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Abstract

sub-workflows to the cloud infrastructure.

Background: Over the past decade the workflow system paradigm has evolved as an efficient and user-friendly
approach for developing complex bioinformatics applications. Two popular workflow systems that have gained
acceptance by the bioinformatics community are Taverna and Galaxy. Each system has a large user-base and
supports an ever-growing repository of application workflows. However, workflows developed for one system
cannot be imported and executed easily on the other. The lack of interoperability is due to differences in the
models of computation, workflow languages, and architectures of both systems. This lack of interoperability limits
sharing of workflows between the user communities and leads to duplication of development efforts.

Results: In this paper, we present Tavaxy, a stand-alone system for creating and executing workflows based on
using an extensible set of re-usable workflow patterns. Tavaxy offers a set of new features that simplify and enhance
the development of sequence analysis applications: It allows the integration of existing Taverna and Galaxy
workflows in a single environment, and supports the use of cloud computing capabilities. The integration of
existing Taverna and Galaxy workflows is supported seamlessly at both run-time and design-time levels, based on
the concepts of hierarchical workflows and workflow patterns. The use of cloud computing in Tavaxy is flexible,
where the users can either instantiate the whole system on the cloud, or delegate the execution of certain

Conclusions: Tavaxy reduces the workflow development cycle by introducing the use of workflow patterns to
simplify workflow creation. It enables the re-use and integration of existing (sub-) workflows from Taverna and
Galaxy, and allows the creation of hybrid workflows. Its additional features exploit recent advances in high
performance cloud computing to cope with the increasing data size and complexity of analysis.

The system can be accessed either through a cloud-enabled web-interface or downloaded and installed to run
within the user's local environment. All resources related to Tavaxy are available at http://www.tavaxy.org.

Background

Increasing complexity of analysis and scientific workflow
paradigm

The advent of high-throughput sequencing technologies
- accompanied with the recent advances in open source
software tools, open access data sources, and cloud com-
puting platforms - has enabled the genomics community
to develop and use sophisticated application workflows.
Such workflows start with voluminous raw sequences
and end with detailed structural, functional, and evolu-
tionary results. The workflows involve the use of
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multiple software tools and data resources in a staged
fashion, with the output of one tool being passed as in-
put to the next. As one example, a personalized medicine
workflow [1-3] based on Next Generation Sequencing
(NGS) technology can start with short DNA sequences
(reads) of an individual human genome and end with a
diagnostic and prognostic report, or potentially even
with a treatment plan if clinical data were available. This
workflow involves the use of multiple software tools to
assess the quality of the reads, to map them to a refer-
ence human genome, to identify the sequence variations,
to query databases for the sake of associating variations
to diseases, and to check for novel variants. As another
example, consider a workflow in the area of metage-
nomics [4-7]. Such workflow can start with a large
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collection of sequenced reads and end up with determin-
ation of the existing micro-organisms in the environ-
mental sample and an estimation of their relative
abundance. This workflow also involves different tasks
and software tools, such as those used for assessing the
quality of the reads, assembling them into longer DNA
segments, querying them against different databases, and
conducting phylogenetic and taxonomical analyses.

To simplify the design and execution of complex bio-
informatics workflows, especially those that use multiple
software tools and data resources, a number of scientific
workflow systems have been developed over the past dec-
ade. Examples include Taverna [8,9], Kepler [10], Triana
[11,12], Galaxy [13], Conveyor [14] Pegasus [15], Pegasys
[16], Gene Pattern [17,18], Discovery Net [19,20], and
OMII-BPEL [21]; see [22] for a survey and comparison of
some of these tools.

All such workflow systems typically adopt an abstract
representation of a workflow in the form of a directed
graph, where nodes represent tasks to be executed and
edges represent either data flow or execution dependencies
between different tasks. Based on this abstraction, and
through a visual front-end, the user can intuitively build
and modify complex applications with little or no pro-
gramming expertise. The workflow system maps the edges
and nodes in the graph to real data and software compo-
nents. The workflow engine (also called execution or enact-
ment engine) executes the software components either
locally on the user machine or remotely at distributed
locations. The engine takes care of data transfer between
the nodes and can also exploit the use of high performance
computing architectures, if available, so that independent
tasks run in parallel. This makes the application scientist
focus on the logic of their applications and no longer
worry about the technical details of invoking the software
components or use of distributed computing resources.

Within the bioinformatics community, two workflow
systems have gained increasing popularity, as reflected
by their large and growing user communities. These are
Galaxy [13] and Taverna [8,9]. Both systems are efficient,
open source, and satisfy to a great extent the require-
ments of the bioinformatics community. Taverna has
been developed primarily to simplify the development of
workflows that access and use analyses tasks deployed as
remote web and grid services. It comes with an asso-
ciated directory of popular remote bioinformatics ser-
vices and provides an environment that coordinates their
invocation and execution. Galaxy has been developed
primarily to facilitate the execution of software tools on
local (high performance computing) infrastructure while
still simplifying access to data held on remote biological
resources. Its installation includes a large library of tools
and pre-made scripts for data processing. Both systems
are extensible, allowing their users to integrate new
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services and tools easily. Each system offers log files to
capture the history of experiment details. Furthermore,
both systems provide web-portals allowing users to share
and publish their workflows: These are the myExperi-
ment portal for Taverna [23,24] and the Public Pages for
Galaxy [13]. The features of both systems are continu-
ously being updated by their development teams and
their user communities are active in developing and
sharing new application workflows.

However, since both Taverna and Galaxy have been
developed with different use cases and execution envir-
onments in mind, each system tends to be suited to dif-
ferent styles of bioinformatics applications. The key
differences between the two systems can be categorized
into three major classes:

1. Execution environment and system design: Taverna
is oriented towards using web-services for invoking
remote applications, while Galaxy is oriented
towards efficient execution on a local infrastructures.

2. Model of computation: Taverna includes control
constructs such as conditionals and iterations, and
data constructs that can handle (nested) lists (in
parallel) using a number of pre-defined operations.
These constructs are not directly available in Galaxy,
which puts a limitation on the types of workflows
that can be executed on Galaxy.

3. Workflow description language: Taverna uses the
XML-based language SCUFL for describing the
workflows, while Galaxy expresses workflows in its
own language using JSON format.

These differences lead to two major consequences:
First, some tasks can be implemented easily on one sys-
tem but would be difficult to implement on the other
without considerable programming effort. Second, a
(sub-) workflow developed on one system cannot be
imported and re-used by the other easily (ie., lack of
interoperability), which limits sharing of workflows be-
tween their communities and leads to duplication of de-
velopment efforts.

Our contribution

In this paper, we present Tavaxy, a pattern-based work-
flow system that can integrate the use and execution of
Taverna and Galaxy workflows in a single environment.
The focus of Tavaxy is facilitating the efficient execution
of sequence analysis tasks on high performance comput-
ing infrastructures and cloud computing systems. Tavaxy
builds on the features of Taverna or Galaxy providing
the following benefits:

o Single entry point: Tavaxy is a standalone pattern-
based workflow system providing an extensible set of



Abouelhoda et al. BVIC Bioinformatics 2012, 13:77
http://www.biomedcentral.com/1471-2105/13/77

patterns, and allows easy integration with other
workflow systems. It provides a single environment to
open, edit, and execute its own workflows as well as
integrate native Taverna and Galaxy whole- or sub-
workflows, thus enabling users to compose hybrid
workflows. Figure 1 summarizes the different integration
use cases at run-time and design-time levels in Tavaxy.
(The replacement of remote calls with local tools is
addressed in the next paragraph. The computation of
maximal external sub-workflows is a performance
optimization step discussed later in this paper.)

e Transparent use of local and remote resources: For
most programs, Tavaxy allows its user to choose
whether a task should run on local or remote
computational resources. Furthermore, if a Taverna
workflow is imported (e.g., from my Experiment),
Tavaxy offers users an option to replace calls to
remote web services automatically with calls to
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corresponding tools that run on a local computing
infrastructure, or vice versa. (Note that almost all
the workflows published on myExperiment are based
on using remote services). Changing the default
mode of invocation in either Taverna or Galaxy
requires programming knowledge, and it is difficult
to achieve by the non-programming scientist.

o Simplified control and data constructs: Tavaxy

supports a set of advanced control constructs (e.g.,
conditionals and iterations) and data constructs (e.g.,
nested lists) and allows their execution on the local or
remote computational infrastructures. The use of these
constructs, which are referred to as “patterns” in
Tavaxy, facilitates the design of workflows and enables
further parallelization, where the data items passed to a
node can be processed in parallel. The user of Tavaxy
has the extra advantages of 1) adding these constructs
to imported Galaxy workflows, and 2) using these
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Figure 1 Use diagram of integrating Taverna, Galaxy, and Tavaxy workflows. Tavaxy is a standalone workflow system that executes Tavaxy
workflows as well as integrates and executes Taverna and Galaxy workflows. Galaxy workflows are compatible with Tavaxy and can be imported
and executed directly on the system. For Taverna workflows, the integration can take place at either run-time or design-time. At run time, the
Taverna (sub-) workflows can be executed as a whole by calling the Taverna engine. They can also be saved as sub-workflows and used within
other Tavaxy workflows. At workflow design time, Taverna workflows are translated to the Tavaxy language, enabling them to be edited and
enhanced. In this case, the user has the option of replacing any of the remote calls in the Taverna workflow with calls to equivalent local tools.
Any remaining Taverna sub-workflow fragments can be directly executed using the Taverna engine. As an optimization, sub-workflows can be
encapsulated into maximal external sub-workflows so as to minimize execution overheads. The implementation section addresses the maximal
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constructs on the local infrastructures; features that
are available only in Taverna and only for remote tools.

Beyond these integration issues, Tavaxy provides the
following additional features that facilitate authoring and
execution of workflows:

o Enhanced usability: Tavaxy uses flowchart-like
elements to represent control and data constructs. The
workflow nodes are annotated with icons to reflect if
they are executed locally or remotely. The tool
parameters can be defined either at the design- or run-
time of the workflow. The data patterns offered in
Tavaxy further facilitate the composition of workflows,
making them more compact, and enable exploitation
of local high performance computing infrastructure
without any additional effort. Furthermore, each user
has an account associated with its data and each
workflow is further associated with its history as well
as previously used datasets within the user account.

e Modularity: Tavaxy is modular; it separates the
workflow composition and management modules
from the workflow engine. Its workflow engine is a
standalone application accepting both workflow
definitions and data as input. This feature, as will be
made clear later in the manuscript, is of crucial
importance for implementing control constructs and
for supporting cloud computing.

e High performance computing infrastructure support:
Tavaxy can readily run on a computer cluster, once a
job scheduler system (like PBS Torque or SGE) and
a distributed file system (like NFS) are installed. The
execution of parallel tasks is handled automatically
by the workflow engine, hiding all invocation details.

o Cloud computing support: Tavaxy is cloud computing
friendly, enabling users to scale-up their
computational infrastructure on a pay-as-you go
basis, with reduced configuration efforts. Through a
simple interface within the Tavaxy environment, a
user who has a cloud computing account (e.g., at the
Amazon AWS platform) can easily instantiate the
whole system on the cloud, or alternatively use a
mixed mode where his local version of the system
can delegate the execution of a sub-workflow or a
single task to a Tavaxy cloud instance.

In the remaining part of this section, we will review basic
concepts of workflow interoperability and workflow patterns
that contributed to the design and development of Tavaxy.

Related technical work

Workflow interoperability

Our approach described in this paper goes beyond the run-
time “black-box” invocation of one system from the other,
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which was used in the work of [25,26] to enable interoper-
ability between Galaxy and Taverna. To highlight the differ-
ence, the Workflow Management Coalition, WfMC, [27]
defines eight models, or approaches, for achieving inter-
operability between workflow systems. These models can
be grouped broadly into two major categories: 1) Run-time
interoperability, where one system invokes the other system
through APIs. 2) Design-time interoperability, where the
two systems are based on a) the same model of computa-
tion (MoC); or b) the same languages (or at least transla-
tion between languages is feasible), or c) the same
execution environment (or at least the existence of an ab-
stract third-party middleware). These three design-time
issues are discussed in detail in the paper of Elmroth et al.
[28].

As discussed earlier, both Taverna and Galaxy have dif-
ferent models of computation and different languages. In
this paper, we use ideas from the workflow interoperabil-
ity literature and introduce the concept of patterns to in-
tegrate and execute Taverna and Galaxy workflows in
Tavaxy at both run-time and design-time levels..

Workflow patterns

Workflow patterns are a set of constructs that model a
(usually recurrent) requirement (sub-process); the de-
scription of these constructs is an integral part of the
pattern definition. Workflow patterns, despite being less
formal than workflow languages, have become increas-
ingly popular due to their practical relevance in compar-
ing and understanding the features of different workflow
languages. As originally introduced in [29], workflow
patterns were used to characterize business workflows
and were categorized into four types: control flow, data
flow, resource and operational, and exception handling
patterns. We note that the concept of patterns is in gen-
eral applicable to scientific workflows. In [25], we used
this concept for the first time to demonstrate the feasi-
bility of achieving interoperability between Taverna and
Galaxy. Our work in this paper extends this demonstra-
tive work by providing a larger set of the patterns, and
also by providing a complete implementation of them
within a functional and usable system.

Implementation

Tavaxy model of computation and language

Tavaxy workflows are directed acyclic graphs (DAGs),
where nodes represent computational tools and edges
correspond to data flows or dependencies between them.
The workflow patterns defined and used in Tavaxy have
special meanings in this DAG, as will be explained in de-
tail later in the pattern implementation subsection. The
Tavaxy engine is based on a data flow model of execu-
tion [22,28,30-34], in which each node (task) can start
computation only once all its input data are available.
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The Tavaxy workflow engine is responsible for keeping
track of the status of each node and for invoking its exe-
cution when the predecessor nodes have finished execu-
tion and when its input data is completely available.
When executing on a single processor, where tasks are
executed sequentially, the order of task invocation can
be determined in advance. This is achieved by traversing
the DAG and scheduling a node (i.e., adding it to the
ready queue) only if all the its predecessor nodes are
already scheduled. As such, this scheduling is referred to
as a static scheduling [34]. When executing on multiple
processors, independent ready tasks can be executed in
parallel. In this case, the Tavaxy engine keeps looking for
ready tasks and launches them concurrently. On multi-
core machines, the engine uses multi-threading to han-
dle the execution of concurrent tasks. On a computer
cluster, it passes the concurrent tasks to a job-scheduler,
which in turn distributes them for execution on different
cluster nodes. The default job-scheduler used in Tavaxy
is PBS Torque, and it is set-up over a shared file system
(NES for local setting and S3 for cloud infrastructure) to
guarantee availability of data for all cluster nodes.

A Tavaxy workflow is defined and stored in tSCUFL
format, which is similar in flavor to the Taverna SCUFL
format. However, there are two main differences between
the two formats: 1) A node’s parameters are represented
in tSCUFL by default as attributes of the respective tool,
whereas they are considered as input items in SCUFL. 2)
The workflow patterns (e.g., conditionals and iteration)
are explicitly specified in tSCUFL but implicitly defined
in SCUFL.

Integrating Galaxy and Taverna workflows in Tavaxy
Tavaxy provides an easy-to-use environment allowing
the execution of Tavaxy workflows that integrate
Taverna and Galaxy workflows as sub-workflows. Such
integration can be achieved at both design-time and run-
time:

For run-time integration, Tavaxy can execute both Galaxy
and Taverna (sub-) workflows ‘as is, with no modification.
For Galaxy workflows, this is straightforward, because the
Tavaxy engine is compatible with the Galaxy engine and
follows the same model of computation. For Taverna work-
flows, Tavaxy can execute a Taverna (sub-) workflow by in-
voking the Taverna engine through a command line
interface that takes both the Taverna (sub-) workflow file
and its data as input. The Tavaxy mapper component
assures the correct data transfer between the Taverna en-
gine and other nodes. This is achieved by setting source
and destination directories and input/output file names in
appropriate manners.

For design-time integration, 7Tavaxy imports and
manipulates workflows written in either Galaxy or
Taverna formats. Tavaxy can import a Galaxy workflow
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file to its environment, allowing its modification and exe-
cution. The engineering work for this step includes
translation of the JSON objects of the Galaxy workflow
to the tSCUFL format of Tavaxy. For Taverna workflows,
the implementation addresses the differences in the
model of computation and workflow languages. Specific-
ally, the workflow engine of Tavaxy is a data-flow
oriented one, with no explicit specification of control
constructs, while the Taverna engine supports both data-
and control-flow constructs.

The Taverna workflow language is SCUFL/t2flow but
that of Tavaxy is tSCUFL. To overcome these differences,
we use the concept of workflow patterns to 1) execute
(“simulate”) the execution of Taverna control and data con-
structs on the data-driven workflow engine of Tavaxy; and
2) to provide a pragmatic solution to language translation
where a Taverna (sub-) workflow is decomposed into a set
of patterns that are then re-written in Tavaxy format. The
following section introduces the Tavaxy workflow patterns
and their implementation.

Workflow patterns: Definitions and implementation

We divide the Tavaxy workflow patterns into two
groups: control patterns and data patterns. In the re-
mainder of this subsection, we define these patterns and
their implementation on the Tavaxy data-flow engine.

Control patterns

Control patterns specify execution dependencies between
tasks. For most control patterns, data flow is still
required and is defined as part of the control pattern
specification itself. The following are the key control pat-
terns used in Tavaxy:

1. Sequence: In this pattern, task B runs after the
termination of task A, as shown in Figure 2(a). The
data produced by A is subsequently processed by B
and moves over an edge whose start is an output
port at A and whose destination is an input port at
B. The concept of ports makes it possible to select
which pieces of data produced by A are passed to B.
Desired execution dependencies involving no data
can be achieved on the Tavaxy data flow engine by a
special token (dummy output) from A to B. The
current engine of Tavaxy does not support
streaming, and the tasks are stateless, according to
the discussion of Ludischer et al. [31].

2. Synchronous Merge: A task is invoked only if all its
predecessor tasks are executed; Figure 2(b) depicts
this pattern with three tasks A, B, and C, where task
A and B should be completed before C. This pattern
also specifies that task C takes two inputs (one from
A and another from B) and the data flowing from A
and B to C goes to different input ports.
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Figure 2 Workflow patterns of Tavaxy. Workflow patterns modeling the execution of workflow tasks. The parts (a), (b), (c), (d), and (e) represent
the sequence (pipeline) pattern, the synchronous merge, the synchronous fork, multi-choice fork, and iteration control patterns, respectively. The
part (f) shows how a list of data items is processed, and (g) shows dot/cross product operation. The parts (h) and (j) represent the data select and
data merge patterns, respectively.

3. (Parallel) Synchronous fork: Figure 2(c) depicts this executes this node as a usual task. The program for

pattern with three tasks A, B, and C. Tasks B and C
run after the execution of A. The data output from
A flows according to one of two schemes, as
specified by the user through settings of ports: 1)
One copy of the data output of A is passed to B and
another one to C. 2) Different data output items of A
are passed to B and C. The tasks B and C can always
run in parallel, because their input set is already
available and they are independent.

. Multi-choice fork: This pattern includes the use of an
if-else construct to execute a task if a condition is
satisfied. This condition is defined by the user
through an implementation of a ¥ function. Figure 2
(d) shows an example, where either B or C is
executed, depending on the ¥ function, whose
domain may include the input data coming from A.
Note that the input data to B and C, which can
come from any other node including 4, is not
specified in the Figure. Because this pattern specifies
run-time execution dependencies, it is not directly
defined over a data-flow engine. Therefore, we
implemented this pattern on the Tavaxy engine by
creating a special node containing a program that
implements the switch function. The engine

switch pattern takes the following as input: 1) the
multi-choice condition, and 2) the data to be passed
to the next tasks. It then checks the condition and
passes a success signal to the branch satisfying the
condition and passes fail signal to the branch
violating that condition. The success and fail signals
are special tokens recognized by Tavaxy nodes.

. Iteration: This pattern specifies repetition of a

workflow task. In Figure 2(e), the execution of node
B, which could be a sub-workflow, is repeated many
times. The number of iterations can be either fixed
or dependent on the data produced at each step. In
each iteration, an output of task B can replace the
corresponding input. For example, a parameter file
can be passed to B and at each iteration this
parameter file is modified and passed again to B.
Node C, which represents any node that uses the
output of B, is invoked only after the iteration
pattern terminates. The iteration pattern is
represented by a special node in Tavaxy and the
associated program that implements it takes the
following items as input: 1) the task (or sub-
workflow) that iterates, 2) its parameters, 3) the
termination criteria (defined by python script), and
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4) information about feedback data. The iteration is
implemented as a do-while loop, where the tasks in
the body of the loop are encapsulated as a sub-
workflow. Tavaxy is invoked recursively to execute
this sub-workflow in each iteration. The output of
the iteration pattern is specified by the user and is
passed to the next task upon termination. The loop
iterations are in general stateless; but the user can
modify the included sub-workflow to keep state
information.

Advanced data patterns and types

1. (Nested) Lists: In this pattern, the input to a node is
a list of # items. The program associated with the
node is invoked independently n times on each of
the list items. Figure 2(f) shows an example where a
list ([x,. . .x,]) is passed to A. The output is also a
list ([A(x}),. . ,A(x,)]). Note that if the list option is
not specified in the node, then the respective
program is invoked once and the input list is
handled as a single object, as in the sequence
pattern. For example, a program for Primer design
would consider a multi FASTA file as a list and is
invoked multiple times on each item (sequence),
while an alignment program would consider the
sequences of the multi-FASTA file as a single object
to build a multiple sequence alignment. In Tavaxy, it
is possible to process the list items in parallel,
without extra programming effort. Furthermore, a
list can be a list of lists defined in a recursive
manner, so as to support a nested collection of
items, according to the notion of [9,32]. The jobs
corresponding to the processing of every list item are
stateless, according to the discussion of Ludédscher
et al. [31]. However, the script implementing the list
keeps track of the running jobs, and reports an error
message if any job failed.

Over this list data type, we define a set of operators
that can be used by the main program associated with
the node.

e Dot product: Given two lists A/ay,. . ,a,] and
B/by,..,b,,], n < m as input, a dot product operation
produces the # tuples [(a;,b;),...(a,,b,)] which are
processed independently by the respective program,
see Figure 2(g). (lists (0,1 - . -b,,] items are ignored.)
This operation can be extended to multiple lists.

e Cross product: Given two lists Afa;,. . .,.a,/ and
B[b;,..,b,,), n <m as input, a cross product operation
produces the set of (1 x m) tuples {(a,-, bj) ’, i€
[1..n],j € [1..m]}, which are processed independently
by the respective program. This option can be used,
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for example, for comparing two protein sets (each
coming from one species) to each other to identify
orthologs. If A = B, then we compare the set of
proteins to themselves to identify paralogs.

The list operations are implemented by a generic tool-
wrapper of Tavaxy. As we will explain later in the sub-
section describing the architecture of Tavaxy, this wrap-
per is what is invoked by the workflow engine, and it is
the one that invokes the program to be executed. The
wrapper pre-processes the input and can make parallel
invocations on different list items if Tavaxy is executing
on a multiprocessor machine. The data collect pattern
(specified below) can then be used to combine the
results back in list format.

2. Data select: Consider Figure 2(h) with the three
tasks A, B, and C. The data select pattern takes as
input 1) Output data from A and B, denoted by @
and b, respectively. It takes also an implementation
of a function ¥ that operates on properties of 4 or
b. Without loss of generality, the output of this
pattern is 4, if ¥ is true, otherwise it is b. The
output of the pattern can be passed to another node
C. This pattern is implemented in a similar way to
the multi-choice pattern, where it specifies selection
of certain data flow.

3. Data collect (Merge): This pattern, which is depicted
in Figure 2(j), specifies that the data outputs of A
and B are collected (concatenated) together in a list;
i.e., the output is 4,b|. Note that @ or b could be
a list of objects as well,"which leads to creation of
nested collections. This pattern is implemented in a
similar way to the data select pattern, where data
items are collected.

Tavaxy architecture

Figure 3 (left) shows the architecture of Tavaxy, which is
composed of four main components: 1) workflow author-
ing module, 2) workflow pattern database, 3) workflow
mapper, and 4) workflow engine. On top of these compo-
nents, we developed user accounts to maintain users work-
flows and data. We also developed a repository of public
workflows that is shared between users. Figure 3 (upper
right) shows the main Tavaxy page containing links to dif-
ferent system parts and utilities.

Workflow authoring tool and language

The Tavaxy workflow authoring module (workflow edi-
tor) is a web-based drag-and-drop editor that builds on
the look and feel of Galaxy with two key modifications.
First, it supports a user-defined set of workflow patterns
that are similar to those used in a traditional flowchart.
Second, it allows users to tag which workflow nodes
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execute on the local infrastructure and which execute
using remote resources. For each node, there is a form
that can be used to set the node’s parameters. Further-
more, each node has a specific port that can accept a
parameters file that can be used to over-write parameter
values set through the web-interface. The use of a para-
meters file allows changing of the value of parameters at
run time. Figure 3 (lower right) shows the Tavaxy author-

ing module and highlights some of its key features.

Workflow mapper

The workflow mapper performs the following set of

tasks:

o The mapper parses the input tSCUFL file and checks
its syntax. It translates the Galaxy JSON format and
TavernaSCUFL format to the TavaxytSCUFL format.

Depending on user choices, it can replace remote

Taverna calls with calls to corresponding local tools.

The nodes that are still executed remotely by the
Taverna engine will be encapsulated as a sub-

workflow. Each sub-workflow is then associated with
a Tavaxy node that invokes the Taverna engine so as

to execute the corresponding sub-workflow. The

mapper sets the names of the sub-workflow input
and output files in an appropriate manner so that

the data correctly flows between the nodes.
Additional file 1 (in the supplementary material)
contains the re-writing rules for translating SCUFL
to tSCUFL formats, including control constructs and
replacement of remote services with local tools.

e The mapper optimizes the execution of a workflow
by identifying the tasks that will be executed by the
Taverna engine and aggregating them into maximal
external sub-workflows.. A sub-workflow is called
external if it includes only Taverna nodes and it is
maximal if no extra external nodes can be added to

it. The mapper determines the maximal external

sub-workflows using a simple graph-growing
algorithm, where we start with a sub-graph
composed of a single Taverna node and keep adding
external nodes to this sub-graph provided that there
are edges connecting the new nodes to the sub-
graph and no cycles are introduced. To find the next
maximal external sub-workflow, we move to the
next non-processed external node. After sub-
workflow identification, the mapper encapsulates
each maximal external sub-workflow in a new node
and adjusts the input and output ports in an
appropriate manner. Accordingly, the Taverna engine
is invoked only once for each maximal external sub-
workflow, which avoids the overhead of multiple
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Taverna calls. Note that Taverna uses multi-
threading to handle execution of independent tasks,
including remote invocations. Hence, the use of
maximal external sub-workflows with remote calls
entails no loss in efficiency.

Workflow engine
The Tavaxy engine is based on the data flow model of
execution discussed earlier in this section. It is written in
Python, based on some Galaxy functions to save develop-
ment time. The Tavaxy engine (compared to the Galaxy
engine) is standalone and not tightly coupled with the
web-interface and database-interface; ie., it can be
invoked programatically or using a command line inter-
face. Furthermore, it can invoke itself in a recursive man-
ner, which enables the implementation of different
patterns and integration of heterogeneous workflows. By
building on some of core features of Galaxy engine, the
Tavaxy engine can be regarded as an extended and engi-
neered version of that of Galaxy. The Taverna engine is
invoked as any program (secondary engine) to achieve
run time interoperability with Taverna workflows and to
use it in invocation of remote services.

All local tools in Tavaxy are wrapped within a generic
wrapper that is invoked by the engine.

This wrapper is responsible for the following:

o The wrapper decides whether the associated tool is
executed or not, depending on reception of a special
token (dummy data). The special token can correspond
either to 1) execution dependency or 2) “do-not-
execute” or “fail” signal from the preceding node, as in
the case of the multi-choice pattern. In the former case,
the wrapper executes the respective computational tool,
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while in the latter case, it will not invoke the tool and
further passes the token to the output ports.

o It handles the list patterns by determining the list
items, executing list operations, and invoking the
respective program (in parallel) on list items.

e It uses cloud computing APIs to execute tasks on
cloud computing platforms. The use of cloud
computing is discussed below in more detail.

Workflow pattern database

The workflow pattern database stores the definition and
implementation of the workflow patterns used in Tavaxy.
It also stores how the nodes associated with these patterns
are rendered on the workflow authoring client. This pat-
tern database is extensible by the user, who can define new
patterns according to the rules of the Tavaxy system.

Use of cloud computing

As briefly mentioned before in the introduction, we provide
three modes for using cloud computing: 1) whole system
instantiation, 2) sub-workflow instantiation, and 3) tool
(service) instantiation. To further simplify the use of the
first mode, we installed an instance of Tavaxy (including
the whole web-interface and tools) on an Amazon AWS
virtual machine and deposited a public image of it at the
Amazon web-site. A user who has an Amazon account can
directly start the image and use it. Based on Amazon APIs,
this image can establish a computer cluster upon its activa-
tion. The user can specifically define the type of nodes (e.g.,
large or extra large) and their number. The Amazon S3
storage is used as a shared storage for the computer cluster.
We developed several interface functions that manage data
transfer among the compute nodes and the shared storage
of the cluster at run time. Figure 4(left) shows a screen shot
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Figure 4 Use of cloud computing in Tavaxy. Left: The web interface for setting the computer cluster on the cloud. Right: The architecture of
Tavaxy showing the local and cloud versions of the system. The data flows from the local version to either the mounted disk attached to the main
machine or to the persistent S3 storage. The S3 storage serves two purposes: 1) persistent storage and 2) shared storage for the computer cluster.
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of the Tavaxy interface page, where the user can configure
the cluster and storage.

In the second mode, the user already has a Tavaxy version
installed on his local machines (called local Tavaxy) and
delegates the execution of one or multiple sub-workflows to
be executed on the cloud. To support this scenario, a light-
weight version of Tavaxy has been deposited at the Amazon
platform as a virtual machine image. From a simple user
interface in the local Tavaxy, the user can start and config-
ure a cloud cluster using the prepared 7avaxy image.

At run-time, the local version of Tavaxy communicates
with the cloud counterpart, using a simple asynchronous
protocol (similar to the REST protocol), to send the sub-
workflow, execute it, and retrieve the results. The input
and output data related to such a sub-workflow flow
according to one of two scenarios:

1. The input data is sent to the mounted disk of the
main cloud machine along with the workflow to be
executed. After processing, the output is sent back to
the local Tavaxy. After termination of the machine,
the input and result data are lost, unless they are
moved by the user to a persistent storage. This
scenario is useful in case no computer cluster is
needed.

2. The input data is sent to a shared volume in the
persistent S3 storage (this can be done offline),
where the compute nodes of the computer cluster
can easily access it. Because reads and writes to S3
require the use of Amazon APIs, we developed
special scripts to facilitate this access between the
local Tavaxy and S3 on one side and between the
compute nodes and S3 on the other side. After
execution of the sub-workflow, a copy of the output
is maintained on the S3 and another copy is sent to
the local Tavaxy to complete the execution of the
main workflow.

The third mode is a special case of the second mode,
where the user can delegate the execution of only a sin-
gle task to the cloud. For this mode, we also use a simple
protocol to manage the data transfer and remote execu-
tion of the task on the cloud. Figure 4(right) shows the
architecture of the cloud version of Tavaxy and the data
flows among its components.

Results and discussion

Accessing Tavaxy

There are different ways to access and use the Tavaxy
system from its main home page:

1. Downloadable version: The whole Tavaxy system,
with all features described in this manuscript, can be
downloaded for local use. The bioinformatics
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packages are provided in a separate compressed
folder, because we assume that some users already
have installed the packages of interest on their local
systems and just need the Tavaxy system. The
packages currently include about 160 open source
tools, coming from EMBOSS [35], SAMtools [36],
fastx [37], NCBI BLAST Toolkit [38-40], and other
individual sequence analysis programs. Addition of
extra tools is explained in the Tavaxy manual.

2. Web-based access: We offer a traditional web-based
interface to a Tavaxy instance for running small and
moderate size jobs. For large scale jobs, we
recommend the use of cloud version.

3. Cloud-computing based access: In this mode, each
user creates a Tavaxy instance with the hardware
configuration of choice on the AWS cloud. The
interesting feature in this model is that multiple
users may have multiple Tavaxy systems, each with
different configuration (number and type of ‘virtual
machines). The Tavaxy instances on the cloud
already include the 160 tools currently tested. They
also include a number of databases to be used with
the cloud machines, such as the NCBI (nucleotide
and protein) and swissprot databases.

Pre-imported workflows

At the time of preparing this manuscript (June 2011),
the Taverna repository myExperiment contained 557
workflows in SCUFL (Tavernal) format and 554 work-
flows in t2flow format (Taverna2). By manual inspection,
we found that 296 workflows (96 in SCUFL format and
200 in t2flows format) are related to the sequence ana-
lysis domain, which is the main focus of this version of
Tavaxy. To help the community, we already imported all
these workflows into the Tavaxy environment, and
arranged them in a special web-accessible repository for
public use. We also provided the user with optimized
versions of the sequence analysis workflows, where many
of the web-services are replaced with local invocations of
the corresponding local tools distributed with Tavaxy.
We also imported all public Galaxy workflows from the
Galaxy Public Pages and added them to this repository.
The workflows imported from both the Taverna and
Galaxy repositories are included in the Tavaxy system,
and will be kept up-to-date on its web-site. These work-
flows can serve as “design patterns” that can can be used
to speed up workflow development cycle, when develop-
ing more complex workflows.

Experiments overview

In the following sub-sections, we introduce two case
studies that demonstrate the key features of Tavaxy. In
the first case study, we demonstrate 1) how Taverna,
Galaxy, and Tavaxy sub-workflows can be integrated in a
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single Tavaxy workflow, highlighting both the integration
capabilities and use of workflow patterns; and 2) the
optimization steps included before the execution of
imported workflows and their effects on the performance
of the system. In the second case study, we demonstrate
1) the use of Tavaxy for a metagenomics workflow based
on NGS data; 2) the advantages of using advanced data
patterns in facilitating the workflow design and support-
ing parallel execution; 3) the speed-up achieved by using
local HPC infrastructure; and finally 4) the efficient and
cost-saving use of cloud computing.

Case study I: Composing heterogeneous sub-workflows

on Tavaxy

Figure 5 shows a workflow for finding homologous pro-
tein sequences and analyzing them. The workflow starts
with reading a DNA/protein sequence from the user. If
the input is a DNA sequence, it is translated to a protein
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sequence. The input sequence is passed to BLAST
[38,39] to find similar sequences. The output of BLAST,
which is a list of Genbank IDs, is then compared to a
user-provided list of sequence IDs to exclude common
sequences from the output list. The protein sequences of
the exclusive IDs are then retrieved and passed to the
programs ClustalW [41,42] and MUSCLE [43] for com-
puting multiple alignment. ClustalW is also used for
computing a phylogenetic tree.

Searching the myExperiment repository, there is
already an existing Taverna implementation for most of
the desired workflow, deposited under the name “work-
flow_for_protein_sequence_analysis” [44], and Figure 6
shows its implementation as it appears in the Taverna
authoring module. The missing functionality in this
Taverna workflow are the two parts highlighted in
Figure 5, including the parts for translating the DNA se-
quence into protein sequence and the one for MUSCLE-

Input Protein
Sequence List
:
: I::l
' Exit
g e
Translate ’
to Protein =
—
Tavaxy | S :
Sub-workflow BLAST core
: workflow
Extract
Gene IDs
Extract
Duplicates
A
Retrieve
Sequences Galaxy
___________________________ Sub-workflow
Clustalw P
ii N Consensus
|_Plot_| Get Pairwise

Distances

Compute

Phylogeny

Figure 5 Protein analysis workflow. Workflow for finding and analyzing homologous protein sequences. The highlighted parts are extra
sub-workflows from Galaxy and Tavaxy, and the remaining parts correspond to a Taverna workflow already deposited at myExperimentweb-site.
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consensus. In the original Taverna implementation, the
software tools BLAST, ClustalW, and phylogeny plotting
are invoked through web-service interfaces. The other
intermediate steps are executed by built-in Taverna
programs.

We downloaded the Taverna workflow and imported it
into Tavaxy; Figure 7 shows the same workflow in the
Tavaxy environment. At this step, the user may choose
to execute this workflow as it is from Tavaxy, or may
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choose to optimize the execution of the workflow and/or
customize it by adding further tasks. For example, for this
workflow, the user can replace web-services with equiva-
lent locally installed tools through a simple user interface.
The workflow mapper carries out this replacement and
can, according to user choices, coalesce the remaining
Taverna tasks into maximal sub-workflows, as described
earlier in the Tavaxy implementation section. In this ex-
ample, we decided that the ClustalW and the phylogeny
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Figure 6 Taverna implementation of the protein analysis workflow. Taverna implementation of the workflow in Figure 5. All program
parameters (e.g., BLAST tool to be used and UPGMA NJ option) are considered as input to the workflow. High resolution versions of the figures of
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optimization step, as in Figure 8.

Figure 7 Imported Tavernaworkflow in Tavaxy. The imported Tavernaworkflow in Figure 6. The Tavaxy switch pattern is explicitly represented.
The switch patterns are represented by diamond shapes. The upper switch pattern checks if the input sequence is DNA. If false, the lower switch
pattern checks if it is a protein one. The dashed polygons mark two maximal external sub-workflows which will be encapsulated in the

analysis parts of the workflow run on the local infrastruc-
ture, while the BLAST part still runs remotely. Figure 8
shows the optimized version of this workflow, where the
maximal Taverna sub-workflows are computed. The func-
tionality of this workflow can be augmented with further
tasks. First, we re-used a native Galaxy (sub-) workflow
that computes multiple alignment using the MUSCLE pro-
gram and computes the consensus sequence. Second, we
added a Tavaxy sub-workflow, in which the DNA
sequences are translated into protein sequences, instead of
ignoring processing them. To link the translated sequences
to the other parts of the workflow for further analysis, the
data merge pattern is used to pass the protein sequences.
These extra parts are highlighted in Figures 5 and 8.

Measuring the performance

We conducted an experiment to evaluate the overhead
associated with invoking the Tavern engine to execute re-
mote tasks, before and after the optimization step. We
used the original Taverna workflow and its imported ver-
sion (i.e., we did not use the extra Galaxy and Tavaxy sub-
workflows shown in Figure 8), with the list of input protein
IDs (for checking duplicates) being empty. We measured
the running time of this workflow with respect to three
different execution scenarios. In the first scenario, the ori-
ginal Taverna workflow was executed on Taverna, where
the tasks are executed remotely. In the second scenario,

the workflow was executed after replacing the remote tools
with equivalent local ones (except for BLAST). In the third
scenario, the workflow was executed after conducting the
optimization step to reduce the number of invocations of
the local Taverna engine.

For this experiment, we used the example protein se-
quence distributed with the Taverna workflow on myEx-
periment. We also used another set of proteins used by
Kerk et al. [45] to update the Protein Phosphatase data-
base with novel members. The basic idea of their work is
to use a set of representative human proteins from differ-
ent phosphatase classes to identify homologs from differ-
ent genomes. It is worth mentioning that the workflow
at hand automates most of the manual steps conducted
in the study of Kerk et al. [45]. Hence, it can be used to
systematically and automatically revisit the protein phos-
phatase repertoire.

Table 1 shows the average running times for the differ-
ent execution scenarios specified above. The experiments
were conducted on an 8 core machine (AMD Opteron
1.2 GHz processors) and 64 GB RAM. It can be noted
that the workflow is not compute-intensive, as it handles
one protein sequence at a time and the amount of trans-
ferred data on the web is not too large. Therefore, it does
not take much time to execute on Taverna. Running the
workflow from 7Tavaxy after using local tools without
optimization led to higher execution time due to the
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overhead associated with the invocation of the Taverna
engine at each step. After optimization into maximal ex-
ternal sub-workflows, this time decreased and the over-
head was minimized. We note that the time on Tavaxy
for the last five proteins is slower than that of Taverna.
The reason for this is that these proteins are shorter than
the others, which means short running time. Hence, the
overheads of calling Taverna outweigh the gain in saving
data transfer and using local tools. It is important to note
that this overhead is proportional to the complexity of
the workflow and not to the data size. This means that it
would be neglected for time consuming experiments.
Despite the differences in the design of the Taverna,
Galaxy, and Tavaxy engines, we performed an extra ex-
periment to compare their performance. We used the sub-
workflow in this case study, including the BLAST and
ClustalW calls, as a test workflow. This sub-workflow is
highlighted in Figure 5 and denoted as ‘core workflow’. For
Taverna, we used the local installation of the programs
and we wrote special shell scripts to run them on the local
infrastructure. (This is not a usual use case for using
Taverna and it is not a straightforward task for the non-
programming scientist.) The results of this experiment,

which are shown in Table 2, indicates that the performance
of the three systems is very similar. We note a little over-
head when using Galaxy and Tavaxy, because the engines
of both systems are designed for multiple users, while the
Taverna engine is desktop based serving a single user. We
also note that the Tavaxy engine, as expected, is a little

Table 1 The average running times for the protein workflow

Protein Name Taverna Tavaxy-local Tavaxy-optimized

NP_061857.3 (gi|239047414)  4:10 8:05 3:.04
NP_203747.2 (gi|37674210) 417 8:45 316
NP_060327.2 (gi|24586675) 4:36 7:36 3:21
QIUNHS5.1 (gi[55976620) 431 7:24 313
060729.1 (gi[55976216) 4:35 718 3.03
P30304.2 (gi|50403734) 2:50 8:30 3:01
P30305.2 (gi[21264471) 2:50 830 3:.01
NP_001781.2 (gi|125625350)  1:48 7:22 3:20
NP_054907.1 (gi|7661832) 2:08 7:36 2:54
Example seq. 1:21 717 2:44

The average running times in minutes for different protein sequences and for
different execution scenarios of the protein homology workflow. The last
protein, Example seq., is the example protein distributed with the
Tavernaworkflow. The other proteins are from the study of [45].



Abouelhoda et al. BVIC Bioinformatics 2012, 13:77
http://www.biomedcentral.com/1471-2105/13/77

slower than that of Galaxy. This can be attributed to the
overhead associated with the extra wrapper module devel-
oped for handling the patterns and cloud functionalities.
Note that these overheads are proportional to the work-
flow size, and would be negligible for large datasets.

Case study 2: A metagenomics workflow

Figure 9 (left) shows a flow chart representation of a
metagenomics workflow deposited on the Galaxy public
pages [46,47]. The input to this workflow is a set of NGS
reads and associated quality data. The workflow starts
with quality check of the reads and computation of their
lengths. The high quality reads are queried, using the
MegaBLASTtool [40], against two different databases
chosen by the user. The reads with good alignment cover-
age are retained for further analysis. Finally, the taxonom-
ical information of the successful reads are extracted
from the alignment file and a taxonomy tree is plotted.

In the original implementation of this workflow on
Galaxy [46,47], and as depicted in the schematic repre-
sentation of Figure 9, we can identify two issues: First,
the input reads are passed to MegaBLAST is a single
multi-FASTA file which implies sequential processing of
the queries against the database. Second, there are two
nodes for MegaBLAST: one to consider the NCBI_WGS

Table 2 The average running times for protein homology
sub-workflow on the Taverna, Galaxy, and Tavaxy systems

Database Sequence Taverna (local) Galaxy Tavaxy

Oswissprot NP_061857.3 0:32 0:38 0:37
NP_203747.2 0:31 0:32 0:34
NP_060327.2 0:33 0:40 0:41
Q9UNH5.1 0:21 0:23 0:23
060729.1 0:17 023 0:23
P30304.2 0:20 0:15 0:25
P30305.2 0:20 025 0:28
NP_001781.2 0:19 0:25 0:26
NP_054907.1 0:18 0:22 0:26
Example Seq. 0:15 0:17 0:19

refseq NP_061857.3 2:56 3:20 315
NP_203747.2 2:58 317 3:28
NP_060327.2 2:12 2:00 2:02
QIUNH5.1 1:59 2:01 2:05
060729.1 1:50 1:39 1:42
P30304.2 2:51 2:53 2:56
P30305.2 212 2:21 2:22
NP_001781.2 1:50 1:57 1:59
NP_054907.1 1:53 2:01 2:04
Example Seq. 1:46 1:43 1:47

The average running times (in minutes) of the workflow involving BLAST and
ClustalWfor the protein sequences in Table 1. The whole workflow runs on
local infrastructure. The queries are performed against the swissprot and NCBI
refseq databases.
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database and the other to consider the NCBI_NT data-
base. To query more databases in Galaxy, additional
nodes should be manually added; this will yield a bulky
workflow for a large number of databases. In Tavaxy, we
can enhance the design and execution of this workflow
with respect to these two issues.

For the first issue, we use the Tavaxy list pattern in as-
sociation with MegaBLAST so that the input multi-
FASTA file is handled as a list of items. This will imme-
diately lead to parallelization of this step. A list item
could be a single FASTA sequence or a block of multiple
FASTA sequences. We recommend that the input reads
are divided into a list of n blocks, each of size k
sequences. The parameter k is set by the user and it
should be proportional to the number of processors
available. (The list is defined by a special node and its
items (blocks) are separated by a special user-defined
symbol.) When the workflow with the list pattern is exe-
cuted, multiple versions of MegaBLAST will be invoked
to handle these blocks in parallel.

For the second issue, concerning the simple integration
of more databases, we will use only just one MegaBLAST
node and create a list of input databases. This list is passed
as input to the MegaBLAST node. To ensure that each
read is queried against all given databases, we use the cross
product operation defined over the list of databases and
the list of input sequences. For m databases and # blocks,
we have 7 x m invocations of MegaBLAST, which can be
handled in parallel without extra coding effort.

Figure 9 (right) shows a schematic representation of
the enhanced workflow with the list pattern. Figure 10
shows the implementation of the enhanced workflow in
Tavaxy. In this figure, the special node “split_into_list”
defines the list items from the multi-FASTA file.

Measuring the performance
We tested the performance of the enhanced metagenomics
workflow on a computer cluster using two datasets. The
first was the dataset used by Huson et al. [48], constituting
a metagenomic survey of the Sargasso Sea [49]. This data-
set, which represents four environmental samples, is com-
posed of 20,000 Sanger reads, where 10,000 come from
Sample 1 and another 10,000 come from Samples 2—4. The
second dataset is the windshield data set of [46], which is
composed of two collections of 454 FLX reads. These reads
came from the DNA of the organic matter on the wind-
shield of a moving vehicle that visited two geographic loca-
tions (trips A and B). We used the reads of the left part of
the windshield experienced both trips. The number of
reads are 70343 (~ 15.7 Mbp) and 89783 (18 Mbp) for
trips A and B, respectively. For MegaBLAST, we used the
NCBI_HTGS, NCBI_NT, and NCBI_ENYV datasets.

Table 3 shows the average running times over a com-
puter cluster of different compute nodes. (The cluster is
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composed of three machines, each with 8 cores (AMD
Opteron 1.2 GHz processors), and 64 GB RAM, connected
with a 1Gb Ethernet switch.) In this experiment, the list
pattern divided the input data into 11 blocks, each
with size ~ 1000 sequences in case of the Sargasso data

and ~ 7000 sequences in case of the windshield data.
(For a cross product with 3 databases, we have 33 jobs
in total.) From the table, it can be seen that the
running times decrease with the increased number of
cores.
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Table 3 The average running times of the metagenomics
workflow on local infrastructure

Dataset Cores

1 2 4 8 16 32
Windshield Trip A (left) 163 86 48 31 21 15
Windshield Trip B (left) 204 98 55 35 21 16
Sargasso Sea (Sample 1) 109 59 35 21 13 10
Sargasso Sea (Samples 2-4) 113 67 39 23 14 10

The average running times in minutes for varying numbers of processors
(cluster cores) on the local infrastructure.

Use of cloud computing

We used the cloud computing features of Tavaxy on the
sub-workflow level to execute the metagenomics work-
flow. The purpose is to test the use of cloud computing
in terms of execution time and cost of computation.
Here, we focused on the sub-workflow mode of using
cloud computing, because it demonstrates the case. We
decided to run the sub-workflow involving MegaBLAST
with the list pattern on the cloud because it is the most
compute-intensive part in this workflow. From the
Tavaxy interface, we established a computer cluster on
the AWS cloud. Each node includes a copy of the data-
bases needed by MegaBLAST. The shared S3 cloud stor-
age is attached to the cluster to maintain the output and
intermediate results. For this experiment, we used
Amazon instances of type “Extra Large”, with 8 cores
(~1.2 GHz Xeon Processor), 15 GB RAM, and 1,690 GB
storage. The establishment of the cluster with the storage
took a few minutes from the machine images.

Table 4 shows the execution times of the workflow for
the same datasets mentioned before using different clus-
ter sizes on the cloud. It also includes the monetary cost
of running this workflow, for each cluster size. It is inter-
esting to see that the use of more machines led to faster
running time and reduced cost. In our case, the four
machines (with total 32 cores) working in parallel run
for less than one hour and cost totally $2.7. This is

Table 4 The average running times of the metagenomics
workflow on the AWS cloud

Dataset Cores

1 4 8 16 32
Windshield 330 (54.1) 82 (54.1) 34(54.1) 18(S14) 14(52.7)
Trip A (left)
Windshield 371 (54.8) 91 (54.8) 40 (54.1) 21 (514) 15(52.7)
Trip B (left)
Sargasso Sea 252 (534) 60(534) 22(534) 15(514) 9(52.7)
(Sample 1)
Sargasso Sea 299 ($34) 73($34) 26 ($34) 16(514) 10(52.7)

(Samples 2-4)

The average running times in minutes for a computer cluster on the cloud.
The number in bracket is the computation cost in US Dollars for the US-East
site with $0.68 per hour (2011 AWS price list). (Note that partial computing
hour of an instance is billed on Amazon as a full hour.)
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cheaper and faster than using a single machine that runs
for about 6 hours and costs $4.1.

Conclusions

In this paper we introduced Tavaxy, a stand-alone pattern-
based workflow system that can also integrate the use of
Taverna and Galaxy workflows in a single environment, en-
abling their modification and execution. The Tavaxy inte-
gration approach is based on the use of hierarchical
workflows and workflow patterns. Tavaxy also supports the
use of local high-performance computing and the use of
cloud computing. The focus of the current version of
Tavaxyis on simplifying the development of sequence ana-
lysis applications, and we demonstrated its features and
advantages using two sequence analysis case studies. Future
versions of the system will support further applications in
transcriptomics and proteomics.

We also introduced a set of advanced data patterns
that simplify the composition of a variety of sequence
analysis tasks and simplify the use of parallel computing
resources for executing them. In future work, we will ex-
tend the available patterns to support more complex se-
quence analysis tasks, as well as other application
domains. Tavaxyis currently shipped with its own reposi-
tory of pre-imported Tavernaand Galaxy workflows to fa-
cilitate their immediate use. This repository can be
regarded as a set of “design patterns” that can help in
speeding up composition of more complex workflows.

In the current version of Tavaxy, we have set up the
system for use on a traditional computer cluster on the
AWS cloud. We have not yet investigated other HPC
options, such as the Amazon Elastic MapReduce or the

use of GPUs.
In future versions of Tavaxy we will investigate the use

of these options to support efficient execution at the
sub-workflow and task levels. We will also investigate
the use of other cloud computing platforms.

Finally, we believe that one of the key advantages of
Tavaxy is that it provides a solution that consolidates the
use of remote web-services, cloud computing, and local
computing infrastructures. In our model, the use of re-
mote web-services is limited to only those shared tools
that cannot be made locally available, the use of a local
infrastructure supports the execution of affordable tasks,
and the use of cloud computing provides a scalable solu-
tion to compute- and data-intensive tasks.

Availability and requirements

0.0.0.1. Project name: Tavaxy.

0.0.0.2. Project home page: http://www.tavaxy.org.
0.0.0.3. Operating system(s): Linux.

0.0.0.4. Programming language: Python, C, Java script,
JSE
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0.0.0.5. Other requirements: Compatible with the brow-
sers FireFox, Chrome, Safari, and Opera. See the manual
for more details.

0.0.0.6. License: Free for academics. Authorization li-
cense needed for commercial usage (Please contact the
corresponding author for more details).

0.0.0.7. Any restrictions to use by non-academics: No
restrictions.
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