
mately 800 PubMed abstracts, and the core entity count
is comparable to that in the ST’09 data. However, for
reasons that may relate in part to the domain, the event
count is approximately a third of that for the ST’09
data. In addition to having less training data, the entity/
event ratio is thus considerably higher (i.e. there are
more candidates for each true target), suggesting that
the ID data could be expected to provide a more chal-
lenging extraction task.

REL corpus

The REL task dataset consists of new annotations for
the GENIA corpus [6], building on the existing biomedi-
cal term annotation [27], the gene and gene product
name annotation [77] and the syntactic annotation [86]
of the corpus. The general features of the annotation
are presented in [67], describing a previous release of a
subset of the data. The REL task annotation effort
extended the coverage of the previously released annota-
tion to all relations of the targeted types stated within
sentence scope in the GENIA corpus.

For compatibility with the ST’09 and the ST’11 GE
task, the REL task training/development/test set division
of the GENIA corpus abstracts matches that of the
ST’09 data. The statistics of the corpus are presented in
Table 7. We note that both in terms of training exam-
ples and the data available in the given development set,
the number of examples of the PROTEIN-COMPONENT
relation is more than twice that for SUBUNIT-COM-
PLEX. Thus, at least for methods based on machine
learning, we might generally expect to find higher
extraction performance for the former relation.

Evaluation

Evaluation for all tasks is based on comparison of sub-
missions from participants against gold standard data
prepared in advance for each task. Performance mea-
surement is instance-oriented - that is, each individual
annotation (event or relation) is considered separately -
and based on the standard precision, recall and F-score

Table 7 Statistics of the REL corpus

Item Train  Devel Test Total
Abstract 800 150 260 1,210
Word 176,146 33827 57256 267,229
Protein 9,297 2,080 3,589 14,966
Relation 1,857 480 497 2,834

PROTEIN-COMPONENT 1,302 314 334 1,950

SUBUNIT-COMPLEX 555 166 163 884
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metrics. Specifically, F;, the harmonic mean of precision
and recall, is used to combine precision and recall and
used as the primary ranking criterion in all tasks. The
F; score is referred to as F-score for short throughout.

The primary evaluation criteria for determining
whether a predicted event matches a gold event in the
EPI and ID tasks are the same as in the BioNLP ST’09
and the GE task. These criteria relax exact matching in
two aspects, incorporating approximate span matching
and approximate recursive matching. Under approximate
span matching, text-bound annotations (event triggers
and ENTITY type entities) in a submission are consid-
ered to match a corresponding gold annotation if their
span is contained within the expansion of the gold span
by one word to both the left and the right. Under
approximate recursive matching, events that refer to
other events as arguments are considered to match if
the Theme arguments of the recursively referred events
match, that is, non-Theme arguments are ignored for
recursively referred events. For an extended discussion
of these evaluation criteria, we refer to their definition
in the BioNLP ST’09 overview [11].

In addition to the primary evaluation criteria, we con-
sider a new relaxed event evaluation criterion that we
term single partial penalty. Under the primary criteria,
when a predicted event matches a gold event in some of
its arguments but lacks one or more arguments of the
gold event, the submission is arguably given a double
penalty: the predicted event is counted as a false positive
(FP), and the gold event is counted as a false negative
(FN). Under the single partial penalty evaluation criter-
ion, predicted events that match a gold event in all their
arguments but do not contain all the arguments of the
gold event are not counted as FP, although the corre-
sponding gold event still counts as FN (the “single pen-
alty”). Analogously, gold events that partially match a
predicted event are not counted as FN, although the
corresponding predicted event with “extra” arguments
counts as FP. This criterion is intended to provide a
more nuanced view of performance for partially cor-
rectly predicted events.

The full ID and EPI tasks involve many partially inde-
pendent challenges, requiring the extraction of all event
arguments (both core and additional) as well as the
detection of event modifications (NEGATION and
SPECULATION). These aspects of event extraction are
treated as separate subtasks in the BioNLP ST’09 and
the GE task, where the identification of additional event
arguments is subtask 2 and the detection of negated and
speculated events subtask 3. While explicit subtasks are
not defined for ID and EPI, both tasks specify in addi-
tion to the full task targets also minimal core extraction
targets, consisting of events with only their core argu-
ments and excluding event modifications. Results are
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then reported for each submission separately for evalua-
tion against the full gold standard data (full task) and
for evaluation where both the gold standard data and
the submission events are reduced to only core argu-
ments, event modifications are removed, and resulting
duplicate events removed (core task). In terms of the
subtask structure of the BioNLP ST’09 and the GE task,
the core task is analogous to subtask 1 and the full task
analogous to the combination of subtasks 1-3.

The evaluation of the REL task relations parallels the
criteria for event evaluation in the main tasks. The REL
task also relaxes the equality criteria for matching text-
bound annotations: for a submission entity to match an
entity in the gold reference annotation, it is sufficient
that the span of the submitted entity (i.e. its start and
end positions in text) is entirely contained within the
span of the gold annotation. This corresponds largely to
the approximate span matching criterion for events,
although the REL criterion is slightly stricter in not
involving testing against an extension of the gold entity
span. Relation matching is exact: for a submitted rela-
tion to match a gold one, both its type and the related
entities must match.

The statistical significance of the differences in system
performance is evaluated using the approximate rando-
mization method with 9,999 repetitions [87,88].

Results
Participation
Final results to each of the EPI and ID main tasks were
successfully submitted by seven participants and results
for the REL supporting task by four participants.

Table 8 summarizes the groups participating in one or
more of these tasks, and Table 9 the features of the
event and relation extraction systems. We note that,

Table 8 Teams, ranks and system descriptions
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similarly to the ST’09 task, machine learning-based sys-
tems remain dominant overall, although there is consid-
erable divergence in the specific methods applied. In
addition to domain mainstays such as support vector
machines and maximum entropy models, we find
increased application of joint models [89-91] as opposed
to pure pipeline systems [92-94]. Remarkably, the appli-
cation of full parsing is adopted in all systems and the
use of dependency-based representations of syntactic
analyses in all but one. Further, there is significant uni-
formity in the specific choice of tools for syntactic ana-
lysis: the parser of Charniak and Johnson [95] with the
biomedical domain model of McClosky [96] and conver-
sion into the Stanford Dependency representation [97]
is applied in six out of nine event extraction systems
and all but one relation extraction system. These choices
may be motivated in part by the success of systems
using the tools in the previous shared task and the avail-
ability of the analyses as supporting resources [98].
Several participants compiled dictionaries of event
trigger words and two dictionaries of hedge words from
the data. The use of dictionary-based approaches instead
of machine learning for these components may reflect
challenges in training with the trigger and hedge anno-
tations. Trigger annotation is not exhaustive as triggers
are not included in gold data e.g. for event statements
where the participants fall out of scope of the entity
annotation, and negation and speculation are annotated
without specific trigger/cue words, precluding direct
training for modifier cue detection. Despite the exis-
tence of rich lexical resources in the domain, only two
groups applied databases such as UMLS in their sys-
tems. The results indicate that such resources are not
critical for success at the task, a somewhat surprising
result that may merit further investigation. In addition

Team Tasks (rank) Organization System descriptions
FAUST EPI (2), ID (1) 3 NLP researchers Riedel et al. [90], McClosky et al. [108]
UTurku EPI (1), ID (5), REL(1) 1 bioinformatician Bjorne et al. [93,109,110]
VIBGhent REL(2) 1 NLP and 1 machine learning Van Landeghem et al. [101,111]
researcher, 1 bioinformatician
UMass EPI 4), ID (2) 1 NLP researcher Riedel et al. [112], Riedel and McCallum [92,113]
MSR-NLP EPI (3) 1 software engineer, Quirk et al. [94]
3 NLP researchers
Stanford EPI (5), ID (3) 3 NLP researchers McClosky et al. [91,114]
ConcordU EPI (7), ID (4), REL(3) 2 NLP researchers Kilicoglu and Bergler [100,115,116]
CCP-BTMG EPI (6) 3 bioinformaticians Liu et al. [117]
PNNL D (6) 1 computer scientist, T NLP McGrath et al. [95]
researcher, 2 bioinformaticians
PredX D (7) 1 computer scientist, -
1 NLP researcher
HCMUS REL (4) 6 linguists Quang et al. [102]

Profiles of teams, tasks participated in (with ranks), and references to published system descriptions.
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Table 9 Summary of extraction system architectures
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Event extraction systems

NLP Events
Team Word Parse Trig. Arg. Group. Modif. Other resources
FAUST CoreNLP, SnowBall ~ McCCJ + SD (UMass+Stanford as features) - word clusters
UTurku Porter McCCJ + SD SYM SVYM SVYM SVYM hedge words
UMass CoreNLP, SnowBall  McCCJ + SD Joint, dual decomposition - -
MSR-NLP Porter, custom McCCJ + SD, Enju SVM SVM SVM - triggers, word clusters
Stanford custom McCCJ + SD MaxEnt Joint, MSTParser - word clusters
ConcordU - McCCJ + SD Dict Rules Rules Rules triggers and hedge words
CCP-BTMG  Porter, Stanford + SD Graph extraction & matching - -
WN-lemma
PNNL Porter Stanford SVM SVM Rules - UMLS, triggers
PredX LGP LGP Dict Rules Rules - UMLS, triggers
Relation extraction systems
NLP Extraction Other resources
Team Word Parse Entities Relations Corpora Other
UTurku Porter McCCJ + SD SYM SYM - -
VIBGhent Porter McCCJ + SD Dict + rules  SVM GENIA, PubMed  word similarities
ConcordU - McCCJ + SD Dict Rules - -
HCMUS OpenNLP OpenNLP Dict Rules - -

Abbreviations: Trig./Arg./Group./Modif.=event trigger detection/argument detection/argument grouping/modification detection, CoreNLP = Stanford CoreNLP
[117], Porter=Porter stemmer [118], Snowball=Snowball stemmer [119], WN-lemma=WordNet lemmatization, McCCJ=McClosky-Charniak-Johnson parser [97,98],

LGP = Link Grammar Parser [120], SD=Stanford Dependency conversion [97], Dict=Dictionary, UMLS=UMLS resources (e.g. lexicon, metamap) [121].

to manually curated external resources, ones derived
from large-scale unannotated data through unsupervised
methods were used by three groups for event extraction
and one for relation extraction.

Table 10 summarizes the use of corpus resources
other than the task training data in the main tasks.
Despite the availability of PTM and DNA methylation
resources other than those specifically introduced for
the task and the PHOSPHORYLATION annotations
included in the GE corpus [54], no participant chose to
apply other corpora for training in the EPI task. With
the exception of externally acquired unlabeled data, the
EPI task results thus reflect a closed task setting in

Table 10 Summary of use of corpus resources

EPI ID
Team Rank Corpora Rank Corpora
FAUST 2 - 1 GE
UTurku 1 - 5 -
UMass 4 - 2 GE
MSR-NLP 3 - N/A
Stanford 5 - 3 GE
ConcordU 7 - 4 -
CCP-BTMG 6 - N/A
PNNL N/A 6 GE
PredX N/A 7 -

Use of corpora other than the task training and development data in the EPI
and ID main tasks.

which only the given data is used for training. By con-
trast, in the ID task four teams - including the three
top-ranking - used the GE task corpus as supplementary
material. The findings indicate that the GE corpus, con-
taining approximately three times as many event anno-
tations as ID, is largely compatible with the ID
annotations and can be beneficially combined with the
smaller in-domain corpus (see detailed results below).
This result is encouraging for future applications of the
event extraction approach: as manual annotation
requires considerable effort and time, the ability to use
large existing annotated resources is important for the
feasibility of adaptation of the approach to new domains.

While several participants made use of supporting
syntactic analyses provided by the organizers [98], none
applied the analyses for supporting tasks such as core-
ference or REL - at least in cases due to time constraints
[99]. There may thus remain further opportunities for
improvement through combinations of supporting ana-
lyses with main task extraction systems.

We find a remarkable number of similarities between
the approaches also for the REL supporting task, with
all four utilizing full parsing and a dependency represen-
tation of the syntactic analysis, and the three highest-
ranking further using the same parser and specific
dependency representation. While UTurku [92] and
VIBGhent [100] further agree in the choice of Support
Vector Machines for the extraction of relations, Con-
cordU [99] and HCMUS [101] pursue approaches
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building on dictionary- and rule-based extraction. Only
the VIBGhent system makes use of resources external to
those provided for the task, extracting specific semantic
entity types from the GENIA corpus as well as inducing
word similarities from a large unannotated corpus of
PubMed abstracts.

EPI primary evaluation results

Table 11 presents the EPI task primary results by event
type, Table 12 (left) summarizes these results, and Fig-
ure 7 (left) illustrates the results of the evaluation of the
statistical significance of their differences.

We note that only two teams, UTurku [93] and Con-
cordU [100], predicted event modifications, and only
UTurku predicted additional (non-core) event argu-
ments (data not shown). The other five systems thus
addressed only the core task. For the full task, this dif-
ference in approach is reflected in the substantial perfor-
mance advantage for the UTurku system, which exhibits
highest performance overall as well as for most indivi-
dual event types. The results suggest that the ability to
recover additional arguments is key to competitive per-
formance on the EPI full task.
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Table 12 EPI task evaluation results: summary

Primary (full) Core

Team recall prec. F-score recall prec. F-score A¢

UTurku 5269 5398 5333 6851 6920 6886 15.53
FAUST 2888 4451 3503 59.88 8025 6859 33.56
MSR-NLP 2779 4469 3427 5570 7760 64.85 30.58
UMass 2808 4155 3352 5704 7330 64.15 30.63
Stanford 2656 3785 3122 5687 7022 6284 31.62
CCP-BTMG 2344 3793 2897 4028 7671 5283 24.95
ConcordU 2083 4214 2788 4506 6337 5267 23.70

The A¢ column gives the F-score difference of each core task result to the
corresponding primary result.

Extraction performance for simple events taking only
Theme and Site arguments is consistently higher than
for other event types, with absolute F-score differences
of over 10% points for many systems. Similar notable
performance differences are seen between the addition
events, for which ample training data was available, and
the removal types for which data was limited (Size col-
umn in Table 11). This effect is particularly noticeable
for DEPHOSPHORYLATION, DNA DEMETHYLATION
and DEMETHYLATION, for which the clear majority of
systems failed to predict any correct events.

Table 11 EPI task primary evaluation results: F-scores by event type

UTurku FAUST MSR- NLP UMass Stanford CCP- BTMG ConcordU Size
HYDROXYLATION 42.25 10.26 10.20 12.80 945 12.84 6.32 139
DEHYDROXYLATION - - - - - - - 1
PHOSPHORYLATION 67.12 5161 50.00 49.18 40.98 47.06 4444 130
DEPHOSPHORYLATION 0.00 0.00 0.00 0.00 0.00 50.00 0.00 3
UBIQUITINATION 75.34 7295 67.88 7294 6744 70.87 69.97 340
DEUBIQUITINATION 54.55 40.00 0.00 3158 0.00 42.11 14.29 17
DNA METHYLATION 60.21 31.21 34.54 23.82 31.02 15.65 822 416
DNA DEMETHYLATION 26.67 0.00 0.00 0.00 0.00 0.00 0.00 21
Simple event total 63.05 45.17 44.97 43.01 40.96 40.62 37.84 1067
GLYCOSYLATION 49.43 41.10 38.87 40.00 37.22 25.62 2594 347
DEGLYCOSYLATION 40.00 3529 0.00 38.10 30.00 35.29 26.67 27
ACETYLATION 57.22 40.00 4142 40.25 35.12 37.50 38.19 337
DEACETYLATION 54.90 28.00 31.82 29.17 21.74 24.56 27.27 50
METHYLATION 57.67 24.82 19.57 23.67 18.54 16.99 15.50 374
DEMETHYLATION 35.71 0.00 0.00 0.00 0.00 0.00 0.00 13
Non-simple event total 54.36 33.86 31.85 33.07 29.28 25.06 25.10 1148
CATALYSIS 7.06 6.58 7.75 5.00 2.84 7.58 1.74 238
Subtotal 55.02 36.93 36.17 35.30 32.85 30.58 2892 2453
NEGATION 18.60 0.00 0.00 0.00 0.00 0.00 26.51 149
SPECULATION 37.65 0.00 0.00 0.00 0.00 0.00 6.82 103
Modification total 28.07 0.00 0.00 0.00 0.00 0.00 16.37 252
Total 53.33 35.03 3427 3352 3122 28.97 27.88 2705
Addition total 59.33 4027 39.05 38.65 36.03 32.75 31.50 2038
Removal total 44.29 2241 15.73 22.76 14.41 23.53 17.48 132

The Size column gives the number of annotations of each type in the given data (training+development). Best result for each type shown in bold. For
DEHYDROXYLATION, no examples were present in the test data and none were predicted by any participant.
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Extraction performance for CATALYSIS events is very
low despite a relatively large set of training examples,
indicating that the extraction of nested event structures
remains very challenging. This low performance may
also be related to the fact that CATALYSIS events are
often triggered by the same word as the catalysed modi-
fication (e.g. Figure 1b), requiring the assignment of
multiple event labels to a single word in typical system
architectures.

Table 12 (right) summarizes the EPI core task results
and and Figure 7 (right) illustrates the statistical signifi-
cance of the differences. While all systems show notably
higher performance than for the full task, high-ranking
participants focusing on the core task gain most drama-
tically, with the FAUST system core task F-score essen-
tially matching that of the top system (UTurku). For the
core task, all participants achieve F-scores over 50% - a
level of performance achieved by only a single system in
the ST’09 task - and the top four participants average
over 65% F-score. These results confirm that current
event extraction technology is well applicable to the
core PTM extraction task, even when the number of
targeted event types is relatively high, and may be ready
to address the challenges of exhaustive PTM extraction
[9]. The best core tasks results, approaching 70% F-
score, are particularly encouraging as the level of perfor-
mance is comparable to or better than state-of-the-art
results for many reference resources for protein-protein
interaction extraction (see e.g. [102]) using the simple
untyped entity pair representation, a standard task that
has been extensively studied in the domain.

ID primary evaluation results

Table 13 presents the primary results of the ID task by
event type, and Table 14 (left) summarizes these results.
Evaluation of statistical significance showed that the dif-
ferences in overall performance are significant for all
pairs of systems (p < 0.05).

The full ID task requires the extraction of additional
arguments and event modifications and involves multi-
ple novel challenges from previously addressed event
extraction tasks including a new subdomain, full-text
documents, several new entity types and a new event
category. Nevertheless, extraction performance for the
top systems is comparable to the state-of-the-art results
for the established BioNLP ST’09 task [103] as well as
its repetition as the 2011 GE task [54], where the high-
est overall result for the primary evaluation criteria was
also 56% F-score for the FAUST system [89]. This result
is encouraging regarding the ability of the extraction
approach and methods to generalize to new domains as
well as their applicability specifically to texts on the
molecular mechanisms of infectious diseases.

We note that there is substantial variation in the rela-
tive performance of systems for different entity types.
For example, Stanford [89] has relatively low perfor-
mance for simple events but achieves the highest result
for PROCESS, while UTurku [92] results show roughly
the reverse. This suggests further potential for improve-
ment from system combinations.

The best performance for simple events and for PRO-
CESS approaches or exceeds 70% F-score, arguably
approaching a sufficient level for user-facing applications
of the extraction technology. By contrast, BINDING and
regulation events, found challenging in ST’09 and GE,
remain problematic also in the ID task, with best overall
performance below 50% F-score. As in the EPI task,
only the UTurku and ConcordU [99] teams attempted
to extract event modifications, with somewhat limited
performance. The difficulty of correct extraction of
event modifications is related in part to the recursive
nature of the problem (similarly as for nested regulation
events): to extract a modification correctly, the modified
event must also be extracted correctly. Again as for EPI,
only UTurku predicted any instances of secondary argu-
ments. Thus, teams other than UTurku and ConcordU
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Table 13 ID task primary evaluation results: F-scores by event type

FAUST UMass Stanford ConcordU UTurku PNNL PredX Size
GENE EXPRESSION 70.68 66.43 54.00 56.57 64.88 53.33 0.00 512
TRANSCRIPTION 69.66 68.24 60.00 70.89 57.14 0.00 53.85 77
PROTEIN CATABOLISM 75.00 7273 20.00 66.67 3333 11.76 0.00 33
PHOSPHORYLATION 64.00 66.67 40.00 5455 60.61 64.29 40.00 69
LOCALIZATION 3333 14.29 31.58 20.00 66.67 20.69 0.00 49
Simple event total 68.47 63.55 52.72 56.78 62.67 43.87 18.18 740
BINDING 31.30 34.62 2344 40.00 2222 20.00 28.28 156
PROCESS 65.69 62.26 73.57 67.17 4157 51.04 5327 901
Non-regulation total 63.78 60.68 63.59 62.43 46.39 47.34 43.65 1797
REGULATION 35.44 3049 1767 1943 2296 0.00 2.16 267
POSITIVE REGULATION 47.50 49.49 34.78 2341 41.28 24.60 21.02 455
NEGATIVE REGULATION 58.86 60.45 4444 47.96 52.11 25.70 949 260
Regulation total 47.07 46.65 33.02 2887 3949 18.45 971 982
Subtotal 57.28 55.03 52.09 46.60 43.33 37.53 28.38 2779
NEGATION 0.00 0.00 0.00 2292 3291 0.00 0.00 96
SPECULATION 0.00 0.00 0.00 323 15.00 0.00 0.00 44
Modification total 0.00 0.00 0.00 11.82 26.89 0.00 0.00 140
Total 55.59 53.42 50.63 44.21 42.57 36.27 27.49 2919

The Size column gives the number of annotations of each type in the given data (training+development). Best result for each type shown in bold.

addressed only the core task extraction targets. How-
ever, by contrast to the EPI results, lacking prediction of
additional arguments does not preclude systems from
competitive performance at the ID task.

With the exception of ConcordU, all systems clearly
favor precision over recall (Table 14, left), in many cases
having over 15% point higher precision than recall. This
a a somewhat unexpected inversion as the ConcordU
system is rule-based, an approach typically associated
with high precision.

The five top-ranking systems participated also in the
GE task [54], which involves a subset of the ID extrac-
tion targets. This allows additional perspective into the
relative performance of the systems. While there is a
13% point spread in overall results for the top five sys-
tems here, in GE all these systems achieved F-scores
ranging between 50-56%. The results for FAUST,
UMass and Stanford were similar in both tasks, while
the ConcordU result was 6% points higher for GE and

Table 14 ID task evaluation results: summary

Primary (full) Core
Team recall prec. F-score recall prec. F-score Af
FAUST 4803 6597 5559 5084 6635 5757 1.98
UMass 4692 6202 5342 4967 6239 5531 1.89
Stanford 4630 5586 5063 4916 5637 5252 1.89
ConcordU 4900 4027 4421 5091 4337 4684 263
UTurku 3785 4862 4257 3923 4991 4393 1.36
PNNL 2775 5236 3627 2936 5262 3769 142
PredX 2256 3518 2749 2367 3518 2830 0.81

the UTurku result over 10% points higher for GE, rank-
ing third after FAUST and UMass. These results suggest
that while the FAUST and UMass systems in particular
have some systematic (e.g. architectural) advantage at
both tasks, much of the performance difference
observed here between the top three systems and those
of ConcordU and UTurku is due to strengths or weak-
nesses specific to ID. Possible weaknesses may relate to
the treatment of multiple core entity types (vs. only
PROTEIN in GE), challenges related to nested entity
annotations (not appearing in GE), or the new PROCESS
type. A possible ID-specific strength of the three top-
ranking systems is the use of GE data for training: Rie-
del and McCallum [91] report an estimated 7% point
improvement and McClosky et al. [90] a 3% point
improvement from use of this data; McGrath et al. [94]
estimate a 1% point improvement from direct corpus
combination. The integration strategies applied in train-
ing these systems could potentially be applied also with
other systems, an experiment that could further clarify
the relative strengths of the various systems. The top-
ranking five systems all participated also in the EPI task,
for which UTurku ranked first with FAUST having
comparable performance for the core task. While this
supports the conclusion that ID performance differences
do not reflect a simple universal ranking of the systems,
due to many substantial differences between the ID and
EPI setups it is not straightforward to identify specific
reasons for relative differences to performance at EPL
Table 14 (right) summarizes the ID core task results.
Please note that these results differ (by up to 0.5% point
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in overall F-score) from those reported previously [31]
due to the correction of an error in the original core
task evaluation system. As for the primary ID results, all
the differences in system performance for the core task
are also statistically significant (p < 0.05). By contrast to
the results for EPI, where differences of over 30% points
were observed between full and core task results, there
are only modest and largely consistent differences to the
corresponding full task results for ID, reflecting in part
the relative sparseness of additional arguments: in the
training data, for example, only approximately 3% of
instances of event types that can potentially take addi-
tional arguments had one or more additional arguments.
While event modifications represent a further 4% of full
task extraction targets not required for the core task,
the overall low extraction performance for additional
arguments and modifications limits the practical effect
of these annotation categories on the performance dif-
ference between systems addressing only the core tar-
gets and those addressing the full task.

REL evaluation results

Table 15 shows the results of the REL task. We find that
the four systems diverge substantially in terms of overall
performance, with all pairs of systems of neighboring
ranks showing differences approaching or exceeding
10% points in F-score. While three of the systems nota-
bly favor precision over recall, VIBGhent shows a
decided preference for recall, suggesting a different
approach from UTurku in design details despite the
similarities in relation extraction approach. The highest-
performing system, UTurku, shows an F-score in the
general range of state-of-the-art results in the main
event extraction tasks, which could be taken as an indi-
cation that the reliability of REL task analyses created
with presently available methods may not be high
enough for direct use as a building block for the main
tasks. However, the emphasis of the highest-scoring sys-
tem on precision is encouraging for such applications:
nearly 70% of the entity-relation pairs that the system
predicts are correct. The two top-ranking systems show
similar precision and recall results for the two relation
types. The submission of HCMUS shows a decided
advantage for PROTEIN-COMPONENT relation extraction
as tentatively predicted from the relative numbers of

Table 15 REL task primary evaluation results
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training examples, but their rule-based approach sug-
gests training data size is likely not the decisive factor.
While the limited amount of data available prevents
strong conclusions from being drawn, overall the lack of
correlation between training data size and extraction
performance suggests that performance may not be pri-
marily limited by the size of the available training data.

Additional evaluation results

Table 16 (left) summarizes the full EPI task results with
the addition of the single partial penalty criterion. The
F-scores for the seven participants under this criterion
are on average over 4% points higher than under the
primary criteria, with the most substantial increases
seen for high-ranking participants only addressing the
core task: for example, the precision of the FAUST sys-
tem [89] is nearly 30% higher under the relaxed criter-
ion. The core evaluation results showed that the limited
precision of these systems for the full task is not due to
errors in core argument recognition but rather due to
lack of recognition for secondary arguments. From an
application-oriented perspective it could be argued that
the high precision but low recall seen for the single par-
tial penalty criterion is a more accurate representation
of actual system performance than seen under the pri-
mary criteria, as the systems make few outright false
predictions, even though they do lack much of the detail
of the full annotation. Despite substantial effects on pre-
cision in many cases, the overall F-score difference to
the main criteria remains limited due to the low recall
of many systems.

Table 16 (right) shows the results for the ID task
under the single partial penalty criterion. The average
difference to F-score for primary criteria is broadly com-
parable to that for EPI, at slightly less than 4% points.
However, this change is due to a very different effect on
precision and recall: while for EPI a strong increase in
evaluated precision was observed, for ID the increase is
more evenly distributed and in cases observable as an
increase in recall. This suggests that while in EPI miss-
ing arguments were a key limiting factor for perfor-
mance in most cases, for ID there are comparatively
many cases where systems make the error of predicting
extra arguments that are not found in otherwise match-
ing gold annotations. It is also interesting to note that

UTurku VIBGhent ConcordU HCMUS
PROTEIN-COMPONENT 50.90 / 6857 / 58.43 4731/ 3653/41.23 2335/ 5205/ 3224 20.96 /2163 /21.29
SUBUNIT-COMPLEX 4847 / 6695 / 56.23 4785/ 3812 /4243 2638 /3981 /3173 491 / 66.67 /9.14
Total 50.10 / 68.04 / 57.71 4748 / 3704 / 41.62 2435/ 46.85 / 32.04 15.69 / 23.26 /1874

Results given as recall/precision/F-score.
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Table 16 Evaluation results with single partial penalty
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EPI ID

Team recall prec. F-score A¢ Team recall prec. F-score A¢

UTurku 54.79 5842 56.55 322 FAUST 5052 7164 59.25 3.66
FAUST 28.88 7205 4124 6.21 UMass 49.00 6821 57.03 361
MSR-NLP 27.79 66.72 39.24 497 Stanford 4844 60.20 53.68 3.05
UMass 28.08 63.28 3890 538 ConcordU 5246 42.50 46.96 2.75
Stanford 26.56 56.83 36.20 498 UTurku 42.28 50.51 46.03 346
CCP-BTMG 2344 50.79 32.08 3.1 PNNL 35.99 5348 43.02 6.75
ConcordU 20.83 60.55 30.99 311 PredX 24.08 39.95 30.05 256

Results for EPI and ID full tasks, primary evaluation criteria with single partial penalty. The A; columns give F-score differences to the corresponding primary

results.

while core evaluation is by far the most permissive set-
ting for EPI, for ID higher F-scores are achieved in the
full task with the single partial penalty criterion.

Evaluation using single partial penalty allows addi-
tional perspectives into both the absolute and the com-
parative performance of systems. The results also
indicate possible directions for seeking more meaningful
criteria for event extraction system evaluation. While
there are no single “correct” answers, further basis for
evaluating candidate answers can be provided through
manual evaluation reflecting the perceived quality of
system outputs, considered in the following.

Finally, Table 17 summarizes the results for the EPI
extra test set enriched for events that were relatively
sparse in the training data; especially reverse reactions.
While these results show the expected drop associated
with sparse training data for some systems, surprisingly
a reverse effect is seen for others, particularly clearly for
UMass. This result is unexpected also as UMass perfor-
mance for reverse reactions on the main test data was
comparatively weak. The mixed results for this addi-
tional test data have not suggested to us any straightfor-
ward conclusions regarding the comparative strengths of
the various approaches, and we will here refrain from
speculation regarding possible explanations. Neverthe-
less, this additional test data remains available for
further experiments and evaluation and can hopefully

Table 17 EPI task evaluation results for extra test set

support detailed study of effective strategies for event
extraction with limited training data.

System combination

The event extraction system analyses created by the par-
ticipants represent a rich resource for further study of
the task. To explore one opportunity presented by this
data, we studied whether the outputs of various systems
could be beneficially combined to further improve
extraction performance. We performed a straightforward
combination of the output of all systems participating in
the EPI and ID main tasks using a strategy where the
combination system only outputs an event if it is found
in the output of at least # combined systems, where n is
a parameter ranging between one and the total number
of systems. For determining event equality for the com-
bination, we applied the primary evaluation metrics
(approximate span and recursive matching). As the
majority of systems only addressed the core tasks, we
measured the performance of system combinations only
on the core extraction targets.

Table 18 (left) shows the results of the combination
experiment for the core EPI task and Figure 8 (left)
plots the performance of the seven submissions and the
seven combinations. We find that for n € (2, 3, 4) the
combinations outperform the highest standalone result
for the core task (68.86%) in terms of F-score, improv-
ing on the standalone result by over 3% points in F-

Table 18 Core task evaluation results for system

Team recall prec. F-score A¢ combinations

UTurku 3846 57.87 46.21 =712 EPI ID

UMass 28.00 60.26 3824 4.72 n recall prec F-score n  recall prec.  F-score
FAUST 2462 5333 3368 -135 1 7797 4688 5855 17845 3025 4367
Stanford 2369 53.10 3277 1.55 27018 6852 6934 2 6508 5579 6008
MSR-NLP 2246 46.79 3035 392 36399 8206 7191 35289 6908 5991
CCP-BTMG 2215 47.06 3013 116 4 5670 8885 6922 4 4266 7694 5489
ConcordU 1292 4158 1972 -8.16 5 4858 9221 6363 5 3243 8441 4686
Results using primary criteria. The Ar column gives differences to the main 6 3844 95.62 54.84 6 19.50 91.75 3217
test set results for the same criteria. Results for this data are not considered 7 2705 96.71 428 7 314 9556 6.08

part of the primary evaluation for the task.
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score for n = 3, thus providing an approximately 10%
relative decrease in error.

Different choices of # in calculating the combination
permit the choice of various points along a precision-
recall curve spanning nearly the full precision range, giv-
ing nearly 97% precision for n = 7. However, no combi-
nation permits for comparably high values of recall:
even for n = 1, corresponding to the union of all sub-
missions, recall remains below 80%. There thus remains
a substantial number of events that none of the systems
can retrieve.

Table 18 (right) and Figure 8 (right) present the sys-
tem combination results for the ID task. Also for ID the
system combination outperforms the best standalone
result (57.57% F-score) for n = 2 and n = 3. The advan-
tage is somewhat less than for EPI, approximately 2.5%
points or an approximately 6% decrease in error. The
more limited benefit from system combination for ID
may be explained in part by the greater variance in the
performance of individual systems for the task.

We note that the system combination strategies
explored here are comparatively simple and make no
use of information such as the relative reliability of the
different systems [11], which could be separately esti-
mated e.g. using the development data. There is a possi-
bility that the performance of system combinations
could be further substantially improved through the use
of advanced combination strategies.

Manual analysis

Evaluation against a fixed gold standard provides a
stable, objective basis for the comparison of systems
and, when feasible, is often the preferred choice for the
study of new tasks such as those introduced in this
study. A fixed, fully annotated gold standard has the
further benefit of allowing the results of experiments
performed after its original introduction to be directly
compared against those of the original work on an even
basis.

Nevertheless, comparison against gold standard anno-
tation such as that applied in the BioNLP Shared Tasks
also has its drawbacks when compared to alternatives
such as direct evaluation of system outputs. One such
drawback is the difficulty of assessing degrees of correct-
ness for system outputs that differ from gold annotation.
For any non-trivial representation aiming to capture
(part of) the meaning of complex text there will almost
unavoidably be cases where more than one set of anno-
tations are at least acceptable; where the annotation task
takes on aspects of translation from natural language
into the semantic representation. Tightly specified anno-
tation guidelines can (and in gold standard annotation
arguably should) be used to rule out all but one candi-
date interpretation (cf. controlled language). However,
from the perspective of many applications such con-
straints do not change the basic issue that declaring one
out of several potentially acceptable analyses “correct”
and others “incorrect” can lead to a distorted picture of
system (or human annotator) performance.

To take a specific example, the annotation guidelines
of the GE and ID tasks require each “link” in a stated
chain of causation to be separately marked, so that e.g.
A affects the regulation of B is marked with two REGU-
LATION annotations (Figure 9 top). However, from the

Cause\{ Regulation J,Theme-ﬂ Regu!atioﬂ:’Theme
PhoQ affects the regulation  of PmrA

(RStEiA]* <>~ Regulation}— """ [PimEE)

Pth affects the regulation of PmrA

(Protein]* ™"ee ™~ Regulation -~ C*!5[Protein]
PhoQ affects the regulation of PmrA

Figure 9 lllustration of possible annotations for an example
sentence. Top: correct (by guideline), middle: acceptable, bottom:
incorrect.
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perspective of many applications (e.g. pathway curation
and semantic search), an annotation involving a single
REGULATION event correctly identifying the direction
of causality (Figure 9 middle) may be equally acceptable,
or at least clearly preferable to an annotation where the
direction is inverted (Figure 9 bottom). Yet in evaluation
against the gold standard the latter two are both equally
wrong.

Another drawback of the evaluation against a gold
standard is that errors in gold annotation - unavoidable
in any human product of this complexity - will tend to
bias results against the systems, leading to underesti-
mates of performance. The tendency of gold annotation
errors to hurt rather than help systems in evaluation
arises for any representation where there are many
more ways to annotate wrongly than correctly, as the
likelihood of an erroneous gold annotation matching an
erroneous system output will be comparatively small.

To provide additional perspective to the performance
of the systems participating in the EPI and ID main
tasks, we performed an extensive manual analysis of sys-
tem outputs, providing an experienced annotator with a
random sample of the events predicted by each of the
participating systems. To avoid possible bias, we blinded
the inputs so that the annotator could not tell which
system had created which annotation or whether the
annotation had matched gold or not. To further assess
the quality and stability of the original gold standard
annotation, we additionally included a similarly blinded
sample of annotations drawn from the gold standard.
Specifically, for both EPI and ID we selected for evalua-
tion a random sample of 100 events from each of the
seven final submissions as well as the gold data, for a
total of 800 events for each task. These 1,600 events
were then blindly evaluated with instructions to mark
each as one of correct, acceptable or incorrect. The first
of these labels identifies an event as, informally, “as
good as gold": a complete and accurate representation

Table 19 Manual analysis results
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of the targeted aspects of the relevant biological claim
with respect to the task annotation guidelines. The label
acceptable specifies that an event is an acceptable repre-
sentation of the relevant central biological statement,
but either incomplete or at variance with the standard
guidelines in some secondary aspect. The last label was
used for any candidate for which the first two labels
were not applicable. As for the system combination, we
performed this evaluation for core task subsets as the
majority of participants did not attempt the full task.

Table 19 shows the results of the manual analysis for
the EPI and ID tasks. We first note that the evaluation
supports the estimates of high gold annotation quality:
in total, only four of 200 blindly evaluated gold events
were marked incorrect. The difference in the number of
“accurate” judgments supports a view received also from
annotators’ informal impressions that the EPI task tar-
gets are very strictly defined, while those of the ID task
require more interpretation of the guidelines.

The evaluation shows good correlation with the
results of evaluation against gold: a ranking of systems
by the number of events judged correct or acceptable
produces no instances of disagreement with ranking by
the number of matches with gold in the samples. How-
ever, despite high correlation, the manual evaluation
results indicate systematic differences between the qual-
ity of system outputs as perceived in manual evaluation
and the results of evaluation against gold. For EPI, the
average precision of the systems over the 700 selected
events is 74.3% from evaluation against gold while man-
ual evaluation of the same events suggests 79.3% are
correct (79.6% correct or acceptable). This effect is con-
sistent also when examining the individual samples of
100 events for each system separately. Accepting (for
the moment) the manual evaluation as “ground truth”,
this result indicates that approximately 20% of events
appearing as false positive in evaluation against gold are
in fact correct.

EPI ID
Manual Gold standard Manual Gold standard
Source Corr. Acc. Inc. Match Prec. Source Corr. Acc. Inc. Match Prec.
GOLD 96 1 3 100 100.0 GOLD 94 5 1 100 100.0
MSR-NLP 87 1 12 83 77.60 FAUST 83 7 10 68 66.35
FAUST 85 0 15 79 80.25 UMass 77 4 19 66 6239
ConcordU 83 0 17 79 76.71 Stanford 67 7 26 55 56.37
UMass 80 0 20 74 73.30 PNNL 68 4 28 49 52.62
UTurku 75 0 25 72 69.20 UTurku 61 8 31 38 4991
Stanford 74 0 26 68 70.22 ConcordU 55 5 40 34 4337
CCP-BTMG 71 0 29 65 63.37 PredX 42 5 53 36 35.18

Number of manually evaluated events judged correct (Corr.), acceptable (Acc.) and incorrect (Inc.) out of samples of 100, with number matching gold annotation
(Match) and, for reference, core task precision (Prec.). Analysis performed independently for EPI and ID tasks.
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For ID, while the average precision for the sample of
700 events is 49.2% in comparison against gold, the
manual evaluation suggests that 64.7% of the events are
correct. This discrepancy between the two evaluations is
larger than that for EPI also in relative terms: with refer-
ence to the results of the manual evaluation, 30% of
“false positive” events in gold evaluation are correct.
Unlike in the EPI evaluation, a nontrivial amount of ID
events were marked acceptable; the evaluation suggests
that less than 30% of all event predictions are incorrect,
a striking contrast to the over 50% estimate from com-
parison to gold.

Some of these differences are almost certainly due to
events missing from gold. However, given the very high
precision of gold events measured also in this evalua-
tion, the lack of factors that could make errors of omis-
sion up to an order of magnitude more common than
errors of commission in gold annotation, and the sup-
port from the relative number of “accurate” markings,
we find it likely that the observed discrepancy is primar-
ily due to cases that genuinely permit more than one
acceptable analysis.

While the trend that this evaluation shows was
expected and similar results have been reported pre-
viously (e.g. [25]), the specific estimates of the magni-
tude of the discrepancy between evaluation of event
extraction outputs against a fixed gold standard and the
perceived quality in manual evaluation is a novel result.
This difference was found to be substantial in particular
for ID, especially when taking into account cases that
are acceptable although not entirely correct. This eva-
luation indicates that the quality of event extraction
results perceived by users may be considerably higher
than the primary shared task evaluation would suggest.

Conclusions

We have presented the preparation, resources, results
and analysis of three tasks of the BioNLP Shared Task
2011: the main tasks on Epigenetics and Post-transla-
tional modifications (EPI) and Infectious Diseases (ID)
and the supporting task on Entity Relations (REL).

The two main tasks were each based on newly anno-
tated corpus resources developed for the purposes of
the shared task. For the EPI task, we annotated 1,200
publication abstracts selected as a balanced sample of all
PubMed citations regarding the selected event types. For
ID, a corpus of 30 full-text publications on the two-
component systems subdomain of infectious diseases
was created in a collaboration of event annotation and
domain experts, adapting and extending the BioNLP’09
Shared Task (ST’09) event representation to the domain.
Data for the supporting task REL was created by extend-
ing previously introduced GENIA corpus annotations.
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The EPI task results demonstrated that the core
extraction target of identifying statements of 14 different
gene/protein modification types can be reliably
addressed by current event extraction methods, with
two systems approaching 70% F-score for this task. We
further demonstrated that a simple system combination
can further improve on this level of performance, redu-
cing error rate by approximately 10%. Challenges remain
in detecting statements regarding the catalysis of modifi-
cation events as well as in resolving the full detail of
such events, a task attempted by only one EPI task par-
ticipant and at which performance remains below 55%
F-score.

For the ID task, despite the novel challenges of full
papers, four new entity types, extension of event scopes
and the introduction of a new event category for high-
level processes, the highest results achieved by the seven
participating teams were comparable to the state-of-the-
art performance on the established ST’09 data, showing
that the event extraction approach and present systems
generalize well and demonstrating the feasibility of
event extraction for the infectious diseases domain. Ana-
lysis of the results suggested further opportunities for
improving extraction performance, and a system combi-
nation experiment demonstrated that even compara-
tively simple combination approaches can realize further
benefits. Finally, manual evalutation of system outputs
suggested that many events identified as false positives
in evaluation against the gold standard data may never-
theless be acceptable from a user perspective.

Both the EPI and ID main tasks were designed from
the perspective of supporting specific biocuration tasks.
We believe successful EPI systems have potential to
offer further support for existing protein modification
database curation as well as for novel efforts targeting
specifically epigenetics-related modifications. The
resources, tools and methods developed in the ID task
are currently being adopted in the development of the
Pathosystems Resource Integration Center (PATRIC)
[104]. Present and future advances in these tasks can
thus assist biologists in efforts of substantial scientific
and public health interest.

As was done after the BioNLP’09 shared task, we have
made the data, tools and resources for all three task
introduced in this paper open to all interested parties to
encourage further study of event extraction. The tasks
continue as an open shared challenges accessible
through the shared task website, http://www.bionlp-st.
org/.
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