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Abstract

Background: A central goal of genomics is to predict phenotypic variation from genetic variation. Fitting predictive
models to genome-wide and whole genome single nucleotide polymorphism (SNP) profiles allows us to estimate the
predictive power of the SNPs and potentially develop diagnostic models for disease. However, many current datasets
cannot be analysed with standard tools due to their large size.

Results: We introduce SparSNP, a tool for fitting lasso linear models for massive SNP datasets quickly and with very
low memory requirements. In analysis on a large celiac disease case/control dataset, we show that SparSNP runs
substantially faster than four other state-of-the-art tools for fitting large scale penalised models. SparSNP was one of
only two tools that could successfully fit models to the entire celiac disease dataset, and it did so with superior
performance. Compared with the other tools, the models generated by SparSNP had better than or equal to
predictive performance in cross-validation.

Conclusions: Genomic datasets are rapidly increasing in size, rendering existing approaches to model fitting
impractical due to their prohibitive time or memory requirements. This study shows that SparSNP is an essential
addition to the genomic analysis toolkit.
SparSNP is available at http://www.genomics.csse.unimelb.edu.au/SparSNP

Background
One of the challenges raised by recent advances in the
genomics of complex phenotypes is the prediction of phe-
notype given genotype, such as prediction of disease from
SNP data. Successful identification of SNPs strongly pre-
dictive of disease promises a better understanding of the
biological mechanisms underlying the disease, and has
the potential to lead to early disease diagnosis and pre-
ventative strategies. The question of predictive ability is
also closely related to the proportion of phenotypic and
genetic variance that can be explained by common SNPs
and the lively debate surrounding the “missing heritabil-
ity” of many complex diseases [1]. To quantify the genetic
effect, we must fit a statistical model to all SNPs simul-
taneously. Lasso-penalised models [2] are well suited to
this task, since they perform variable selection — some
model weights are exactly zero and thus excluded from
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the model. In this way, lasso models remove the need for
screening SNPs based on univariable statistics prior to
fitting a multivariable model [3].
However, fitting models to genome-wide or whole-

genome data is challenging since such studies typically
assay thousands to tens of thousands of samples and
hundreds of thousands to millions of SNPs. With stan-
dard analysis tools, modelling genome-wide and whole
genome data is either impossible or extremely inefficient.
For example, most existing analysis tools require loading
the entire dataset into memory prior to fitting the models,
which is both time-consuming and requires large amounts
of memory to store the data and fit the models. In order to
perform simultaneous modelling of SNP variation across
the genome and build predictive models of disease and
phenotype, it is clear that there is a need for new tools that
are fast, not memory intensive, and easy to use.
Here, we present the tool SparSNP, which is an effi-

cient implementation of lasso-penalised linear models.
SparSNP can fit lasso models to large-scale genomic
datasets in minutes using small amounts of memory,
outperforming equivalent in-memory methods. Thus,
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SparSNP makes it practical to analyse massive datasets
without the use of specialised computing hardware
or cloud computing. SparSNP produces cross-validated
model weights that can be used to select the top predic-
tive SNPs. SparSNP also allows the resulting models to
be evaluated for predictive power and phenotypic/genetic
variance explained. The main features of SparSNP are:

• implementation of �1-penalised linear regression for
continuous traits and �1-penalised classification for
binary traits;

• speed — SparSNP fits models to data with 104
samples and 5 × 105 SNPs in < 10minutes on
standard hardware;

• small (and tunable) amounts of memory are required:
∼ 1GiB for the datasets analysed here;

• compatibility with PLINK [4] BED (SNP-major
ordering) and FAM files (single phenotype);

• cross-validation is performed natively, removing the
need to manually split datasets;

• convenient external validation if an independent
dataset is available;

• conveniently produces a set of models with
increasing numbers of SNPs in each model, allowing

for model selection based on cross-validated
predictive performance;

• calculates the area under
receiver-operating-characteristic curves (AUC) and
explained phenotypic or genetic variance, in
cross-validation or on validation datasets.

An outline of the SparSNP analysis pipeline is shown in
Figure 1. See Additional File 1 for details of the analysis
workflow.

Results
To assess the performance of SparSNP and compare
it with existing methods, we used a celiac disease
case/control dataset [5], consisting of N = 11,940 sam-
ples from five European populations (Italian, Finnish,
two British, and Dutch), with p = 516,504 autosomal
SNPs. The data processing and quality control have been
described in the original publication.
We performed two types of comparisons, one for com-

puting speed and one for predictive performance. For the
speed comparison, we timed the process of fitting the
model to data subsets of different sizes. For the predictive
comparison, we used cross-validation for one population
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Figure 1 SparSNP analysis pipeline. An example pipeline for analysing a SNP discovery dataset with SparSNP and testing the model on a
validation dataset. Most of the data preparation and processing can be done with PLINK.
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(Finns) over a grid of hyperparameters. We compared the
following methods:

• SparSNP 0.89a, with �1-penalised squared hinge loss,
implemented in C(see Additional Files 3 and 4);

• glmnet 1.7 [6]b, with logistic loss (binomial family),
implemented as a Fortran library for R [7]. glmnet
implements two variants of cyclical coordinate
descent, together with warm restarts and active set
convergence;

• LIBLINEAR 1.8 [8]c, with �1-penalised squared hinge
loss (model 5), implemented in C++. LIBLINEAR
uses coordinate descent to optimise the loss function;

• LIBLINEAR-CDBLOCK [9]d with block
�2-regularised squared hinge loss (model 1),
implemented in C++. LIBLINEAR-CDBLOCK splits
the data into blocks of user defined size, loads each
one into memory, and performs a block-wise
optimisation of the loss function;

• and HyperLasso [10]e, logistic regression with the
double exponential (DE) prior (equivalent to lasso),
implemented in C++. HyperLasso implements
cyclical coordinate descent as well.

All five methods assumed a model that is additive in the
minor allele dosage {0, 1, 2}.
Table 1 summarises the relative strengths and weak-

nesses of the five methods evaluated here, with respect
to memory requirements, speed, best AUC in prediction,
whether the tool successfully fitted a model to the largest
dataset, the number of genetic models available, and ease
of use. We now present these results in detail.

SparSNPmakes possible rapid, low-memory analysis of
massive SNP datasets
SparSNP consistently outperformed the other methods
when fitting models (Figure 2). We ran all methods on

random subsets of the celiac disease dataset, consisting of
randomly selected subsets of the data with p = {50,000,
250,000, 500,000} SNPs and N = {1000, 5000, 10,000}
samples, a total of nine subsets. This process was indepen-
dently repeated 10 times. Only SparSNP and LIBLINEAR-
CDBLOCK could fit models to datasets with > 5000 sam-
ples and 250,000 SNPs, and they were the only tools that
could fit models to > 1000 samples and 500,000 SNPs on
a machine with 32GiB RAM. It is important to note that
the aforementioned data sizes would be considered quite
small by current standards. Also note that in contrast with
SparSNP, LIBLINEAR-CDBLOCK does not implement
an �1-penalised model but a standard �2-penalised sup-
port vector machine (SVM), which is not a sparse model,
and does not produce solutions over a grid of model
sizes; instead, a computationally expensive scheme such as
recursive feature elimination (RFE) [12] would be required
in order to find sparse models, but we did not use RFE
here. Of the remaining methods, LIBLINEAR and glmnet
did not complete all experiments due to running out of
memory (on a 32GiB RAM machine) or due to the data
exceeding the limit on matrix sizes in R (a maximum of
231 − 1 elements). HyperLasso took much longer to com-
plete: ∼ 2 hours for the 1000 sample/500,000 SNP subset
and∼ 69 hours for the 10,000 sample/500,000 SNP subset.
Therefore, the timing for HyperLasso is not shown.
We emphasise that these results are for one run over

the data — in practice, cross-validation is used to guide
model selection and evaluate the generalisation error of
a model. Run times for cross-validation would be higher
yet — 3-fold cross-validation repeated 10 times would
take approximately 20 times longer, ∼ 22 and ∼ 4 hours
for LIBLINEAR-CDBLOCK and SparSNP, respectively,
over the largest subset (with SparSNP also outperform-
ing LIBLINEAR-CDBLOCK in terms of prediction as we
show in the next section) — making the differences in

Table 1 Comparison of the evaluatedmethods

Method Memory
required

Speed
(rank)

Prediction AUC
(rank)

Fitted
largest data

Genetic
models

Ease of use

SparSNP • • • (1) (1) yes • ◦ ◦◦ • • • • •
glmnet • • ◦ (2) (1) no • ◦ ◦◦ • • • ◦ ◦
HyperLasso • • • (5) (3) yes • • •◦ ◦ ◦ ◦ ◦ ◦
LIBLINEAR • • ◦ (3) (2) no • ◦ ◦◦ • • ◦ ◦ ◦
LIBLINEAR-CDBLOCK • • • (4) (4) yes • ◦ ◦◦ • • ◦ ◦ ◦
We evaluated each method in terms of the following criteria:
(a) Memory requirements: maximum GiB required to complete the prediction experiment. Three points: ≤ 4GiB, as is commonly available on laptops. Two points:
> 4GiB and ≤ 32GiB, commonly available on compute servers. One point: > 32GiB, typically available on higher-end servers.
(b) Speed: time to complete in the timing experiments with 50,000 SNPs (Figure 2).
(c) Prediction: best cross-validated AUC in the prediction experiment (Figure 3).
(d) Fitted largest data: whether the tool successfully completed the largest timing experiment, consisting of p = 500,000 SNPs and N = 10,000 samples.
(e) Models: one point for each natively supported model of (i) additive, (ii) dominant/recessive, (iii) heterozygous models, (iv) and interaction models.
(f) Ease of use: one point for each of (i) does the tool support input in formats commonly used in the genetics community, such as PLINK BED or PED files, (ii) does the
tool implement cross-validation, (iii) does the tool estimate the AUC, R2, or explained variance from the cross-validation, (iv) does the tool produce plots of the
resulting AUC, R2, or explained variance, for easy model selection and evaluation, and (v) does the tool implement native imputation of missing genotypes.
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Figure 2 Timing experiments. Time (in seconds) for model fitting, over sub-samples of the celiac disease dataset, taken as the minimum time over
10 independent runs. The inset panel shows the results for 50,000 SNPs in more detail, note the different scales. For in-memory methods we
included the time to read the data into memory. For SparSNP and glmnet we used a penalty grid of size 20, and a maximummodel size of 2048
SNPs. LIBLINEAR (denoted “LL-L1”) and LIBLINEAR-CDBLOCK (denoted “LL-CD-L2”) induced one model with C = 1. LIBLINEAR-CDBLOCK usedm = 50
blocks. For some datasets, glmnet and LIBLINEAR did not complete and these running times are not shown. HyperLasso is not shown since it took
much longer to complete than the other methods.

speed even more important. Also note the difference in
the number of models fitted: both SparSNP and glm-
net use a warm restart strategy, computing a separate
model for each penalty in a grid (we used 20 penalties),
resulting in a path of 20 separate models with differ-
ent sizes, whereas LIBLINEAR, LIBLINEAR-CDBLOCK,
and HyperLasso computed only one model based on one
penalty.

SparSNP produces models of better or comparable
predictive ability
We used the Finnish subset of the celiac disease dataset
(N = 2476 samples, p = 516,504 SNPs) to evaluate predic-
tive performance of the models in 3-fold cross-validation.
We measured predictive ability with the area under the
receiver operating characteristic curve (AUC) [13], where
AUC ranges from 0 (perfectly wrong prediction) to 1
(perfect prediction), with AUC = 0.5 being equivalent to
random prediction (no predictive power). AUC also has
the probabilistic interpretation as the probability of cor-
rectly ranking the risk of the cases higher than the risk
for the controls, for a randomly selected pair of cases and
controls. From the AUC we also estimated the explained
proportion of phenotypic variance [11], assuming a pop-
ulation prevalence for celiac disease of K = 1%. We did
not evaluate the predictive ability over the entire celiac
dataset, as it consists of several populations of differ-
ent ethnic background, and case/control status may be
confounded by effects such as population stratification.

SparSNP induced models with AUC of up to 0.9 and
explained phenotypic variance of up to ∼ 40% (Figure 3),
almost identical to that of glmnet, except for small differ-
ences at the extremes of the λ path; the differences may
be due to the fact that SparSNP and glmnet use different
loss functions and have different parameters such as con-
vergence tolerances. LIBLINEAR showed maximum AUC
similar to glmnet and SparSNP, but much lower AUC
for smaller number of SNPs in the model. LIBLINEAR-
CDBLOCK showed consistently lower AUC over the
range of costs used: a grid of 30 costs C ∈[ 10−4, 103].
Varying the costs did not substantially change the AUC.
Since LIBLINEAR-CDBLOCK used an �2-SVM, which
does not induce sparse models and does not natively pro-
duce a range of model sizes, we show results for a model
with all 516,504 SNPs, averaged over all penalties.
Due to the high computational cost of running Hyper-

Lasso, we were not able to run as comprehensive a grid
search; therefore, we performed only two replications of
3-fold cross-validation, using the DE prior with parame-
ter λ = {2, 4, 8, 10, 12, 14, 16, 18, 20} over 10 iterations (10
posterior modes), and averaged the AUC over the modes.
Importantly, while SparSNP achieved AUC better than

or comparable to the other approaches, the resources con-
sumed were far from being equal — SparSNP performed
3-fold cross-validation using a total of about 1 GiB of
RAM, whereas LIBLINEAR required about 24GiB, and
glmnet used up to 27GiB (the total number of samples
used in the cross-validation training phase is ∼ 1650,
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Figure 3 Prediction experiments. LOESS-smoothed AUC and explained phenotypic variance (denoted “VarExp”), for the Finnish celiac disease
dataset, for increasing model sizes. AUC is estimated over 20 × 3-fold cross-validation, except for HyperLasso for which we ran only 2 × 3-fold cross-
validation due to the high computational cost. The explained phenotypic variance is estimated from the AUC using the method of [11], assuming a
population prevalence of celiac disease K = 1%. Note that glmnet, HyperLasso, LIBLINEAR (denoted “LL-L1”), and SparSNP used an �1-penalised
model, whereas LIBLINEAR-CDBLOCK (denoted “LL-CD-L2”) used an �2-penalised model (non sparse), inducing a model using all 516,504 SNPs,
therefore it is shown as a horizontal line across all model sizes. Note that tuning the �2 penalty for LIBLINEAR-CDBLOCK resulted in very similar AUC.

or 2/3 of the total Finnish subset). Both LIBLINEAR-
CDBLOCK and HyperLasso used low amounts of mem-
ory: LIBLINEAR-CDBLOCK used about 210MiB of RAM
(using 50 disk-based blocks), and HyperLasso used a max-
imum of only 2GiB (roughly the size of the training data),
however, it was by far the slowest.
We also evaluated how the SNPs found by each method

agreed with each other, when tuned to select 128 SNPs
on the entire Finnish dataset (Figure 1 in Additional
File 2), Overall, the sparse methods had high correlations
of their SNP weights (≥ 0.86), with lower correlations for
LIBLINEAR-CDBLOCK (0.21–0.23). SparSNP and glm-
net shared a high proportion of the 128 non-zero weight
SNPs (0.71), whereas LIBLINEAR-L1 and HyperLasso
shared lower proportions of their selected SNPs (0.23–
0.43), and LIBLINEAR-CDBLOCK shared the lowest pro-
portions with the others (0.09–0.12). The differences in
the selected SNPs are likely due to differences in the loss
functions, differences in the penalisation (�1 versus �2),
the numerical properties of each optimisation method,
and high LD, as the lasso tends to select one SNP of out a
group of highly correlated SNPs.

Discussion
Many genetic datasets have assayed thousands of samples
over hundreds of thousands of SNPs. Currently, sample
collections are expanding in multiple ways: by increasing
sample numbers, by imputing millions of SNPs with fine-
scale reference panels, and by performing whole-genome
sequencing. There is thus a pressing need for analytical
tools which are capable of handling suchmassive amounts
of data. Here, we have presented SparSNP, a tool to rapidly

perform phenotype prediction and variance estimation
from massive amounts of SNP data.
The main bottleneck in the analysis is the large amounts

of RAM required to fit models, which may not be feasible
or accessible to many users. SparSNP incorporates mul-
tiple computational strategies to minimise the amount of
RAM required. Even when such memory is available, the
time taken to read the data from disk becomes the bottle-
neck, rather than the fitting process itself. Thus, the time
taken to analyse the data may be long enough to preclude
a comprehensive analysis of the data, such as multiple
rounds of cross-validation or experimenting with various
model parameters. In contrast, SparSNPmakes it possible
to rapidly analyse such datasets— 10 replications of 3-fold
cross-validation of a 10,000-sample/500,000 SNP dataset
can be performed in about 2 hours, requiring only ∼ 1GiB
RAM. This time can be further reduced by running mul-
tiple instances in parallel on a compute cluster. While the
celiac disease dataset analysed here is quite large, recent
genome-wide studies are larger still, involving 1–6 mil-
lion SNPs, either by direct assay or by imputation from
HapMap [14,15] or 1000Genomes [16]. The number of
samples in current datasets is larger as well, and likely
to continue growing into the hundreds of thousands. For
such studies, fitting multivariable models using current
methods is not feasible with standard tools. SparSNP is
scalable in terms of memory requirements, and yet is
faster than comparable approaches, making it suitable for
analysing such datasets. Further, SparSNP achieved sim-
ilar or better predictive ability than other approaches.
Our future work will include adding the ability to include
external variables such as age and sex and other clinical
phenotypes in the model, having multiple genetic models
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(additive, dominant/recessive, heterozygous), the ability
to model multiple phenotypes, and potentially imple-
menting different loss functions such as Cox survival
models.

Implementation
SparSNP implements an efficient out-of-core version of
the cyclical coordinate descent method [6,17] for min-
imising �1-penalised loss functions. Here, we briefly dis-
cuss the main steps in th fitting process. See Additional
File 2 for the details of the computational procedure.

�1-penalised loss functions
The problem of fitting linear models can be cast as min-
imising a convex loss function L. The squared loss func-
tion over N samples in p variables is used for linear
regression and is defined as

L(β0,β) = 1
2

N∑
i=1

(yi − β0 − xTi β)2 + λ

p∑
j=1

|βj|, (1)

where xi ∈ R
p are the inputs for the ith sample, y ∈ R

N is
the N-vector of outputs, β0 ∈ R is the intercept, β ∈ R

p

is a p-vector of model weights. and λ ≥ is the user-chosen
penalty. Another loss function useful in classification is
squared-hinge loss, which is equivalent to a least-squares
support vector machine with a linear kernel [18], and
defined as

L(β0,β) = 1
2

N∑
i=1

max{0, 1−yi(β0+xTi β)}2+λ

p∑
j=1

|βj|,

(2)

where yi ∈ {−1,+1}. SparSNP uses the squared hinge loss
as the classification model for case/control data.

Out-of-core coordinate descent
�1 regression is a convex optimisation problem. However,
in general, it has no analytical solutions, and must be
solved numerically.We use a variant of coordinate descent
to numerically minimise the loss function.
In coordinate descent [6,17,19], each variable is opti-

mised with respect to the loss function using a univariable
Newton step, while holding the other variables fixed. Since
the updates are univariable, computation of the first and
second derivatives is fast and simple (we assume that all
our loss functions are twice-differentiable). The �1 penal-
isation is achieved using soft thresholding [17] of each
estimated weight β̂j

β̂j ← S
(
β̂j − sj, λ

)
, (3)

where sj = ∂L
∂βj

/ ∂2L
∂β2

j
is the Newton step with respect to βj

and S(·, ·) is the soft thresholding operator

S(α, γ ) = sign(α)max{0, |α| − γ }, γ ≥ 0.

Model selection
The λ penalty tunes the model complexity, and can be
selected in several ways. The simplest way is to leave it
fixed at some arbitrary value, however, this may result
in suboptimal performance if the number of selected
variables is too small or too large. A second way is to
pre-specify the number of non-zero SNPs required, and
then perform binary search for the λ penalty that pro-
duces the required number of SNPs [3]; SparSNP does
not support this option. The third and recommended way
is to use cross-validation, as implemented in SparSNP,
and choose a model or set of models that maximise the
cross-validated AUC. These models can then be tested on
an independent validation dataset to get unbiased esti-
mates of AUC. We have found cross-validation to work
well for genetic datasets of moderate to large size such
as those used here, such that the training and test sub-
sets are large enough and the case/control phenotypes
are roughly balanced in the data. For highly imbalanced
classes, other schemes such as stratified cross-validation
may be required; these are currently not implemented in
SparSNP.

Experimental setup
We employed two experimental setups, one for timing
comparisons and another for comparisons of predictive
ability.

Timing experiments
For input, SparSNP used the PLINK BED/FAM files, glm-
net read unpacked binary versions of the BED files into
R (one genotype per byte), LIBLINEAR read text files in
LIBSVM sparse format, and HyperLasso read text files in
its requisite text format. The time taken to convert the
PLINK BED files into the appropriate formats was con-
siderable, but not included in the timings reported here.
For SparSNP, the timings include the time to scale the
genotypes to zero-mean/unit-variance, fit the model, and
write the model weights to disk. For glmnet, LIBLIN-
EAR, and HyperLasso, the timings include the time to
read the genotypes from disk, fit the model, and write
the model to disk where appropriate. For LIBLINEAR-
CDBLOCK, timing included the time to split the data into
blocks and fit the model to the data. Since HyperLasso
was considerably slower than the other methods, we only
ran two simulations with it. The largest models allowed
was 2048 non-zero variables (excluding the intercept). For
LIBLINEAR, we used one default cost C = 1. LIBLINEAR-
CDBLOCK used m = 50 blocks with warm restarts. For
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HyperLasso, we used the double exponential (DE) with
hyperparameter λ = 1, for one iteration.
We ran all timing experiments on a 2.6Ghz dual-CPU

dual-core AMDOpteron 2218machine with 32GiB RAM,
running 64-bit Ubuntu Linux 8.04.4 with local disk drives.

Prediction experiments
For SparSNP and glmnet we used a grid of 20 decreas-
ing lasso penalties λ, such that decreasing penalties induce
models with more non-zero variables up to the maximum
allowed number of 1024. For LIBLINEAR we used a grid
of 30 costs C ∈[ 10−4, 103], since the penalty is expressed
as the cost C = 1/λ. Inputs for SparSNP and glmnet were
scaled to zero mean and unit variance. For LIBLINEAR
and LIBLINEAR-CDBLOCK, inputs were scaled to the
range [-1, +1] using svm-scale from LIBSVM.
We ran all prediction experiments on an Intel Xeon

X5550 2.67Ghz machine with 48GiB RAM, running Red
Hat Enterprise Linux Server 5.6, with networked disk
drives.

Data preparation
As with any association method, genotype-phenotype
associations that are in the data but not truly of bio-
logical origin, such as batch effects, may confound the
analysis, potentially resulting in the detection of spurious
associations and inflation of the apparent predictive abil-
ity. The use of an independent validation dataset is highly
recommended.

Missing data
For convenience, SparSNP implements simple random
imputation for missing genotypes, where missing geno-
types are randomly replaced with a genotype {0, 1, 2} (with
probability 1/3 each). When the proportion of missing-
ness is small and the genotypes are missing at random (for
example, no differential missingness between cases and
control), such a simple approach does not substantially
affect the predictive ability and does not introduce signifi-
cant spurious associations. However, when missingness is
high or differentiated between cases and controls, spuri-
ous associations can arise and we recommend either using
PLINK to filter SNPs and samples with high missingness,
or alternatively, imputing the missing data using a more
sophisticated method such as Beagle [20], IMPUTE [21],
or MACH [22].

Confounding effects
SparSNP does not account for possible batch effects,
which must be accounted for at the quality control stage.
Nor does SparSNP currently account for confounders
such as population stratification, admixing, or cryptic
relatedness; EIGENSTRAT [23] and PLINK can be used
to detect these and to filter the data accordingly.

Genetic Models
SparSNP implements models additive in the minor allele
dosage {0, 1, 2}. Othermodels, such as dominant/recessive
models or interaction models are currently not supported.

Applyingmodels to new data
SparSNP produces text files containing the model weights
for each SNP, and can be used in prediction mode to read
these weights, together with another BED file, to pro-
duce predictions for other datasets. Model weights are
with respect to the minor allele dosage for the training
data, and the reference allele may be different in another
dataset, possibly resulting in reversal in the sign of the
SNP effect. In addition, both the discovery and validation
datasets must contain the same SNPs in the same ordering
(marker names are not important). We recommend using
PLINK to ensure that both the discovery and validation
datasets contain the same SNPs and are encoded using the
same reference alleles.

Availability and requirements
Project name: SparSNP
Project home page: http://www.genomics.csse.unimelb.
edu.au/SparSNP
Operating system(s): 64-bit Linux and Mac OS X
Programming language: NA
Other requirements: Bash, R
License: binaries only, redistribution is allowed,
see website.
Any restrictions to use by non-academics:
no restrictions

Endnotes
ahttp://www.genomics.csse.unimelb.edu.au/SparSNP
bhttp://cran.r-project.org/web/packages/glmnet
chttp://www.csie.ntu.edu.tw/∼cjlin/liblinear
dhttp://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/cdblock
ehttp://www.ebi.ac.uk/projects/BARGEN/download/
HyperLasso

Additional files

Additional file 1: An example of a SparSNPworkflow, covering basic
quality control, training themodel on discovery data, applying the
model to validation data, plotting the results, and post-processing.

Additional file 2: Details of the implementation of SparSNP and
other supplementary results.
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