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Abstract

Background: A prerequisite for the mechanistic simulation of a biochemical system is detailed knowledge of its
kinetic parameters. Despite recent experimental advances, the estimation of unknown parameter values from
observed data is still a bottleneck for obtaining accurate simulation results. Many methods exist for parameter
estimation in deterministic biochemical systems; methods for discrete stochastic systems are less well developed.
Given the probabilistic nature of stochastic biochemical models, a natural approach is to choose parameter values
that maximize the probability of the observed data with respect to the unknown parameters, a.k.a. the maximum
likelihood parameter estimates (MLEs). MLE computation for all but the simplest models requires the simulation of
many system trajectories that are consistent with experimental data. For models with unknown parameters, this
presents a computational challenge, as the generation of consistent trajectories can be an extremely rare occurrence.

Results: We have developed Monte Carlo Expectation-Maximization with Modified Cross-Entropy Method (MCEM2):
an accelerated method for calculating MLEs that combines advances in rare event simulation with a computationally
efficient version of the Monte Carlo expectation-maximization (MCEM) algorithm. Our method requires no prior
knowledge regarding parameter values, and it automatically provides a multivariate parameter uncertainty estimate.
We applied the method to five stochastic systems of increasing complexity, progressing from an analytically tractable
pure-birth model to a computationally demanding model of yeast-polarization. Our results demonstrate that MCEM2

substantially accelerates MLE computation on all tested models when compared to a stand-alone version of MCEM.
Additionally, we show how our method identifies parameter values for certain classes of models more accurately than
two recently proposed computationally efficient methods.

Conclusions: This work provides a novel, accelerated version of a likelihood-based parameter estimation method
that can be readily applied to stochastic biochemical systems. In addition, our results suggest opportunities for added
efficiency improvements that will further enhance our ability to mechanistically simulate biological processes.

Background
Conducting accurate mechanistic simulations of bio-
chemical systems is a central task in computational
systems biology. For systems where a detailed model is
available, simulation results can be applied to a wide
variety of tasks including sensitivity analysis, in silico
experimentation, and efficient design of synthetic sys-
tems [1]. Unfortunately, mechanistic models for many
biochemical systems are not known; consequently, a
prerequisite for the simulation of these systems is the
determination of model structure and kinetic parameters
from experimental data.
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Despite recent advances in experimental methodology,
the estimation of unknown kinetic parameters from data
is a bottleneck for performing accurate simulations [2].
For deterministic models of biochemical systems, where
dynamics are typically described by ordinary differential
equations, reliable methods for parameter estimation are
relatively abundant [3]. In contrast, parameter estimation
for stochastic biochemical systems are less well devel-
oped [4]. In recent years it has become increasingly clear
that stochasticity plays a crucial role in many biological
processes, ranging from bistable genetic switches [5-7] to
robust oscillators [8,9]. Unlike in the deterministic regime,
the dynamics of a stochastic system are described by a
probability distribution which cannot usually be obtained
analytically (although approximate methods such as finite
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state projection have been used with some success [10]).
Instead, sampling methods like the stochastic simulation
algorithm (SSA) [11] are used to generate ensembles of
trajectories from the unknown distribution.
Given the probabilistic nature of stochastic biochemi-

cal models, a natural approach for parameter estimation
is to choose values that maximize the probability of the
observed data with respect to the unknown parameters
(maximum likelihood estimates or MLEs). In the case of
fully observed data, where the number of molecules of
each system species is known at all time points, MLEs
can be calculated analytically. However, since realistic bio-
chemical systems are discretely and partially observed,
computational MLE methods are necessary. One of the
earliest examples presented, simulated maximum likeli-
hood (SML), combines a non-parametric density function
estimator with Monte Carlo simulation to approximate
the likelihood function [12]. To maximize the likeli-
hood, SML uses a genetic algorithm requiring absolute
bounds on each of the unknown parameters. Horváth
andManini developed an expectation-maximization (EM)
approach (see Methods) which artificially modifies a
subset of reactions in simulated trajectories to approx-
imate and maximize the likelihood [13]. However, this
method can become increasingly inaccurate as species
counts approach zero, and it is not clear how to prop-
erly choose the number of reactions to modify at each
step. More recently, a histogram-based Monte Carlo sim-
ulation procedure was developed to estimate data like-
lihood [2]. Like the SML method, this approach uses a
genetic algorithm to maximize the likelihood, requiring
prior parameter bounds. Finally, Wang et al. proposed
a method combining stochastic gradient descent (SGD)
with a reversible jumpMarkov chainMonte Carlo sampler
to maximize parameter likelihood [4]. The SGD method
efficiently and heuristically generates trajectories consis-
tent with observed data, iteratively modifying them via a
Metropolis-Hastings step until they closely approximate
trajectories from the unknown probability distribution.
Although not strictly an MLE method, Boys et al. devel-

oped a Bayesian approach for inferring parameters that
employs a Poisson process approximation to efficiently
generate trajectories consistent with observed data [14].
Like SGD, this method also incorporates a Metropolis-
Hastings sampling step to correct for the approximate
nature of the generated trajectories.
All of the above MLE approaches essentially iterate

between two steps: (A) approximating a parameter like-
lihood using Monte Carlo sampling and (B) maximiz-
ing that approximation with respect to the unknown
parameters using an optimization algorithm. We note
that the Bayesian method of Boys et al. also requires
extensive Monte Carlo sampling in the manner of step
(A). Execution of (A) requires the generation of many

system trajectories that are consistent with experimen-
tal data. When simulating trajectories of a model with
unknown parameters, the generation of even a single
trajectory consistent with data can be an extremely
rare occurrence. The SML and histogram-based methods
[2,12] mitigate this computational challenge by requiring
accurate bounds for each unknown parameter. In con-
trast, the EM-based, SGD, and Poisson approximation
methods [4,13,14] reduce simulation cost by generating
system trajectories in a heuristic manner. Although these
strategies have been successful, parameter bounds are
not always available, and it is not clear whether heuristi-
cally generated trajectories can be used to accurately and
efficiently parameterize all systems. In addition, unlike
Bayesian methods, existing MLE approaches only return
parameter point estimates without quantifying estimation
uncertainty.
In this work, we develop Monte Carlo Expectation-

Maximization with Modified Cross-Entropy Method
(MCEM2), a novel, accelerated approach for computing
MLEs along with uncertainty estimates. MCEM2 com-
bines advances in rare event simulation [15-18] with
an efficient version of the Monte Carlo EM (MCEM)
algorithm [19], and it does not require prior bounds
on parameters. Unlike the EM-based, SGD, and Poisson
approximation methods above, MCEM2 generates prob-
abilistically coherent system trajectories using the SSA.
The remainder of the paper is structured as follows: We
first provide derivation and implementation details of
MCEM2 (Methods). Next, we apply our method to five
stochastic biochemical models of increasing complexity
and realism: a pure-birth process, a birth-death pro-
cess, a decay-dimerization, a prokaryotic auto-regulatory
gene network, and a model of yeast-polarization (Results).
Through these examples, we demonstrate the superior
performance of MCEM2 to an existing implementation
of MCEM and the SGD and Poisson approximation
methods. Finally, we discuss the distinguishing features of
our method and motivate several promising future areas
of research (Discussion).

Methods
Discrete-state stochastic chemical kinetic system
We focus on stochastic biochemical models that assume a
well-stirred chemical system with N species {S1, . . . , SN },
whose discrete-valued molecular population numbers
evolve through the firing ofM reactions {R1, . . . ,RM}. We
represent the state of the system at time t by the N-
dimensional random process X(t) ≡ (X1(t), . . . ,XN (t)),
where Xi(t) corresponds to the number of molecules of
Si at time t. Associated with each reaction is its propen-
sity function aj(x) (j = 1, . . . ,M), whose product with an
infinitesimal time increment dt gives the probability that
reaction Rj fires in the interval [ t, t + dt) given X(t) = x.
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The sum of all M propensity functions for a given system
state x is denoted a0(x). We restrict our attention to reac-
tions that obey mass action kinetics—i.e. where aj(x) ≡
θjhj(x) with θj a positive real kinetic constant and hj(x)
a function that quantifies the number of possible ways
reaction Rj can occur given system state x. Examples of
hj(x) include: 1, x1, 12x1(x1 −1), and x1x2 for zeroth-order,
unimolecular, homo-bimolecular, and hetero-bimolecular
reactions, respectively. Further details on mass action
propensity functions can be found in [20].
The “direct method” implementation of Gillespie’s

stochastic simulation algorithm (SSA) provides a simple
numerical procedure for generating exact system trajecto-
ries from their underlying (intractable) probability distri-
bution [11]. The method works by sequentially simulating
the time to the next reaction (τ ) as an exponential random
variable with mean 1/a0(x) and the index of the next reac-
tion (j’) as a categorical random variable with probabilities
aj(x)/a0(x) (j = 1, . . . ,M). Given a final time T and initial
system state X(0) = x0, application of the direct method
yields a reaction trajectory z ≡ (τ1, j′1, . . . , τr , j′r), where r
is the total number of reactions that happen to fire by time
T. Although z is only of length 2r, combining it with x0
allows us to identify the complete system state at any time
in the interval [0,T] regardless of how large N and M are.
Using the above notation, we can express the likelihood
of the complete system trajectory (x0, z) as the following
function of the kinetic parameters θ ≡ (θ1, . . . , θM) (see
[21] for a detailed derivation):

fθ (x0, z) =
( r∏
i=1

θj′ihj′i(xi−1)

)

× exp

⎛
⎝−

r+1∑
i=1

⎡
⎣τi

M∑
j=1

θjhj(xi−1)

⎤
⎦
⎞
⎠ ,

(1)

where τr+1 is the time interval between the firing of the
final reaction and T, and xi−1 is the easily computable sys-
tem state at the time immediately after the (i − 1)st firing
event (i.e. when t = ∑i−1

l=1 τl for i > 1).

Maximum likelihood parameter estimation
If the true values of the kinetic parameters θ∗ are
unknown and we are given a complete system trajec-
tory (x0, z), a natural approach for generating parameter
estimates θ̂ is to choose values of θ that maximize the like-
lihood with respect to the trajectory (Equation (1)). These
maximum likelihood parameter estimates (MLEs) can be
analytically computed for each reaction as follows (see
[21] for a derivation):

θ̂j = rj∑r+1
i=1 hj(xi−1)τi

. (2)

where rj is the total number of times reaction Rj fires
in z. Although simple, Equation (2) is only useful in the
presence of a complete system trajectory. Experimen-
tally observed data are typically much less informative,
consisting of the initial system state plus numbers of
molecules for a subset of the system species at d dis-
crete time points. We represent these “observed data”
with y ≡ (x0, x′

1, . . . , x′
d), where x′

i contains the num-
bers of molecules of a subset of the N species at some
time point ti. Knowledge of any y of finite size is insuf-
ficient for reconstructing the complete system trajectory
(x0, z) and the corresponding likelihood (Equation (1));
thus, Equation (2) is not a feasible approach for computing
MLEs. Instead, we require a method that can accom-
modate “unobserved data”—i.e., the states of all system
species at all times not included in the observed data.
In this work we use the expectation-maximization (EM)

algorithm [22] to identify MLEs in the presence of unob-
served data. This algorithm suggests the following iter-
ative computation given some θ̂

(0)
(see [23] for details):

θ̂
(n+1) = argmax

θ

Q(θ |θ̂ (n)
)

≡ argmax
θ

(
E

[
log fθ (x0, z)|y, θ̂ (n)

])

= argmax
θ

⎛
⎝ ∑

z∈Z(y)

[
g(z|y, θ̂ (n)

) × log fθ (x0, z)
]⎞⎠,

(3)

where E
[
·|y, θ̂ (n)

]
is the expectation operator taken with

respect to the conditional distribution of z given y and
θ̂

(n)
, Z(y) is the set of all valid reaction trajectories that

are consistent with y (i.e. trajectories that pass through all
observed data points exactly), and g(z|y, θ̂ (n)

) represents
the unknown conditional density of z. The theory behind
the EM algorithm guarantees that Equation (3) will con-
verge to estimates that locally maximize the observed data
likelihood, given n sufficiently large (Section 3 of [22]).
Unfortunately, we cannot work with Equation (3) directly,
as an explicit evaluation of the summation is intractable.
Instead, we use a Monte Carlo extension of EM (MCEM)
[24] that samples reaction trajectories using the direct
method of the SSA to approximate θ̂

(n+1)
:

θ̂
(n+1) ≈ argmax

θ

( K∑
k=1

[
I
(
z(n)

k ∈ Z(y)
)

× log fθ
(
x0, z(n)

k

)])
(4a)

= argmax
θ

⎛
⎝ K ′∑

k′=1
log fθ

(
x0, z(n)

k′
)⎞⎠ , (4b)
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where z(n)

k is the kth SSA trajectory simulated using the
parameter vector θ̂

(n)
, I

(
z(n)

k ∈ Z(y)
)

is an indicator

function taking a value of 1 if z(n)

k is consistent with y (and
0 otherwise), and K is the total number of simulated tra-
jectories. Equation (4b) presents a simplified expression
in which k′ indexes only the K ′ simulated trajectories that
are consistent with the observed data. In practice, we set
K to the value that leads to the desired number of consis-
tent trajectories K ′. We note that Equations (4a) and (4b)
describe a rejection sampling approach to generating reac-
tion trajectories conditional to the observed data, in which
only those simulated trajectories consistent with data are
retained and all others are rejected. In practice, we sim-
ulate trajectories incrementally between two data points
at a time, further propagating only those trajectories that
pass through the second data point exactly. Although
this incremental approach is much more efficient than
performing rejection sampling across full length trajecto-
ries, as we describe below it can still be computationally
prohibitive.
By simplifying Equation (4b) with the same procedure

used to derive Equation (2) [21], we obtain an iterative,
MCEM version of the MLE for each reaction:

θ̂
(n+1)
j =

∑K ′
k′=1 r

(n)

jk′

∑K ′
k′=1

[∑r(n)

k′ +1
i=1 hj(x(n)

i−1,k′)τ
(n)

ik′

] . (5)

Equation (5) is analogous to Equation (2), with trajec-
tory features having an added subscript k′ and superscript
(n).
An open question in the use of MCEM involves effi-

cient selection of the numbers of consistent trajectories
K ′ and iterations n. We adopt the ascent-based MCEM
algorithm [19] for this task, which suggests increasing
K ′ at each iteration according to an estimate of the cur-
rent Monte Carlo error and terminating the algorithm
when the estimated change in conditional log-likelihood(
E

[
log fθ (x0, z)|y, θ̂ (n)

])
passes below a constant thresh-

old. Specifically, we set the initial value of K ′ to 10 and
the sample size increment parameters α, β , and k to their
respective default values of .25, .25, and 3. We terminate
the algorithm when an upper bound of the change in con-
ditional log-likelihood (using γ = .25) was less than .005
for three consecutive iterations (see [19] for more details).

Accelerating MLE computation
Equation (5) requires the generation of K ′ trajectories
that are consistent with observed data. For datasets with
closely spaced time points and reasonably accurate ini-
tial parameter estimates θ̂

(0)
, this task may be computa-

tionally feasible. For the more realistic case of a sparse

dataset and inaccurate values of θ̂
(0)
, it quickly becomes

intractable, as the simulation of even one consistent tra-
jectory is an extremely rare event. In light of this fact,
we adapt methods from rare event simulation to substan-
tially accelerate the use of MCEM. Below we describe
the incorporation of three techniques: the cross-entropy
method, multilevel splitting, and parameter perturbation.
Specifically, we employ these three techniques together
as a standalone algorithm to quickly compute plausible
parameter estimates θ̂

CE
(see below for details). We then

use these parameter estimates as input to an otherwise
unmodified ascent-based MCEM algorithm, which fur-
ther refines the estimates until MLEs are obtained. The
advantage of this two-step process is that we retain all
of the desirable properties of MCEM while dramatically
accelerating the time to convergence (due to the use of
much more accurate MCEM initial parameter estimates).

The cross-entropymethod
The cross-entropy (CE) method was first developed by
Rubinstein [15] to accelerate the simulation of stochastic
rare events. Since that time, the method has been used in
many contexts, including combinatorial optimization [25]
and stochastic biochemical modeling [18]. Briefly, the CE
method begins by simulatingK trajectories using an initial
parameter vector θ̂

(0)
. Next, a subset of �ρK� trajectories

(with ρ ∈[ 0, 1] and �·� the ceiling function) that are closest
to a given system state (i.e. observed data) is selected and
used to compute a better parameter estimate θ̂

(1)
. This

process is then repeated until all �ρK� subset trajectories
reach the given state, upon which the algorithm computes
a final parameter vector θ̂

CE
and terminates. Unless oth-

erwise noted in the examples below, we set K = 104 and
ρ = .001, which were shown empirically to confer good
performance (see Discussion).
When applied to the task of stochastic parameter esti-

mation, the CEmethod proposes an iterative optimization
very similar to Equation (4a):

θ̂
(m+1) = argmax

θ

( K∑
k=1

[
I(d(z(m)

k , y) ≤ δ(m))

× log fθ (x0, z(m)

k )
]) (6)

where d(z(m)

k , y) is a user-defined function measuring the
distance between a simulated trajectory and the observed
data, and δ(m) is the (ρ × 100)th quantile of distances
achieved by the K simulated trajectories. In this work,
we choose d(·, ·) to be a normalized L1 distance evalu-
ated at each observed time point for each observed species
(i.e. we divide each absolute deviation by the quantity
[1 + the value of the corresponding data point]). Upon



Daigle et al. BMC Bioinformatics 2012, 13:68 Page 5 of 18
http://www.biomedcentral.com/1471-2105/13/68

simplification of Equation (6), we obtain the following
expression for each CE reaction parameter:

θ̂
(m+1)
j =

∑K
k=1

[
I(d(z(m)

k , y)≤δ(m))×r(m)

jk

]
∑K

k=1

[
I(d(z(m)

k , y)≤δ(m))×∑r(m)
k +1
i=1 hj(x(m)

i−1,k)τ
(m)

ik

] .
(7)

Once δ(m) = 0, Equation (7) is used a final time to
obtain θ̂

CE
and the algorithm terminates. If we then set

θ̂
(0) ≡ θ̂

CE
for MCEM, we expect that on average only

K ′/ρ total trajectories must be simulated to provide K ′
consistent trajectories. Generally speaking, the algorithm
is guaranteed to terminate provided ρ and K ′ are suffi-
ciently small and sufficiently large, respectively (see [26]
and below for more details). As will be shown below, use
of the CE method coupled with MCEM provides enor-
mous computational savings when compared to MCEM
initiated with arbitrary parameter values.

Multilevel splitting
If the observed data consist of many time points, simu-
lating a trajectory that passes through all of the data will
be extremely unlikely, even when using the true param-
eter values. Consequently, our CE method will require a
very small ρ (with accompanying very large K) in order
to converge in a reasonable number of iterations. As a
means of reducing this computational expense, we have
added a “divide and conquer” approach with respect to
the data inspired by multilevel splitting (MS) methods
for rare event simulation [16,17]. MS methods divide rare
trajectories leading to a given system state into less rare
sub-trajectories passing through intermediate states. Sub-
trajectories that reach the intermediate states in a given
time are split into multiple copies, while the others are
killed with some probability. In this way, an ensemble of
simulated trajectories is gradually enriched for those that
reach the state of interest.
A natural definition of a sub-trajectory in the context

of observed data is the portion of a trajectory from time
0 to a recorded time point ti ≤ td. Starting from t = 0
for a given iteration of our CE method, we simulate K tra-
jectories only until the first observed time point, giving
rise to the sub-trajectories (z(m)

1,1 , z
(m)
1,2 , . . . , z

(m)
1,K ), where the

first subscript of z(m)

i,k denotes a sub-trajectory spanning
the time interval [ 0, ti]. We then compute the distance
d(z(m)

1,k , y1) of each sub-trajectory with respect to the first
observed data point y1 ≡ (x0, x′

1). Sub-trajectories falling
in the (ρ′ × 100)th quantile of distances (where we typi-
cally choose ρ′ = ρ) are “split” by sampling from them
with replacement to generate K new trajectories, while
the remaining trajectories are killed. The new trajectories
are simulated forward to the second observed time point

to yield (z(m)
2,1 , z

(m)
2,2 , . . . , z

(m)
2,K ), and the distances d(z(m)

2,k , y2)
are computed (with y2 ≡ (x0, x′

1, x′
2)). As before, sub-

trajectories are split according to their distances from
the observed data, and the process is continued until
trajectories reach the final time point. The resulting K tra-
jectories, enriched for sub-trajectories passing close by
observed data, are used as input to Equation (7) to update
the parameter estimates, after which the next CE iteration
begins. Figure 1 illustrates this overall process of splitting
combined with the CE method. We note that setting ρ′ =
1 results in a nearly unmodified CE method as described
above, and the amount of trajectory splitting can be easily
tuned to the desired level by changing ρ′ accordingly.
Parameter perturbation
Both the CE method and its MS modification rely on the
system’s intrinsic variability to refine parameter estimates.
If a system exhibits a low level of variability, each selected
subset of �ρK� trajectories will not lie much closer to

Figure 1Multilevel splitting applied to CE phase of MCEM2.

Using θ̂
(0)

, we first simulate an ensemble of K trajectories from the
initial system state (black circle at t = 0) until time t1 (red traces). The
ending states of the �ρK� trajectories closest to the first observed
data point (bold red traces) are sampled with replacement to provide
starting states for the next simulation interval. We then simulate a
second ensemble of K trajectories starting at time t1 until reaching t2.
Here, we select the �ρK� trajectories spanning the interval [ 0, t2] that
are closest to the first and second data points (black circles at times t1
and t2) and use them to initiate the third simulation ensemble. We
repeat this process until reaching t4, at which time we compute the

first set of parameter estimates θ̂
(1)

using the �ρK� trajectories closest
to all data points (full length bold red traces). Using θ̂

(1)
, we begin the

process again at t = 0, producing the green traces. Finally, using θ̂
(2)

to generate the blue traces, we obtain �ρK� trajectories coinciding
exactly with all data points, which we use to compute θ̂

CE ≡ θ̂
(3)

.
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the data than the other trajectories. This will result in a
slowly progressing algorithm. To overcome this potential
problem, we have introduced a parameter λ ∈[ 0, 1] which
we use to independently perturb the components of the
current parameter estimate for each simulated trajectory
over each of the observed time intervals. We generate θ̃

(m)

j,i,k
(j = 1, . . . ,M; i = 1, . . . , d; k = 1, . . . ,K) as follows:

θ̃
(m)

j,i,k ∼ U((1 − λ)θ̂
(m)
j , (1 + λ)θ̂

(m)
j ), (8)

where U(a, b) is a uniformly distributed random variable
with minimum and maximum values a and b, respec-
tively. We simulate each of the d observed time intervals
for each of the K trajectories using independently per-
turbed parameters; thus, Equation (8) is evaluated M ×
d × K times for each iteration m of our modified CE
method. Depending on themagnitude of λ, this procedure
generates substantially more variability in each ensem-
ble of sub-trajectories, leading to faster progression of
the CE method. Although parameter perturbation is not
generally used in rare event simulation, we note that a
similar approach is present in iterated filtering versions of
sequential Monte Carlo algorithms [27] where the pertur-
bations allow the algorithm to escape from local minima
of an objective function. In all examples presented below,
we choose λ = .25.

Computing MLE uncertainty estimates
An advantage of using MCEM to identify MLEs is the
simplicity with which uncertainty estimates can be com-
puted. In general, MLEs exhibit asymptotic normality;
consequently, their covariance matrix can also be esti-
mated using Monte Carlo simulation [23,28]. In order to
insure that parameter confidence bounds derived from
the MLE covariance matrix are positive, we introduce the
transformed parameters ωj = log θj (j = 1, . . . ,M). Due
to the functional invariance property of maximum like-
lihood estimators, ω̂j = log θ̂j, and by modeling θ̂ as a
log-normally distributed random variable (which is only
defined for strictly positive real numbers), ω̂ becomes
multivariate normal with mean vector (log θ1, . . . , log θM)

and covariance matrix �. We can estimate this covari-
ance matrix using the following expression (see [23,28] for
details):

−
(
�̂
)−1 = 1

K ′
K ′∑

k′=1

{
∂2

∂ω2 log fω(x0, zk′)

}

+ 1
K ′

K ′∑
k′=1

(
∂

∂ω
log fω(x0, zk′)

)

×
(

∂

∂ω
log fω(x0, zk′)

)T

−
⎛
⎝ 1
K ′

K ′∑
k′=1

∂

∂ω
log fω(x0, zk′)

⎞
⎠

×
⎛
⎝ 1
K ′

K ′∑
k′=1

∂

∂ω
log fω(x0, zk′)

⎞
⎠

T

, (9)

where {·} delimits a matrix, aT represents the transpose
of vector a, fω(·) is equivalent to Equation (1) with exp(ω)

substituted for θ , zk′ is a reaction trajectory simulated
using θ̂ = exp(ω̂), and k′ indexes only the K ′ simulated
trajectories that are consistent with the observed data.
After some simplification, we arrive at:

−
(
�̂
)−1 =

⎧⎨
⎩− 1

K ′
K ′∑

k′=1

rk′∑
i=1

exp(ω̂j)hj(xi−1,k′)τik′

⎫⎬
⎭

j

+ 1
K ′

K ′∑
k′=1

(
rjk′ −

rk′∑
i=1

exp(ω̂j)hj(xi−1,k′)τik′

)
j

×
(
rjk′ −

rk′∑
i=1

exp(ω̂j)hj(xi−1,k′)τik′

)T

j

−
⎛
⎝ 1
K ′

K ′∑
k′=1

[
rjk′ −

rk′∑
i=1

exp(ω̂j)hj(xi−1,k′)τik′

]⎞⎠
j

×
⎛
⎝ 1
K ′

K ′∑
k′=1

[
rjk′ −

rk′∑
i=1

exp(ω̂j)hj(xi−1,k′)τik′

]⎞⎠
T

j

(10)

where {·}j is a diagonal matrix with j ranging from 1 to
M along the diagonal and (·)j is a column vector with j
ranging from 1 at the top-most element to M at the bot-
tom. All trajectories in Equation (10) are simulated using
parameter values θ̂ = exp(ω̂).
Upon solving Equation (10) for �̂, we can compute

the coordinates of confidence intervals and ellipses (end
points and boundaries, respectively) for ω using the prop-
erties of the multivariate normal distribution. We then
transform these coordinates by exponentiation to yield
(strictly positive) confidence bounds for θ . We note that
all of the components of Equation (10) were previously
required for computing MLEs using MCEM. In practice,
after identifying θ̂ , we simulate one additional ensemble
of trajectories to estimate parameter uncertainties. For all
examples described below, we use K ′ = 104 in this final
computation.
To summarize, our proposed method for accelerat-

ing MLE identification in stochastic biochemical systems
works in three steps: first, it identifies an initial parameter
estimate θ̂

CE
using a modified cross-entropy method with

multilevel splitting and parameter perturbation; second, it
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uses this initial estimate as input to ascent-based MCEM,
which is run until convergence to yield θ̂ ; third, it uses
this MLE to compute parameter uncertainty estimates via
Equation (10). We provide pseudo-code for the complete
method below (see Algorithms 1-3), which we refer to
as MCEM2: Monte Carlo Expectation-Maximization with
Modified Cross-Entropy Method.

Results
We now illustrate the utility of MCEM2 for estimating
unknown parameters by applying it to data from five
stochastic biochemical model systems: a pure-birth pro-
cess, a birth-death process, a decay-dimerization, an
auto-regulatory gene network, and a model of yeast-
polarization. For each model, we first simulate a single
system trajectory (with known parameters) using the SSA
for a given final time T. Next, we extract data from this
trajectory for all species at d equally-spaced time points,
where d = T/
t for a time step 
t. Finally, we run
MCEM2 on the dataset and a version of the model where
all information about model parameters has been with-
held. Unless otherwise noted, we set the initial parameter
vector for each system θ̂

(0)
equal to a vector of all ones.We

display point estimates and confidence bounds for each
simulation.

Pure-birth process
A system for which MLEs can be computed analytically
from discretely observed data is the pure-birth process,
also known as a homogeneous Poisson process. The
model is given by the single reaction

∅ θ→ S

with initial conditions x0 = 0. The MLE for a given
dataset from this model can be easily computed by divid-
ing the number of molecules of S present at the final
time point by the corresponding time: θ̂ = x′

d/T . By
design, both MCEM2 and standard ascent-based MCEM
will also return this MLE (albeit at a greater computa-
tional expense), as any version of EM applied to this model
ultimately reduces to the exact computation x′

d/T .
Thus, the only potential difference between MCEM2

and MCEM for this system is the required computing
time. To quantify this difference, we generated data for
100 pure-birth models, with θ∗, the true value, ranging
from .01 to 10. For each model, we used T = 1000 and
d = 30, giving 
t = 331

3 . We then applied ascent-based
MCEM and MCEM2, both with θ̂ (0) = 1, to each dataset
and ran until convergence. Figure 2 displays the comput-
ing time for both methods as a function of θ∗. We see
that the time required for MCEM increases dramatically
as values of θ∗ depart from θ̂ (0). The rapidly accelerat-
ing computational cost for MCEM is due to the rapidly

Figure 2 Computing time of MCEM versus MCEM2 for pure-birth
process. Red circles and curve fit depict computing time required for
MCEM2 to return MLEs for the pure-birth model with θ̂ (0) = 1 and
varying θ∗ values. Blue circles and curve fit depict identical quantities
for ascent-based MCEM. Performance of MCEM2 is robust to the
discrepancy between initial and true parameter values, while
ascent-based MCEM quickly becomes computationally intractable as
the discrepancy increases.

decreasing likelihood of simulating a consistent trajec-
tory as the discrepancy between θ̂ (0) and θ∗ increases. As
shown in Figure 2, MCEM is only feasible to use when
θ̂ (0) is within a factor of two from θ∗. In contrast, the
computing time forMCEM2 stays approximately constant
for values of θ∗ less than 1 and increases relatively slowly
for values greater than 1. This cost increase is due to the
simulation cost of firing more birth reactions required for
larger θ∗. MCEM2 does not appear to suffer from a cost
associated with the discrepancy between θ̂ (0) and θ∗.
We next investigated the accuracy of MCEM2 uncer-

tainty estimates. Figure 3 shows the normalized MCEM2

MLEs with 95% confidence intervals (CIs) for all models.
Out of 100 CIs, only eight (denoted by blue circles) do not
overlap the true values. This figure matches well with the
expected number of missed overlaps (100× (1− .95) = 5)
and suggests that our asymptotic normality assumption
for derivingMLE confidence bounds is valid. We note that
the relative magnitudes of the CIs decrease with increas-
ing θ∗; this is due to the diminishing effect of noise on the
system as the average number of reaction firings per unit
time increases.

Birth-death process
The second model doubles the number of reactions of the
pure-birth process by adding a degradation reaction. The
birth-death process takes the form:
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Figure 3 Pure-birth process MCEM2 MLEs and confidence intervals. Colored circles depict MCEM2 MLEs normalized by true parameter values
for the pure-birth model with θ̂ (0) = 1 and varying θ∗ . Error bars denote 95% confidence intervals (CIs) for each model. Out of 100 models tested,
only eight (centered at blue circles) do not overlap the true parameter values (green line) whereas the remaining 92 (centered at red circles) enclose
the truth. This agrees well with the expected 95/100.

∅ θ1→ S

S θ2→ ∅ .

The presence of a single first order reaction (degrada-
tion) renders the analytical calculation of MLEs infeasible.
Furthermore, computational parameter identification for
the birth-death process is significantly more challenging
than for the pure-birth process. This challenge stems from
the degeneracy present in a discretely observed dataset:
the net increase of a single molecule of S can result from
any combination of r + 1 R1 and r R2 reaction firings
(where r is a non-negative integer). To evaluate MCEM2

on this system, we first generated single trajectory data
for a model with θ∗ = (1, .06) and x0 = 17, where the
system starts in stochastic equilibrium. We used T =
200 and d = 40, giving 
t = 5. Figure 4 displays the
progression of θ̂1 and θ̂2 as a function of MCEM2 itera-
tion. The modified cross-entropy phase of the algorithm
required only three iterations (labeled -2,-1,0), transform-
ing θ̂

(0) = (1, 1) to θ̂
(3) = (4.24, .28). From this point

onward, the subset of trajectories given by ρ = .001 were
consistent with the data, and theMCEMphase of the algo-
rithm further modified the parameters to their final values
θ̂ = (1.446, .093), which were reached upon satisfying
the convergence criterion (marked by black vertical line).
Figure 4 also includes the results from an additional 100
iterations of MCEM to illustrate the diminishing returns
from running the algorithm beyond the convergence cri-
terion. Throughout the MCEM phase, we note that the
ratio θ̂

(n)
2 /θ̂

(n)
1 ≈ .065, indicating that multiple parameter

values satisfying this ratio are sufficient to generate consis-

tent trajectories. Nevertheless, Figure 4 demonstrates that
substantial parameter refinement is achieved by running
MCEM to convergence.

Figure 4 Birth-death process MCEM2 parameter estimate
progression. Green and blue bold lines denote MCEM2 parameter
estimates θ̂1 and θ̂2, respectively, as a function of iteration number.
True parameter values are marked by green and blue horizontal
dotted lines. The cross-entropy phase completes in three iterations
(gray shaded region), followed by 234 iterations of MCEM until
convergence (black vertical line). An additional 100 iterations of
MCEM are included to illustrate the diminishing returns from running
the algorithm beyond convergence. Although the parameter
estimates from the first MCEM iteration are far from the true values,
their ratio is nearly correct and this ratio is preserved as the estimates
are refined toward the true values.
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Next, we investigated the effect of appending data at
additional time points to the original data set. Figure 5
illustrates results from the original and three expanded
datasets, all with 
t = 5. We display the MCEM2

MLEs along with 68%, 95%, and 99% confidence ellipses
(warped due to exponentiation—see Methods) that repre-
sent parameter uncertainty as a function of both parame-
ters. We see that as d increases, θ̂ approaches θ∗ until at
d = 100 they are approximately equal. This trend demon-
strates the increasing accuracy of MLEs with increasing
d. Furthermore, although the true parameter values are
always contained within the 95% confidence ellipses, all
of the ellipses shrink in size as d increases. This behavior
indicates the reduction in estimate uncertainty resulting
from the addition of data points. Finally, all of the ellipses
are clearly skewed, with major axes nearly overlapping the
line passing through the origin whose slope is the ratio
of the true parameter values (.06/1). This geometry shows
that most of the uncertainty involves the magnitude of the
parameters, whereas their ratio can be determined confi-
dently from relatively few data points. We note that the
computational run time of MCEM2 (1 × Intel 3 GHz pro-
cessor) on each of the four datasets was approximately the
same: one hour.
We also compared MCEM2 performance to that of two

recent methods: anMLEmethod utilizing reversible jump
Markov chain Monte Carlo coupled with stochastic gra-
dient descent (“SGD”) [4] and a Bayesian method using
a Poisson process approximation (“Poisson”) [14]. For the
former, we used the provided MATLAB package to run
SGD with the maximum number of iterations set to 500
and the initial sample size set to 600 (incrementing by
500 every 10 iterations). For the latter, we used the pro-
vided C code from the author’s web site implementing the
stochInf program to run the Poisson method with tuning
parameter .05 and total number of iterations 107 (with

105 burn-in iterations and 104 thinning interval). These
options were chosen to yield sufficient mixing and con-
vergence properties as evidenced by the diagnostic plots
from the R coda package. We then computed the mean
value of each parameter to arrive at point estimates. As
with MCEM2, we set θ̂

(0) = (1, 1) for both methods.
Figure 5 displays the SGD and Poisson method results
for the four birth-death process datasets.When compared
to MCEM2, all three methods identified parameters with
comparable accuracy, with SGD and Poisson methods
performing better when d = 40 and d = 60 and MCEM2

performing better when d = 80 and d = 100. The confi-
dence ellipses generated by the Poisson method were very
similar in appearance to those of MCEM2, conveying the
same information regarding the ratios of the two param-
eters (not shown). As noted above, the SGD method did
not provide parameter uncertainty estimates. Regarding
run time, the Poisson method required between 20 and 60
minutes to identify parameters for the four datasets, while
the SGD method needed between 30 minutes and several
days (the latter time due to a lack of convergence when
using the d = 100 dataset).
We next modified the birth-death process such that

the equilibrium value of species S gradually approached
zero. Specifically, we created five models with true
parameter values θ∗

1 = .5 and θ∗
2 taking the increasing

values (.1, .5, 1, 2.5, 5). To insure that each system started
roughly at stochastic equilibrium, we also set x0 to each
of the following values (listed in order): (5, 1, 1, 1, 1). We
then generated 20 independent datasets for each of the
five models, using T = 25 and d = 25. Figure 6 dis-
plays boxplots of the mean relative error (calculated as in
[4]: 1

M
∑M

j=1 |θ̂j − θ∗
j |/θ∗

j ) when applying MCEM2 and the
Poisson method to each of these datasets. Although both
methods perform equally well for the first three models
(when the equilibrium value of S ≥ .5), MCEM2 clearly

Figure 5 Effects of birth-death dataset size on parameter estimates andMCEM2 uncertainty. Each panel displays MCEM2 and SGD
birth-death MLEs (red and blue circles, respectively) as well as Poisson method point estimates (orange circles) versus the true parameter values
(green circles), along with MCEM2 68%, 95%, and 99% confidence ellipses (black curves ranging in size from smallest to largest, respectively). A, B, C,
and D display results for datasets of 40, 60, 80, and 100 data points, respectively. The three methods tested identified parameters with comparable
accuracy across all datasets. As the numbers of data points increase, the MCEM2 MLEs get closer to the truth and the confidence ellipses shrink in
size. The green sloped line plots the ratio θ∗

2 /θ∗
1 , highlighting that the uncertainties of the parameter ratio are lower than the uncertainties of the

parameter magnitudes. For all datasets, the 95% confidence ellipse encloses the true parameter values.
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Figure 6 Effects of decreasing birth-death equilibrium on
MCEM2 and Poissonmethod performance. Boxplots (displaying
median, first and third quartiles, and most extreme data point within
1.5 × the interquartile range from the box) summarize mean relative
errors of MCEM2 and the Poisson method applied to 20 birth-death
datasets for each of five models (true parameter values listed on
x-axis). Models are sorted in decreasing order of the equilibrium value
of S, ranging from 5 to .1. MCEM2 performance does not vary
appreciably across the different models, while the Poisson method
exhibits increasing error with decreasing equilibrium value.

identifies parameters more accurately than the Poisson
method for the last two datasets (when the equilibrium
values of S are .2 and .1, respectively). This result illus-
trates the gradual loss of accuracy of the Poisson approxi-
mation for systems in which a species tends stochastically
to zero. In contrast, MCEM2, which generates exact sys-
tem trajectories using the SSA, experiences no such loss of
accuracy. Unfortunately, we were unable to evaluate SGD
on these modified birth-death process datasets, as the
MATLAB package consistently terminated with an error
related to the zero molecule count of S.

Decay-dimerization model
The next system contains reactions involving species
decay and dimerization.We begin with the following three
reactions, where the dimerization step is reversible:

S1
θ1→ ∅

S1 + S1
θ2→ S2

S2
θ3→ S1 + S1

with x0 = (40, 0). We generated ten single-trajectory
datasets for a model where θ∗ = (.2, .04, .5), using T = 5
and d = 25. We then modified the model such that the

dimerization step is no longer reversible, leading to the
following description:

S1
θ1→ ∅

S1 + S1
θ2→ S2

S2
θ3→ ∅

with all other properties unchanged. We again generated
ten single-trajectory datasets for this model. Finally, we
evaluated MCEM2, the Poisson approximation method,
and SGD on each of the 20 datasets. Figure 7 displays the
results for each of the methods in terms of mean relative
error. We see that MCEM2 and the Poisson method per-
form very similarly in terms of accuracy (as well as run
time: between 3 and 10 minutes for both models), with a
slightly higher error for the irreversible model. In contrast,
use of SGD results in higher errors for both models, with
the irreversible model consistently yielding estimates with
infinite error. This latter error is due to the estimate of θ1
quickly tending to infinity, regardless of how small we set
the initial gradient descent step size. These results high-
light a significant limitation of the SGD method: in order
to generate a diversity of consistent trajectories, there
must exist combinations of reactions that do not alter

Figure 7 Effects of decay-dimerization model structure on
MCEM2, Poissonmethod, and SGD performance. Boxplots
summarize mean relative errors of the three methods applied to 10
decay-dimerization datasets for each of two three-reaction models.
The two models differ only in their third reaction (listed on x-axis); the
first model contains a reversible dimerization, while the second
model does not. MCEM2 and the Poisson method perform similarly
across both models, while SGD consistently incurs an infinite mean
relative error (due to the estimate of θ1 quickly tending to infinity)
when applied to the second (irreversible) model.
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species counts. The reversible decay-dimerization model
contains such a combination (reactions 2 and 3), while
the irreversible model does not, leading to a divergent
gradient descent.
To further explore the ability of MCEM2 to estimate

parameters for a decay-dimerization, we introduced a
third model which adds a conversion reaction to the
reversible model above. Previously analyzed in [29], the
precise system description is as follows:

S1
θ1→ ∅

S1 + S1
θ2→ S2

S2
θ3→ S1 + S1

S2
θ4→ S3

with x0 = (1000, 10, 10). We generated single trajectory
data for a model where θ∗ = (.2, .04, .5, 1), using T = .1
and d = 5. Figure 8 shows the data points for each of the
three species. Given that 
t = .02, hundreds of reactions
occur before the first observed time point. As the system
evolves closer to its steady state, the number of reac-
tion firings decreases, with only dozens of reactions firing
between the last two time points. We note that the ini-
tial propensity for reaction R2 is nearly 4000 times larger
than the propensity of its backwards counterpart R3; con-
sequently, we expect observed data to reflect relatively few
R3 firings (and thus contain relatively little information
about θ∗

3 ).

Figure 8 Decay-dimerization dataset. Red, green, and blue circles
depict initial system states and five data points for species S1, S2, and
S3, respectively. This dataset is sparsely observed, as species S1
changes substantially between t = 0 and the first observed time
point.

To investigate the impact of parameter perturbation on
the performance of MCEM2, we estimated parameters
from this decay-dimerization dataset using both λ = .25
(default) and λ = 0 (no perturbation). Figure 9 shows the
progression of each parameter during the cross-entropy
phase of the algorithm for both default perturbation (solid
line) and no perturbation (dotted line). With λ = .25, the
CE phase required only 23 iterations before beginning
MCEM, whereas setting λ = 0 increased the number
of CE iterations to 152. More importantly, the CE phase
computing times for perturbation and no perturbation
were 59 s and 32 min, respectively, resulting in a ∼33-
fold speedup when perturbing parameters. The reason for
this large reduction in computational time is due to the
larger parameter values explored by the CE phase without
perturbation (see θ̂1 and θ̂3), which equates to simulat-
ing trajectories with many more reaction firings. By using
perturbation, MCEM2 appears to navigate the parame-
ter space more efficiently and hence require much less
computational time.We note that three of the four param-
eters reach approximately the same values at the end of
the CE phase in the perturbed and non-perturbed cases,
with θ̂3 providing a slight exception. However, as we show
below, the large uncertainty associated with θ̂3 prevents

Figure 9 Effects of parameter perturbation on
decay-dimerization cross-entropy phase. Red, blue, green, and
orange lines represent MCEM2 parameter estimates θ̂1, θ̂2, θ̂3, and θ̂4,
respectively, as a function of cross-entropy (CE) phase iteration
number. Solid lines display parameter values observed using
perturbation (λ = .25), while dotted lines depict parameter values
obtained without perturbation (λ = 0). Perturbation substantially
accelerated completion of the CE phase, both in number of iterations
(23 versus 152) and, more strikingly, in simulation time (59 s versus 32
min). Final CE phase parameter estimates were approximately the
same whether or not perturbation was used.
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us from determining whether this parameter is substan-
tially different between the two cases. We thus conclude
that perturbation does not systematically alter the final
parameter estimates returned by the CE phase.
Figure 10 displays the MLEs and pairwise confidence

ellipses computed byMCEM2 when applied to this decay-
dimerization dataset. Specifically, MCEM2 returned θ̂ =
(.220, .039, .110, 1.006), which represents a 22.8% mean
relative error when compared to the truth. For all combi-
nations of parameters, the corresponding 68% confidence
ellipses enclose the true parameter values, and apart from
θ̂3 these ellipses are relatively compact. As noted above,
the uncertainty associated with reaction R3 is much larger
than for the other reactions, confirming our hypothesis
that the dataset contains substantially less information
about the backwards rate of the dimerization.

Auto-regulatory gene network
To further compare MCEM2 to the Poisson method and
SGD, we tested all methods on a system for which SGD

was previously shown to perform well: a prokaryotic auto-
regulatory gene network [4]. This system contains the
following eight reactions, organized as four reversible
pairs:

DNA + P2
θ1→ DNA-P2

DNA-P2
θ2→ DNA + P2

DNA θ3→ DNA + mRNA

mRNA θ4→ ∅
P + P θ5→ P2

P2
θ6→ P + P

mRNA θ7→ mRNA + P

P θ8→ ∅ ,

where DNA, P, P2, and mRNA represent DNA pro-
moters, protein gene products, protein dimers, and

Figure 10 Parameter estimation results for decay-dimerizationmodel. Each panel displays MCEM2 MLEs (red circles) versus the true parameter
values θ∗ = (.2, .04, .5, 1) (green circles), along with 68%, 95%, and 99% confidence ellipses. All six pairwise parameter comparisons are shown. The
mean relative error for MCEM2 was 22.8%. All MCEM2 confidence ellipses enclose the true parameter values, and uncertainty is relatively low for all
estimates except θ̂3.
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messenger RNA molecules, respectively. We set x0 ≡
(DNA,DNA-P2,mRNA,P,P2) = (7, 3, 10, 10, 10) and
generated single trajectory data using θ∗ = (.1, .7,
.35, .3, .1, .9, .2, .1) with T = 50 and d = 100. Using the
same options as before, we applied MCEM2 and SGD
to this dataset using θ̂

(0) = (1, 1, 1, 1, 1, 1, 1, 1). We also
applied the Poisson method using total number of iter-
ations 108, with 106 burn-in iterations and 105 thinning
interval (these values were increased from before to pre-
serve adequate mixing and convergence). As in previous
examples, we initially used ρ = .001 in the CE phase of
MCEM2. However, this proportion was not small enough
to enable the generation of �ρK� consistent trajectories
for this system (and thus to progress to MCEM). To com-
pensate, we re-ranMCEM2 using ρ = .0001 and K = 105.
This time, the CE phase completed easily in five iterations.
Figure 11 displays MLEs for all three methods, as well

as the MCEM2 pairwise confidence ellipses for the four
reversible reaction pairs. We see that all methods esti-
mate most parameters with approximately equal accuracy,
although MCEM2 and SGD more accurately determine
θ∗
1 and θ∗

2 , while the Poisson method and SGD more
accurately determine θ∗

5 and θ∗
6 . The mean relative errors

for MCEM2, SGD, and the Poisson method were 52%,
20%, and 30%, respectively. The MCEM2 95% confidence
ellipses enclose all true parameters except θ∗

5 and θ∗
6 , and

as in the birth-death system, all ellipses attribute most of
the uncertainty to knowledge of the magnitudes of param-
eter pairs rather than their ratios. The ellipses generated
by the Poisson method were skewed in the same manner,
conveying similar information regarding parameter ratios
(not shown). Regarding run times, the Poisson method
was by far the fastest, requiring only 1.5 hours to esti-
mate parameters. In contrast, SGD and MCEM2 required
2.3 and 8.7 days on a single processor, respectively,
to complete.

In [4], the SGD method was also used to identify
parameters from datasets where only a subset of species
were observed. We modified our original dataset by
removing observed molecule counts for species DNA and
DNA − P2 at all time points except t = 0 and re-ran
MCEM2. Upon convergence, we obtained θ̂ = (0.043,
0.538, 0.302, 0.377, 0.301, 3.103, 0.494, 0.243) for a 107%
mean relative error. This roughly translates to a 2-fold
increase in relative error due to a 40% decrease in
observed data points. Unfortunately, we were not able
to compare to the performances of SGD or the Poisson
method, as neither implementation was executable on
datasets with missing species.

Yeast-polarization model
The final system we used to evaluate MCEM2 models the
pheromone-induced G-protein cycle in Saccharomyces
cerevisiae [18,30]. This model consists of the following
eight reactions:

∅ θ1→ R

R θ2→ ∅
L + R θ3→ RL + L

RL θ4→ R

RL + G θ5→ Ga + Gbg

Ga
θ6→ Gd

Gd + Gbg
θ7→ G

∅ θ8→ RL ,

where R, L, and RL represent pheromone receptors, lig-
ands, and receptor-ligand complexes, respectively. Species

Figure 11 Parameter estimation results for auto-regulatory gene network. Each panel displays MCEM2 and SGD MLEs and Poisson method

point estimates computed using θ̂
(0) = (1, 1, 1, 1, 1, 1, 1, 1) (red, blue, and orange circles, respectively), true parameter values (green circles), and

MCEM2 68%, 95%, and 99% confidence ellipses. A, B, C, and D compare the four reversible pairs of reactions in the system. Mean relative errors for
MCEM2, SGD, and the Poisson method were 52%, 20%, and 30%, respectively. MCEM2 95% confidence ellipses enclosed all true parameter values
except θ∗

5 and θ∗
6 ; like the birth-death system, their skew indicates that the uncertainties of the parameter ratios are lower than the uncertainties of

the parameter magnitudes.
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G corresponds to a G-protein with separate subunits Ga,
Gbg , and Gd. We used x0 ≡ (R, L,RL,G,Ga,Gbg ,Gd) =
(500, 4, 110, 300, 2, 20, 90) and generated single trajectory
data for θ∗ = (.38, .04, .082, .12, .021, .1, .005, 13.21)
using T = 5 and d = 15. Figure 12 displays the data points
for all species. As with the final decay-dimerizationmodel,
this dataset is sparsely observed, particularly with respect
to species G, Ga, and Gbg at early time points.
We first tested MCEM2 on this dataset with θ̂

(0) =
(1, 1, 1, 1, 1, 1, 1, 1) and ρ = .001. As with the auto-
regulatory gene network, this value of ρ was not small
enough to enable the generation of �ρK� consistent tra-
jectories. Given the greater computational expense of sim-
ulating the yeast-polarization model, we decided against
reducing ρ and increasing K further until the CE phase
converged. Instead, we prematurely terminated the CE
phase once the distance from the observed data reached
a steady minimum value, and proceeded to MCEM.
This occurred at ∼70 iterations, when δ(m) ≈ .033 (see
Methods). Although we expected premature entry into
MCEM to increase the time required to simulate con-
sistent trajectories in the first few iterations, we did
not notice an appreciable trend and MCEM converged
(defined here as when the change in conditional log-
likelihood was less than .005 for at least one iteration) in
55 iterations. The resulting MLEs and available 68% con-
fidence intervals (CIs) are displayed in Table 1. MCEM2

achieved a 34.7% mean relative error, and all determined
CIs enclosed the corresponding true parameter values.

Figure 12 Yeast-polarization dataset. Colored circles depict initial
system states and 15 data points for all seven species. Like the
decay-dimerization dataset, these data are sparsely observed,
particularly with respect to species G, Ga , and Gbg between t = 0 and
the first observed time point.

We next tested the Poisson method on the yeast-
polarization dataset, using θ̂

(0) = (1, 1, 1, 1, 1, 1, 1, 1) and
the same options as in the auto-regulatory gene network
example. Table 1 displays the resulting parameter esti-
mates, along with the 68% CIs. Compared to MCEM2,
the Poisson method incurred a 2.7-fold higher mean rel-
ative error, and only half of the CIs enclosed the true
parameter values. Although less accurate for this example,
the Poisson method required substantially less run time
than MCEM2: three hours versus ∼30 days on a single
processor. This difference reflects the significant cost of
simulating trajectories with the SSA rather than using a
Poisson approximation.
Finally, we tested SGD on the yeast-polarization dataset

using the same options as in previous examples (“SGD1”).
As in the decay-dimerization model, the SGD estimate for
one of the parameters (θ5) tended to infinity within nine
steps of the algorithm (and thus resulted in an infinite
mean relative error), even when using an initial gradi-
ent descent step size as small as 10−6 (see Table 1). We
then retested SGD using initial parameter values much
closer to the truth (12% mean relative error): θ̂

(0) =
(.461, .047, .086, .123, .015, .085, .005, 12.299) and other
options unchanged (“SGD2”). This is in contrast to
MCEM2 and SGD1, which were run with initial param-
eter values set to a vector of ones. As before, the same
parameter estimate tended to infinity, although this time
46 steps were required to do so. Although the yeast-
polarization system contains combinations of reactions
that leave species numbers unchanged, they are evidently
not sufficient to allow adequate trajectory generation for a
non-divergent gradient descent. Table 1 displays both sets
of SGD parameter estimates without CIs, as the method
does not provide uncertainty estimates.

Discussion
This work presents MCEM2, a novel enhancement of
MCEM that accurately estimates unknown parameters
of stochastic biochemical systems from observed data.
MCEM2 combines a state of the art, adaptive implemen-
tation of MCEM (ascent-based MCEM) with algorithms
from rare event simulation (the CEmethod and multilevel
splitting) to substantially accelerate parameter estimation.
Unlike a previous application of the EM algorithm to
stochastic parameter estimation [13], which performs an
error-prone estimation of likelihood via reaction modi-
fication, MCEM2 concludes by executing an unmodified
MCEM iteration. This places MCEM2 on solid theoretical
foundations, with the CE phase of the algorithm serving
only to accelerate the eventualMCEMphase.We note that
this acceleration is essential for themethod to be useful, as
the use of unmodifiedMCEM is computationally tractable
only when initial parameter estimates are close to the true
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Table 1 Yeast-polarizationmodel: parameter estimates andmean relative error (% Error) for MCEM2 MLEs, SGDMLEs
(SGD2 initialized with values exhibiting 12%mean relative error), and Poissonmethod point estimates, along with the
MCEM2 and Poissonmethod 68% confidence intervals (CIs) for each parameter

Method Type θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 %Error

True .38 .04 .082 .12 .021 .1 .005 13.21

MCEM2

Lower n/a .014 .076 n/a .021 .089 .005 7.386

MLE .0005 .026 .081 .0009 .022 .104 .006 11.479 34.7

Upper n/a .048 .087 n/a .024 .122 .006 17.839

Poisson

Lower .002 .003 .080 .0001 .018 .069 .004 .0005

Mean 2.233 .020 .086 .016 .019 .083 .005 1.719 93.3

Upper 4.749 .033 .092 .027 .021 .095 .005 3.972

SGD1 MLE 1.000 .798 .334 1.425 Inf .591 .039 1.024 Inf

SGD2 MLE .439 .043 .042 3.241 Inf .029 .003 2.649 Inf

values (see Figure 2). We demonstrated that the addition
of a third technique, parameter perturbation, accelerated
execution of MCEM2 even further, without noticeable
effects on the resulting parameter estimates. This was true
even when using values of λ (denoting the maximum per-
cent perturbation applied to each parameter) other than
.25 (results not shown). If we decreased λ toward zero,
the CE phase ran progressively slower with the same final
results. If instead we increased λ toward one, the CE
phase ran faster for some models while requiring larger
sample sizes to converge (and thus running slower) for
others. This latter effect is due to the increased noise
conferred by using larger parameter perturbations. Ulti-
mately, we found that by setting λ = .25, we achieved a
useful speedup for all models tested without imposing
larger sample size requirements.
MCEM2 requires selection of three additional user-

defined quantities to achieve good performance: d(z, y),
an observed data distance function; K, the total number
of simulated trajectories; and ρ, the proportion of trajec-
tories selected that are closest to observed data. For the
former, we chose a normalized L1 distance, intended to
provide approximately equal weight to each of the system
species. Although this distance function yielded excel-
lent performance, other functions are certainly possible
(e.g. sum of squared deviations). However, we note that
work performed using the related approximate Bayesian
computation (ABC) methods suggests that the result-
ing parameter estimates are not sensitive to the choice
of the distance metric [31]. The latter two parameters
dictate the number of trajectories �ρK� used to refine
parameter estimates at each step of the CE phase. Addi-
tionally, in order for the CE phase to converge, the
proportion of simulated trajectories that are consistent
with data in each time interval must be ≥ ρ in the final
step. In the first three models tested in this work, we
found K = 104 and ρ = .001 to be sufficient for relatively

fast completion of the CE phase. For the auto-regulatory
gene network model, these values were not adequate to
enable the generation of (100 × ρ)% consistent trajec-
tories, and we increased K to 105 and lowered ρ to
.0001 to achieve convergence. Similarly, the original val-
ues were not sufficient for the yeast-polarization model,
although we chose to terminate the CE phase prema-
turely rather than incur an additional simulation cost by
increasing K. This practice did not noticeably impact the
time required to execute MCEM iterations, which sug-
gests that the actual proportion of simulated consistent
trajectories was only slightly less than .001. In general, we
suggest starting with K = 104 and ρ = .001 and increas-
ing K only if computationally favorable. Otherwise, we
would recommend terminating the CE phase when the
distance from the observed data reaches a steady min-
imum value. We note that the CE phase of MCEM2

with early termination resembles the ABC method of
Toni et al. [31], with two important differences. First, the
ABC method requires a user-defined threshold for select-
ing simulated trajectories based on their distances from
observed data, whereas MCEM2 automatically chooses
this threshold using the parameter ρ. Second, the method
of Toni et al. requires accurate prior bounds on param-
eter values, whereas MCEM2 needs no prior parameter
information. This latter difference also sets our method
apart from the SML and histogram-based approaches
for identifying MLEs [2,12], both of which require prior
parameter bounds to execute a genetic algorithm.
Another important advantage of MCEM2 over exist-

ing MLE methods is the ease with which it can estimate
parameter uncertainty. Existing MLE methods return
parameter point estimates, but these estimates carry no
measures of confidence or interdependency. In contrast,
MCEM2 returns a multivariate parameter uncertainty
estimate. This estimate indicates correlations between
particular parameter estimates (see Figures 5 and 11),
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along with measures of the information content of the
observed data for each unknown parameter (compare
confidence ellipses of θ̂3 to other parameters in Figure 10).
In order to generate uncertainty estimates, MCEM2

assumes that MLEs are multivariate log-normally dis-
tributed, which can be shown to be true as the number
of data points increases asymptotically. However, 30 data
points appear to be sufficient to satisfy this assumption
(Figure 3), with possibly as few as five being acceptable
(decay-dimerization dataset: Figure 10). Of the pairwise
confidence ellipses generated in this work (describing
estimates of the birth-death process, decay-dimerization,
and auto-regulatory gene network), we observed only one
instance where the true parameter pair did not reside
within the 99% confidence ellipse (parameters θ5 and θ6 of
auto-regulatory gene network: Figure 11C). Nevertheless,
we note that the true parameter values in this case line
up with the major axis of the corresponding ellipse, sug-
gesting that MCEM2 was still able to correctly identify the
ratio of the parameters.We note that Bayesian approaches
like the Poisson approximationmethod also generate mul-
tivariate parameter uncertainty estimates which provide
similar information to that given by MCEM2.
We compared MCEM2 to the recently proposed Pois-

son approximation and SGD approaches by applying all
three methods to four examples: birth-death process,
decay-dimerization, auto-regulatory gene network, and
the yeast-polarization model. Overall, the results demon-
strate that MCEM2 performs relatively well for all exam-
ples. The first example illustrated that predictions made
by the Poisson approximation method increasingly lose
accuracy as speciesmolecule counts tend to zero.MCEM2

avoids any such accuracy loss due to its exact simulation
of consistent trajectories. The second example illustrated
a limitation of the SGD method: to function properly, it
requires systems to contain combinations of reactions that
do not alter species counts. MCEM2 (as well as the Pois-
son method) imposes no such requirement. The diver-
gence of the gradient descent in the yeast-polarization
model also suggests that the mere presence of these com-
binations of reactions are not sufficient to lead to good
SGD performance.
When functioning correctly on larger systems, an

advantage of both SGD and the Poisson approximation
method over MCEM2 is their lower required compu-
tational time. In particular, SGD ran 3.78-fold faster
than MCEM2 for the auto-regulatory gene network, and
the Poisson method ran an additional 36.8-fold faster
than SGD. On the yeast-polarization model, the Poisson
method ran 240-fold faster than MCEM2. These speed-
ups are due to bothmethods’ “simulation free” approaches
for generating consistent trajectories, which is advanta-
geous for computationally expensive models. Although
the CE phase of MCEM2 typically completes in only

a few iterations, the MCEM phase can require ≥ 100
iterations, with each iteration modifying the parameter
estimates only slightly. Thus, amodified version ofMCEM
that takes larger steps in parameter space would further
accelerate convergence. Such modifications have previ-
ously been described in the literature [28]; consequently,
current work focuses on incorporating these modifica-
tions into MCEM2. We note that one simple way to
reduce the computational time required by MCEM2 is to
simulate trajectories in parallel, using either clusters of
CPUs (central processing units) or GPUs (graphics pro-
cessing units). Since each consistent trajectory can be
simulated independently of all others, the computation
time of eachMCEM2 iteration can in principle be reduced
to the longest time required to simulate a single consistent
trajectory.
One final enhancement that would broaden the applica-

bility of MCEM2 involves accommodating measurement
error in the observed data. Implementing this enhance-
ment would be relatively straightforward given probabilis-
tic error with known distribution. In this case, we could
simply replace the indicator function in Equation 4b with
the corresponding density function of the error, given a
simulated trajectory. This modification would substan-
tially improve the efficiency of MCEM2, as any simulated
trajectory could now have a nonzero likelihood of gener-
ating the observed data (and thus all trajectories could be
consistent with observed data). Future work will focus on
incorporating this enhancement into MCEM2.

Conclusions
In this work, we developed Monte Carlo Expectation-
Maximization with Modified Cross-Entropy Method
(MCEM2), a novel method for maximum likelihood
parameter estimation of stochastic biochemical sys-
tems. Through applying MCEM2 to five example sys-
tems, we demonstrated its accurate performance and
distinct advantages over existing methods. We expect
these advantages to permit analysis of larger and more
realistic biochemical models, ultimately providing an
improved mechanistic understanding of important bio-
logical processes.

Algorithm 1: Pseudo-code for CE phase of MCEM2

1: θ̂
(0) ← (1, 1, . . . , 1), δ(0) ← ∞, m ← 0

2: while δ(m) > 0 do
3: m ← m + 1
4: t0 ← 0

5: r(m)

jk ← 0 ∀j, k
6: for i = 1 to d do
7: for k = 1 to K do
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8: generate θ̃
(m−1)
i,k ≡

(
θ̃

(m−1)
1,i,k , . . . , θ̃ (m−1)

M,i,k

)
by

evaluating Equation (8)M times
9: t ← ti−1

10: if i = 1 then
11: x ← x0
12: else

13: x ← final state of z(m)

i−1,k
14: end if
15: while t ≤ ti do
16: compute all hj(x)

17: generate τ , j′ using the SSA with θ̃
(m−1)
i,k ,

augment z(m)

i,k

18: t ← t + τ , r(m)

j′k ← r(m)

j′k + 1, update x to
reflect the firing of reaction Rj′

19: end while
20: end for

21: δ(m) ← (ρ × 100)th quantile of
(
d(z(m)

i,1 , yi), . . . ,

d(z(m)
i,K , yi)

)
22: if i < d then

23: replace
(
z(m)
i,1 , . . . , z(m)

i,K

)
by sampling with

replacement from the z(m)

i,k satisfying d(z(m)

i,k , yi)
≤ δ(m))

24: end if
25: end for

26: compute θ̂
(m)

according to Equation (7)
27: end while

28: return θ̂
CE = θ̂

(m)

Algorithm 2: Pseudo-code for MCEM phase of
MCEM2

1: θ̂
(0) ← θ̂

CE
, n ← 0

2: while (upper bound of the change in conditional
log-likelihood > .005) do

3: n ← n + 1
4: if n > 1 then
5: increment K ′ as described in [19]
6: end if
7: t0 ← 0
8: r(n)

jk′ ← 0 ∀j, k′

9: for i = 1 to d do
10: for k′ = 1 to K ′ do
11: t ← ti−1

12: if i = 1 then
13: x ← x0
14: else
15: x ← x′

i−1

16: end if
17: while t ≤ ti do
18: compute all hj(x)

19: generate τ , j′ using the SSA with θ̂
(n−1)

,

augment z(n)

i,k′

20: t ← t + τ , r(n)

j′k′ ← r(n)

j′k′ + 1, update x to
reflect the firing of reaction Rj′

21: end while

22: if d(z(n)

i,k′ , yi) > 0 then

23: reset z(n)

i,k′ , r(n)

j′k′ to values held before step 17
24: go to step 11
25: end if
26: end for
27: end for

28: compute θ̂
(n)

according to Equation (5)
29: end while

30: return θ̂ = θ̂
(n)

Algorithm 3: Pseudo-code for computingMCEM2

uncertainty estimates
1: t0 ← 0
2: rjk′ ← 0 ∀j, k′

3: for i = 1 to d do
4: for k′ = 1 to K ′ do
5: t ← ti−1

6: if i = 1 then
7: x ← x0
8: else
9: x ← x′

i−1

10: end if
11: while t ≤ ti do
12: compute all hj(x)

13: generate τ , j′ using the SSA with θ̂ , augment zi,k′
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14: t ← t + τ , rj′k′ ← rj′k′ + 1, update x to
reflect the firing of reaction Rj′

15: end while
16: if d(zi,k′ , yi) > 0 then
17: reset zi,k′ , rj′k′ to values held before step 11
18: go to step 5
19: end if
20: end for
21: end for

22: compute �̂ according to Equation (10)

23: return �̂
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