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Abstract

Background: One aim of the in silico characterization of proteins is to identify all residue-positions, which are
crucial for function or structure. Several sequence-based algorithms exist, which predict functionally important sites.
However, with respect to sequence information, many functionally and structurally important sites are hard to
distinguish and consequently a large number of incorrectly predicted functional sites have to be expected. This is
why we were interested to design a new classifier that differentiates between functionally and structurally
important sites and to assess its performance on representative datasets.

Results: We have implemented CLIPS-1D, which predicts a role in catalysis, ligand-binding, or protein structure for
residue-positions in a mutually exclusive manner. By analyzing a multiple sequence alignment, the algorithm scores
conservation as well as abundance of residues at individual sites and their local neighborhood and categorizes by
means of a multiclass support vector machine. A cross-validation confirmed that residue-positions involved in
catalysis were identified with state-of-the-art quality; the mean MCC-value was 0.34. For structurally important sites,
prediction quality was considerably higher (mean MCC = 0.67). For ligand-binding sites, prediction quality was
lower (mean MCC = 0.12), because binding sites and structurally important residue-positions share conservation
and abundance values, which makes their separation difficult. We show that classification success varies for
residues in a class-specific manner. This is why our algorithm computes residue-specific p-values, which allow for
the statistical assessment of each individual prediction. CLIPS-1D is available as a Web service at http://www-bioinf.
uni-regensburg.de/.

Conclusions: CLIPS-1D is a classifier, whose prediction quality has been determined separately for catalytic sites,
ligand-binding sites, and structurally important sites. It generates hypotheses about residue-positions important for
a set of homologous proteins and focuses on conservation and abundance signals. Thus, the algorithm can be
applied in cases where function cannot be transferred from well-characterized proteins by means of sequence
comparison.

Background
It is of general interest to identify important sites of a
protein, for example when elucidating the reaction
mechanism of an enzyme. To support this task, classi-
fiers have been developed, which utilize different kinds
of information about the protein under study. Some
algorithms are based on sequences [1-11], other ones

make use of 3D-data [12,13], and a third class combines
both approaches [14-18].
A strong argument in favor of sequence-based methods

is their broad applicability and their potential to character-
ize proteins with a novel fold. Additionally, some signals
seem to be more pronounced in sequence- than in 3D-
space [19]. Commonly, these methods depend on a multi-
ple sequence alignment (MSA) composed of a sufficiently
large number of homologs. Based on the assumption that
critical residues are not altered during evolution, the cano-
nical feature to identify important residue-positions in an
MSA is the conservation of individual columns. The
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degree of conservation can help to predict a role: In many
cases, strictly conserved residues are essential for protein
function [7,20,21]. In contrast, a prevalent but not exclu-
sively found amino acid is often important for protein sta-
bility [22,23], which similarly holds for ligand-binding
sites. Thus, for a precise discrimination, several properties
have to be interpreted. Features that improve prediction of
functionally important sites are the conservation of proxi-
mate residues [7,24] and the abundance of amino acid
residues observed at catalytic sites [8,24]. In addition,
implicit features deduced from protein sequences have
been utilized, like the predicted secondary structure and
the predicted solvent accessible surface of residues [5,8].
Most of the existing algorithms focus on the identifica-

tion of sites relevant for protein function. In order to
broaden the classification spectrum, we implemented the
sequence-based algorithm CLIPS-1D, which predicts func-
tionally important sites in addition to residue-positions
crucial for protein structure in a mutually exclusive man-
ner. It is based on a multiclass support vector machine,
which assesses not more than seven properties deduced
from residue-positions and their local neighborhood in
sequence space. Our approach compares favorably with
state-of-the-art classifiers and predicts catalytic residue-
positions with a mean MCC-value of 0.34. The mean
MCC-value is for structurally important sites 0.67 and for
ligand-binding sites it is 0.12. Our findings show that
separating ligand-binding sites and structurally important
sites is difficult due to their similar properties and that
classification quality depends on the residue type.

Results and discussion
Analysis of local conservation and abundance signals
allows for a state-of-the-art classification
High-quality datasets consisting of catalytic sites, ligand-
binding sites, and sites important for protein structure
are required to train and assess support vector machines
(SVMs), which predict the respective roles of residue-
positions. Based on the content of EBI-databases, we pre-
pared the redundancy-free and non-overlapping sets
CAT_sites and LIG_sites, which consist of 840 catalytic
sites and 4466 ligand-binding sites deduced from a set of
264 enzymes named ENZ (see Methods). Whereas the
full set of functionally important sites is known for many
enzymes, residues that crucially determine structure have
not been identified for a representative set of proteins.
Thus, to compile such sites, we had to follow an indirect
approach [25] by assuming that residues in the core of
proteins lacking enzymatic function are conserved due to
their relevance for structure. This notion is supported by
the fact that conserved hydrophobic core-residues can
contribute substantially to protein stability [26]. By re-
annotating a comprehensive set of non-enzymes from

reference [27], we culled the dataset NON_ENZ, which
consists of 136 proteins. NON_ENZ contains 3703 buried
residue-positions, which are more conserved than the
mean (see Methods); we designated these sites STRUC_-
sites. For all proteins under study, MSAs were taken from
the HSSP database [28] and filtered prior to analysis.
Next, we identified features, which allow for a state-of-

the-art classification of CAT_sites, LIG_sites, and
STRUC_sites. Thus, we trained three two-class (2C-)
SVMs to predict for each residue-position k, whether it is
important for catalysis (SVMCAT), ligand-binding
(SVMLIG), or protein structure (SVMSTRUC) and com-
pared performance values. In the end, the features used
to characterize each k were in the case of SVMCAT a nor-
malized Jensen-Shannon divergence consJSD (k) (formula
(4)) and an abundance-value abund(k, CAT_sites) scoring
the occurrence of residues at CAT_sites according to for-
mula (6). The proximity of k was assessed by means of a
weighted score consneib(k) (formula (5)) and a novel

abundance-value abundneib(aaks ,CAT sites) , deduced from

conditional frequencies in the ± 3 neighborhood [8] of

CAT_sites (formula (7)). Thus, abundneib(aaks ,CAT sites)
compares the local environment of site k with the one

observed for residues aaks at positions annotated as cata-

lytic sites. In order to quantify the contribution of indivi-
dual features to classification quality, performance was
determined for SVMs exploiting either all four features
or a combination of three features, respectively. Analo-
gously, scores for LIG_sites were computed, and SVMLIG

was trained and assessed.
It is difficult to unambiguously determine a classifier’s

performance, if the numbers of positive and negative
cases differ to a great extent, as is here the case. This is
why we computed a battery of performance values, which
are given in Additional file 1: Table S1. Their comparison
confirms for our problem that the performance measures
support each other, thus we focus on MCC-values [29],
which are also listed in Table 1. The MCC-values for
SVMCAT and SVMLIG were 0.324 and 0.213, respectively.
MCC-comparison makes clear that for CAT_sites and
LIG_sites all four features add to classification quality.
For CAT_sites, consJSD (k) and abund(k, CAT_sites) con-
tributed most, for LIG_sites, the conservation score
consJSD(k) was most relevant; compare Additional file 1:
Table S1 and Additional file 1: Figure S1, which shows
ROC and PROC curves.
Can SVMCAT and SVMLIG compete with state-of-the-art
classifiers? For the assessment, we selected FRpred,
which has outperformed other approaches and which
additionally exploits the predicted secondary structure
and solvent accessibility [8]. It has reached 40% preci-
sion at 20% sensitivity for the identification of catalytic

Janda et al. BMC Bioinformatics 2012, 13:55
http://www.biomedcentral.com/1471-2105/13/55

Page 2 of 11



residues and is accessible as a Web service [8]. FRpred
lists two subtypes of predictions, FRcons-cat for catalytic
sites and FRcons-lig for ligand-binding sites. All results
are scored with values of 0-9; the higher the score, the
more probable is a functional role of the residue. A clas-
sification of CAT_sites and LIG_sites with FRpred
resulted in MCC-values of 0.250 (FRcons-cat) and 0.197
(FRcons-lig), when considering predictions scored 9 as
positive cases. For predictions scored at least 8, the
MCC-values were 0.231 and 0.219, respectively. Interest-
ingly, performance was better, when we uploaded our
preprocessed HSSP-MSAs than when FRpred compiled
MSAs on itself (compare Additional file 1: Table S1),
which indicates the high quality of these specifically fil-
tered MSAs. In summary, the comparison of perfor-
mance values for FRpred, SVMCAT, and SVMLIG

confirmed that the four features selected by us account
for a state-of-the-art classification.
Using corresponding features and the set STRUC_sites,

we analogously trained SVMSTRUC for the prediction of
residue-positions important for structure, which gave an
MCC-value of 0.761. Classification quality was determined
to the greatest extent by consJSD (k). When classifying
without this feature, MCC was lowered to 0.346. Utilizing
the feature abundneib(k, STRUC_sites) deteriorated perfor-
mance; a higher MCC-value (0.782) was gained by an
SVM trained on the remaining three features. Even abund
(k, STRUC_sites) had only a marginal effect, although the
respective scores differ considerably from those of abund
(k, CAT_sites) and abund(k, LIG_sites); compare Table 2
and Additional file 1: Figure S2. Thus, in proteins without
enzymatic function, the assessment of conservation con-
tributed most to separate the conserved buried residues
from all other ones, which constitute the negative cases.
FRpred predicted with score 9 22% and with score 8 41%
of the STRUC_sites as catalytic sites or ligand-binding
sites; see Table 1.

CLIPS-1D: Towards a more diversified prediction of
residue function
In order to elaborate the subtle differences distinguishing
functionally and structurally important residue-positions,
all combinations of the above training sets have to be
exploited. This is why we prepared a multi-class support
vector machine (MC-SVM) for CLIPS-1D, which was
trained on the four classes CAT_sites, LIG_sites,
STRUC_sites, and NOANN_sites, i.e., all residue-positions
from NON_ENZ not selected as STRUC_sites. Due to the
above findings on 2C-SVMs, we chose the following
seven features: consJSD (k), consneib(k), abund(k, CAT_-
sites), abund(k, LIG_sites), abund(k, STRUC_sites),
abundneib(k, CAT_sites), and abundneib(k, LIG_sites). The
MC-SVM outputs a list of four class-specific probability
values pclass. Based on the largest pclass-values, residue-
positions were assigned one of the four classes; the
resulting distributions are shown in Figure 1. 65% of the
CAT_sites and 76% of the STRUC_sites were correctly
assigned. 64% of the LIG_sites and 19% of NOANN_sites
were misclassified, and each class contributed a notice-
able fraction of false positives. 13% of the STRUC_sites
were classified as CAT_sites and 10% as LIG_sites.
Although the algorithm frequently failed to assign the
correct class, separating positions with and without a
crucial role was more successful: 96% of the CAT_sites,

Table 1 Classification performance of SVMs and FRpred
on functionally and structurally important residue-
positions

CAT_sites LIG_sites STRUC_sites

2C-SVM 0.324 0.213 0.782

CLIPS-1D 0.337 0.117 0.666

FRpred, score ≥ 8 0.231 0.219 41%

FRpred, score = 9 0.250 0.197 22%

The line “2C-SVM” gives MCC-values resulting from a classification of catalytic
sites (CAT_sites) with SVMCAT, of ligand-binding sites (LIG_sites) with SVMLIG,
and of structurally important sites (STRUC_sites) with SVMSTRUC. The line “CLIPS-
1D” shows the performance of the MC-SVM. For FRpred, performance
resulting from the analysis of HSSP-MSAs is given. For CAT_sites and LIG_sites,
MCC-values are listed resulting from FRcons-cat or FRcons-lig scores of at least
8 or 9, respectively. For STRUC_sites, the same percentage of false positives
resulted from FRcons-cat and FRcons-lig predictions.

Table 2 abund(k, CLASS)-values for amino acid residues

Residue CAT_sites LIG_sites STRUC_sites

A -2.0424 -0.3537 -0.1210

C 1.3255 0.7376 1.2398

D 1.1178 0.0426 -0.0498

E 0.6536 -0.3856 -0.6615

F -0.7708 -0.0081 0.5057

G -0.7533 0.4195 0.7020

H 1.8883 0.8279 -0.3044

I -2.8164 -0.3026 -0.6449

K 0.6051 -0.3615 -1.0215

L -2.4503 -0.5416 0.2116

M -1.4026 0.1374 -0.4882

N -0.1972 0.3566 -0.2254

P -5.0000 -0.4542 0.3643

Q -0.7243 -0.1841 -0.5615

R 0.6834 0.3879 -0.2593

S 0.0027 -0.0125 -0.7006

T -0.5435 0.2314 -0.3363

V -2.9568 -0.4130 -0.3294

W 0.1927 0.5548 1.2811

Y 0.3265 0.4572 0.7058

The score-values were deduced from residues belonging to the respective
classes. See formula (6) for a definition of the scores.
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65% of the LIG_sites, and 98% of the STRUC_sites were
classified as structurally or functionally important and
81% of the NOANN_sites were classified as having no
crucial function. It turned out that the respective MCC-
value was optimal, if CAT_sites with pCAT(k) > 0.61 were
selected as positives. In summary, the corresponding
MCC-values were 0.337, 0.117, and 0.666 for CAT_sites,
LIG_sites, and STRUC_sites; see Table 1. In comparison
with 2C-SVMs, the performance on CAT_sites improved
moderately. However, the performance on LIG_sites and
STRUC_sites dropped, which indicates that the separa-
tion of LIG_sites and STRUC_sites is difficult.
The comparison of abund()-values (compare Table 2)

makes clear that residues are unevenly distributed among
the classes, which must influence the residue-specific clas-
sification quality. Thus, we determined class-specific
MCC-values for each residue, which are listed in Table 3.
As expected, performance differs drastically for individual
residues and between classes. Among CAT_sites, Arg, Asp,
Cys, His, Lys, and Ser were predicted with high quality.
Most of the other MCC-values were near zero and no
MCC-value could be computed for Pro and Val due to
empty sets. The performance-values for LIG_sites were
generally lower. Among STRUC_sites, the mean MCC-
value for the hydrophobic residues Ala, Ile, Leu, Met, Phe,
Pro, Trp, and Val was 0.733; the mean of all hydrophilic
ones was 0.494. In summary, these findings proposed to
determine classification quality in more detail by comput-
ing class- and residue-specific p-values (see Methods).
Thus, the user can assess the statistical significance of
each individual prediction. Table 4 lists the resulting per-
formance for p-value cut-offs of 0.01, 0.025, and 0.05. As
can be seen, specificity is high in all cases; sensitivity and
precision are lower and class-dependent.

An alternative to CLIPS-1D is the algorithm ConSeq,
which predicts functionally or structurally important resi-
due-positions but does not distinguish catalytic and
ligand-binding sites. Based on the analysis of five pro-
teins, a success rate of 0.56 has been reported [5]. In
order to estimate the performance of the latest ConSeq
version [30], we have uploaded one sequence for each of
the first five ENZ and NO_ENZ entries (see Additional
file 1: Tables S3 and S4 for PDB-IDs) and used the Web
server with default parameters. As ConSeq does not dif-
ferentiate between catalytic sites and ligand-binding sites,
the union of CAT_sites and LIG_sites was considered as
positives in this case. For the combination of these resi-
due-positions, sensitivity was 0.41, specificity 0.84, and
precision 0.16; for STRUC_sites the values were 0.30,
0.86, and 0.31, respectively. A comparison of the perfor-
mance values indicates that CLIPS-1D can compete with
ConSeq.

Utilizing CLIPS-1D as a web service
A version of CLIPS-1D trained on the full datasets is
available as a Web service at http://www-bioinf.uni-
regensburg.de/. Its usage requires to upload an MSA in
multiple Fasta-format; the result will be sent to the user
via email.
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Figure 1 Classification performance of CLIPS-1D in predicting
functionally and structurally important residue-positions. Based
on the maximal class-probability pclass all members of the classes
CAT_sites, LIG_sites, STRUC_sites, and NOANN_sites were categorized.
NOANN_sites are all residue-positions not selected as STRUC_sites in
the NON_ENZ dataset, i.e. positions without assigned function. Note
that the absolute numbers of residue-positions are plotted with a
logarithmic scale.

Table 3 Residue-specific MCC-values

Residue CAT_sites LIG_sites STRUC_sites

A -0.002 0.164 0.774

C 0.404 0.162 0.676

D 0.302 0.016 0.315

E 0.345 0.052 0.348

F 0.058 0.041 0.771

G 0.024 0.262 0.591

H 0.424 -0.063 0.086

I -0.001 0.135 0.701

K 0.452 0.031 0.337

L -0.001 0.056 0.815

M -0.002 0.127 0.666

N 0.071 0.139 0.561

P - 0.139 0.683

Q 0.098 0.111 0.678

R 0.287 0.040 0.319

S 0.307 0.156 0.595

T 0.055 0.174 0.682

V - 0.119 0.761

W -0.008 0.007 0.689

Y 0.097 0.046 0.741

The MCC-values were determined in a class- and residue-specific manner. Due
to missing cases, MCC-values could not be determined for Pro and Val
residues at CAT_sites.
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To illustrate the application of CLIPS-1D, we present
an analysis of the enzyme indole-3-glycerol phosphate
synthase (IGPS), which is found in many mesophilic and
thermophilic species. IGPS belongs to the large and ver-
satile family of (ba)8-barrel proteins, which is one of the
oldest folds [31]. Additionally, folding kinetics [32] and
3D-structure of IGPS [33,34] have been studied in detail.
We analyzed the HSSP-MSA related to PDB-ID 1A53,

i.e. the IGPS from Sulfolobus solfataricus. Table 5 lists all
CLIPS-1D predictions with a p-value ≤ 0.025. According
to the respective PDB-sum page [35], E51, K53, K110,
E159, N180, and S211 are the catalytic residues. Besides
N180, which was predicted as LIG_site, the other 5 sites
were correctly identified as CAT_sites. The sites which
have contact to the ligand were classified as follows:
CAT_sites E210, LIG_sites I232, STRUC_sites F112, L131,
L231, NOANN_sites G212, G233, S234. Classified as
LIG_sites were also K55, I179, and S181, which are all
neighbors of catalytic sites. 20 residues were predicted as
STRUC_sites; Figure 2 shows that all belong to the core
of the protein. Their function will be discussed below.

Strengths and weaknesses of CLIPS-1D
Adding the class STRUC_sites allowed us to compare
properties of functionally and structurally important resi-
due-positions and to assess their impact on classification
quality.
For CAT_sites, the abundance scores indicate a strong

bias of Arg, Asp, Glu, His, and Lys towards catalytic resi-
due-positions, which is in agreement with previous find-
ings [24]. CAT_sites, which were classified as structurally
important, were most frequently Cys and Tyr residues.
Both residues are not exceedingly overrepresented at cata-
lytic sites and abund(k, CAT_sites)- and abund(k,
STRUC_sites)-values are similarly high; compare Table 2.
For extracellular proteins, structurally important Cys resi-
dues are frequently involved in disulphide bonds. Thus,
algorithms like DISULFIND [40] can help to clarify
CLIPS-1D’s Cys classification.
Least specific was the classification of LIG_sites, which

also suffered the most drastic loss of performance. The
MCC-value dropped from 0.21 (gained with SVMLIG) to
0.12, and most misclassifications gave STRUC_sites, which
is due to the similarity of these sites with respect to the

features used for classification: For both classes, consJSD(k)
is most relevant for classification success, and among all
combinations of abundance-values the pairs abund(k,
LIG_sites) and abund(k, STRUC_sites) differ least; com-
pare Table 2. The similarity of these residue-positions is
further confirmed by the large number of STRUC_sites
classified as functionally important by FRpred, which addi-
tionally suggests that the assessment of the predicted sec-
ondary structure and the predicted solvent accessibility
contributes little to discriminate functionally and structu-
rally important sites. It follows that LIG_sites and
STRUC_sites span a fuzzy continuum, which cannot be
divided by means of the considered sequence-based fea-
tures. On the other hand, each MCC-value characterizes a
binary classification and underestimates the performance
of CLIPS-1D. For example, when assessing the perfor-
mance of LIG_sites via an MCC-value, residue-positions
classified as STRUC_sites were counted as false-negatives.
A more detailed analysis of Figure 1 and the findings on
sIGPS illustrate that LIG_sites were often classified as
CAT_sites or STRUC_sites and not as sites without any
function (NOANN_sites), which is a drastic difference not
considered by an MCC-value.
For STRUC_sites, the MCC-value decreased from 0.78

to 0.67 for the above reasons; however, the MCC-value is
still considerably high. Can one make plausible, why these
buried residue-positions are preferentially occupied by a
specific set of residues? At mean, hydrophobic interactions
contribute 60% and hydrogen bonds 40% to protein stabi-
lity; for the stability of larger proteins, hydrophobic inter-
actions are even more important [41]. The fraction of
misclassified hydrophobic STRUC_sites was low; compare
MCC-values of Table 3. Thus, CLIPS-1D identifies with
high reliability conserved residues of the protein’s core,
which are most likely important for protein stability. On
the other hand, the analysis of abund(k, STRUC_sites)-
values (compare Table 2) shows that not all STRUC_sites
are conserved hydrophobic residues: The hydrophobic
residues Ala, Ile, Met, and Val are underrepresented,
whereas the hydrophilic residues Cys, Gly, and Tyr are
overrepresented. Additionally, the comparison of abun-
dance scores indicates a preference of Leu, Phe, and Pro
for structurally relevant sites. These preferences reflect the
specific function of these residues for secondary structure

Table 4 Performance of CLIPS-1D for different p-values

Cut-off Sensitivity Specificity Precision

CAT LIG STRUC CAT LIG STRUC CAT LIG STRUC

0.010 0.170 0.030 0.225 0.996 0.991 0.991 0.316 0.176 0.827

0.025 0.276 0.077 0.445 0.992 0.977 0.977 0.270 0.178 0.789

0.050 0.401 0.137 0.582 0.987 0.954 0.961 0.246 0.165 0.742

The three performance measures were determined (see Methods) by selecting as positive cases all residue-positions with a p-value not greater than the given
cut-off. Labels: “CAT” CAT_sites, “LIG” LIG_sites, “STRUC” STRUC_sites.
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[42]. Additionally, the score-values demonstrate that
CLIPS-1D does not exclusively select ILV-residues, which
are considered important for protein folding [32].
STRUC_sites, misclassified as catalytic ones, were often
Arg, Asp, and Glu, which shows that the abund(k, CAT_-
sites)-values have a strong effect on classification.
NOANN_sites predicted as CAT_sites were frequently Arg,
Asp, and His; Gly, Ser, and Thr were often predicted as
LIG_sites. Most likely, at least some of these residue-posi-
tions belong to binding sites on the protein-surface e.g.

protein-protein interfaces. Identifying these residues is
possible [43], but beyond the scope of this study.

STRUC_sites are crucial elements of the sIGPS structure
A detailed comparison of the two thermostable variants
sIGPS from S. solfataricus [33], tIGPS from Thermotoga
maritima, and the thermolabile eIGPS from Escherichia
coli has made clear that these thermostable proteins
have 7 strong salt bridges more than eIGPS, and that
only 3 of 17 salt bridges in tIGPS and sIGPS are

Table 5 CLIPS-1D predictions for residue-positions in sIGPS (PDB-ID 1A53)

Residue Position pCAT pLIG pSTRUC pNOANN p-value Classification

CS LBS STRUC

I 49 0.001 0.154 0.824 0.022 0.003 SC

E 51 0.806 0.075 0.114 0.005 0.020 CAT

K 53 0.835 0.065 0.088 0.012 0.004 CAT

K 55 0.051 0.544 0.197 0.208 0.011 SC

S 56 0.017 0.170 0.801 0.012 0.004 SC

L 60 0.002 0.128 0.829 0.041 0.019 IA

A 77 0.006 0.172 0.810 0.011 0.018 FC

I 82 0.002 0.259 0.667 0.073 0.011 SR

T 84 0.002 0.111 0.881 0.007 0.003 N

L 108 0.006 0.106 0.863 0.024 0.012 SR

K 110 0.866 0.078 0.046 0.011 0.002 CAT

F 112 0.146 0.053 0.788 0.014 0.020 STRUC FC

Q 118 0.007 0.114 0.872 0.008 0.002 FC

A 122 0.001 0.066 0.882 0.051 0.010 FC

A 127 0.024 0.193 0.776 0.008 0.022 N

L 131 0.001 0.071 0.920 0.008 0.006 STRUC SR

L 132 0.004 0.164 0.794 0.038 0.023 SR,FC

I 133 0.005 0.169 0.790 0.036 0.005 FC

L 137 0.007 0.151 0.813 0.029 0.020 SC,FC

L 157 0.001 0.105 0.886 0.008 0.010 SC,FC

E 159 0.899 0.048 0.050 0.003 0.005 CAT

D 165 0.189 0.071 0.699 0.040 0.007 N

I 179 0.001 0.819 0.068 0.112 0.021 SCE

N 180 0.098 0.770 0.116 0.016 0.016 LIG

S 181 0.011 0.774 0.134 0.081 0.019 SCE

L 184 0.009 0.157 0.818 0.016 0.020 IA

L 197 0.003 0.130 0.818 0.049 0.020 N

E 210 0.866 0.059 0.068 0.007 0.008 CAT

S 211 0.738 0.168 0.087 0.007 0.005 CAT

L 231 0.003 0.224 0.762 0.011 0.025 STRUC SC

I 232 0.006 0.835 0.059 0.099 0.017 LIG

The first two columns give the residue and its position in sIGPS. The following four columns list the probabilities for the residue’s membership with CAT_sites,
LIG_sites, STRUC_sites, or NOANN_sites. The column labeled “p-value” lists the p-value for the class with max(pCLASS). The columns “CS” and “LBS” indicate the
classification of known catalytic and ligand-binding sites. The last column lists the annotation deduced for residues predicted as STRUC_sites. Meaning of labels:
“CAT”, “LIG”, “STRUC”, residues predicted as CAT_sites, LIG_sites, or STRUC_sites, respectively. “SC” element of a stabilization center pair in sIGPS, “SCE” ditto in
eIGPS, “SR” stabilization residue in sIGPS; see [36]. “FC” element of the folding core; see [37]. “IA” interaction with substrate; see [38]. “N” no function assigned.
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topologically conserved [44]. It follows that CLIPS-1D
can only identify the specific subset of structurally
important residue-positions which are relevant for most
of the homologous proteins constituting the MSA under
study. For sIGPS, tIGPS, and eIGPS stabilization centers
(SC) and stabilization residues (SR) have been deter-
mined [36]. Residues of SCs form tight networks of
cooperative interactions which are energetically stabi-
lized; SRs are embedded into a conserved hydrophobic
3D-neigborhood. 20 residue-positions of sIGPS were
classified as STRUC_sites by CLIPS-1D. 9 of these 20
residue-positions as well as the 3 false-positive LIG_sites
are a SC or SR residue in one of the three homologous
enzymes; compare Table 5. For sIGPS, the structure of
folding cores, i.e. local substructures, which form early
during protein folding has been determined by means of
HD exchange experiments [37]. 8 of the STRUC_sites
belong to fragments, which are strongest protected
against deuterium exchange (> 84%, see Table 3 in
reference [37]), which indicates their significant role in
the partially folded protein. A molecular dynamics study
[38] and a comparison of enzyme variants [34] have
made clear that two more STRUC_sites belong to loops
interacting with the substrate. When combining the
above findings, only 4 of the 20 STRUC_sites have no
accentuated function, which confirms the relevance of
these sites for the enzyme’s structure.

Main application of CLIPS-1D: Predicting important sites
of uncharacterized proteins
For the test cases of the CASP 7 contest, the firestar [17]
and the I-TASSER [45] server have reached MCC-values

of 0.7 when predicting functionally important residues;
the performance of other servers has been substantially
lower [17]. Both servers utilize the transfer of informa-
tion from evolutionary related and well-characterized
proteins. If applicable, this approach allows for a superior
prediction quality. However, it fails completely if the
function of homologous proteins is unknown. For such
cases, methods are required that identify functionally and
structurally important sites by analyzing conservation sig-
nals and propensity values. In contrast to ConSeq [5] and
FrPred [8], CLIPS-1D predicts a specific role in catalysis,
ligand-binding, or structure for each residue-position.
The only prerequisite for its application is the existence
of a sufficiently large number of homologous sequences,
which can easily be combined to an MSA and which
should be filtered according to our experience.
The number of genes which lack annotated homologs

is huge: In mid 2011, the Pfam database [46] contained
nearly 4000 domains of unknown function. Additionally,
a comparison of databases for protein-coding genes and
their products unravels a tremendous deficit of knowl-
edge by indicating that function is unknown for more
than 40% of all protein-coding genes [47]. These genes
may code for unknown folds and novel enzymatic cap-
abilities. However, if computational biology fails to iden-
tify function, an enormous battery of experiments have
to be accomplished, due to the number of distinct enzy-
matic activities and other protein functions observed in
Nature; see e.g. [48]. Therefore, all plausible hypotheses
generated by CLIPS-1D and similar methods are of
value and help to reduce the number of experimental
analyses.

90°

Figure 2 Localization of STRUC_sites in sIGPS. Based on PDB-ID 1A53, the surface of the whole protein (grey) and of residues predicted as
STRUC_sites (orange) is shown. The substrate indole-3-glycerole phosphate is plotted in dark blue. The picture was generated by means of PyMOL [39].

Janda et al. BMC Bioinformatics 2012, 13:55
http://www.biomedcentral.com/1471-2105/13/55

Page 7 of 11



One might expect that exploiting the 3D-structure of a
protein contributes a lot to functional assignment. This is
not necessarily the case: Structure-based algorithms have
failed to outperform MSA-based approaches in predicting
catalytic sites and have maximally reached the same
MCC-value; see [18] and references therein. However, if
3D-data and an MSA are at hand, features deduced from
structure and from homologous sequences can be utilized
in a concerted manner. In addition to the above features,
signals caused by correlated mutations [3,49] can then be
utilized to further characterize catalytic sites, which are
surrounded by residues spanning a network of mutual
information [50]. This is why we work on exploiting a
combination of these features and the near future will
show, whether this approach further improves classifica-
tion quality. There is an urgent need for such methods: In
mid 2011, no function has been attributed to more than
4% of the protein structures deposited in the Protein Data
Bank [51].

Conclusions
By analyzing an MSA by means of CLIPS-1D, residue-
positions involved in catalysis can be identified with
acceptable quality. In contrast, ligand-binding sites and
residue-positions important for protein structure are
hard to distinguish due to their similar patterns of con-
servation and residue propensities. Our MC-SVM can
be applied to cases where the function of all homologs
is unknown. The algorithm supports the user’s decisions
by computing a p-value for each prediction.

Methods
CAT_sites and LIG_sites, datasets of catalytic and ligand-
binding residue-positions
To compile a test set of functionally important sites, we
processed the content of the Catalytic Site Atlas (CSA)
[52]. We exclusively utilized the manually curated entries
of CSA and did not consider sites that have been anno-
tated by means of PSI-BLAST alignments. In order to
eliminate redundancy of proteins, we used the PISCES ser-
ver [53] with a sequence-similarity cut-off of 25%. For
each protein, an MSA was taken from the HSSP database
[28] and selected for further analyses, if it contained at
least 125 sequences. The resulting dataset consists of 264
enzymes and related MSAs, which we named ENZ. These
proteins contain 840 catalytic residues, which we denomi-
nated CAT_sites. For these proteins we also deduced
ligand-binding sites by exploiting PDBsum pages [35]. The
resulting dataset consists of 216 proteins and contains
4466 binding sites, which we named LIG_sites. The data-
sets CAT_sites and LIG_sites do not overlap; their content
is listed in Additional file 1: Tables S2 and S3.
In order to eliminate too similar and too distant

sequences which might introduce a bias, the number of

identical residues ident(si, sj) was determined for each
pair of sequences si, sj belonging to the same MSA.
Sequences were removed until the fraction of identical
residues was in the range 0.25 ≤ ident(si, sj) ≤ 0.90.
Additionally, sequences deviating from the first one in
length by more than 30% were deleted.

STRUC_sites, a set of conserved residue-positions in
proteins lacking enzymatic function
A set of 480 non-enzyme proteins has been compiled in
reference [27]. Based on PDBsum and CSA, we re-anno-
tated all entries and prepared a redundancy-free set of
MSAs as explained above. The resulting dataset
NON_ENZ consists of 136 proteins and related MSAs
from HSSP with at least 50 sequences. In order to
exclude residues from interfaces and other binding sites,
we did not consider residue-positions lying at the pro-
tein surface by eliminating all sites with a relative sol-
vent accessible surface area of at least 5% (see [43] and
references therein). Among the remaining sites were
3703 with a conservation value consident (k) > 1.0 (see
formula (2)). For lack of a more biochemically motivated
classification scheme, these conserved sites were
regarded as important for structure. We named this set
STRUC_sites, its content is listed in Additional file 1:
Table S4. We designated the complement NO_ANN
sites; these are the remaining 19,223 residue-positions of
the NON_ENZ dataset.

Conservation of an individual site
An instructive measure to assess conservation of a single
residue-position k is max_frequ(k), the largest amino
acid frequency fk(aai) observed in column k of an MSA:

max frequ(k) = max
i=1..20

(fk(aai)) (1)

To normalize for MSA-specific variations of conserva-
tion, we computed consident (k), which is a z-score
deduced from max_frequ(k) according to

consident(k) =
max frequ(k) − μident

σident
(2)

Mean μident and standard deviation sident values were
determined individually for each MSA under study. An
alternative conservation measure is the Jensen-Shannon
divergence [8] of site k:

JSD(k) = H(
f obsK − f backgr

2
) − 1

2
H(f obsK ) − 1

2
H(f backgr) (3)

f obsK is the probability mass function for site k approxi-

mated as f obsK (aai) = fk(aai) by the amino acid frequen-

cies observed in the respective column k of the MSA;

Janda et al. BMC Bioinformatics 2012, 13:55
http://www.biomedcentral.com/1471-2105/13/55

Page 8 of 11



the mean amino acid frequencies as found in the Swis-
sProt database [54] were taken as background frequen-
cies f backgr.H(.) is Shannon’s entropy [55]. For
classification, we used the z-score consJSD (k):

consJSD(k) =
JSD(k) − μJSD

σJSD
(4)

Mean μJSD and standard deviation sJSD values were
determined individually for each MSA. For the predic-
tion of functionally important residues, JSD(k) has per-
formed better than other conservation measures [7].

Conservation of a sequence neighborhood
To characterize the conservation of a sequence neigh-
borhood, consneib(k) was computed in analogy to [8]:

consneib(k) =
1

|Neib|
∑

l∈Neib
wl consJSD(k + l) (5)

Neib = {-3,-2,-1,+1,+2,+3} determined the set of neigh-
boring positions. The weights were: w-1 = w+1 = 3, w-2 =
w+2 = 2, w-3 = w+3 = 1. Note that conservation of posi-
tion k was not considered to compute consneib(k).

Propensities of catalytic sites, ligand-binding sites, and
positions important for structure
Inspired by [24], three scores abund(k, CLASS) were
computed as:

abund(k,CLASS) =
20∑

i=1
fk(aai) log

f CLASS(aai)
f backgr(aai)

(6)

fbackgr (aai) were the above background frequencies.
fCLASS (aai) were the frequencies of residues from one
set CLASS Î {CAT_sites, LIG_sites, STRUC_sites}.

Scoring propensities of a neighborhood
To assess the class-specific neighborhood of a site k, we
introduced:

abundneib(aaks ,CLASS) =
1

|Neib|
∑

l∈Neib

20∑

i=1
fk+l(aai) log

f CLASSk+l (aai|aas)
f backgr(aai)

(7)

Here, aaks is the amino acid aas occurring at site k

under consideration, fk+l (aai) is the frequency of aai at

position l relative to k and f CLASSk+l (aai|aas) is the condi-

tional frequency of aai at the same positional offset
deduced from the neighborhood of all residues aas of a
set CLASS Î {CAT_sites,LIG_sites,STRUC_sites}. Neib is
the ± 3 neighborhood.

Evaluating classification performance
To assess the performance of a classification, the rates
TPR (Sensitivity), FPR, Specificity, and Precision

TPR =
TP

TP + FN
, FPR =

FP
FP + TN

, Specificity =
TN

TN + FP
,Precision =

TP
TP + FP

(8)

as well as ROC and PROC curves were determined
[56]. For a ROC curve, depending on a cut-off for one
parameter (here it is pclass (k)), the TPR values are
plotted versus the FPR values. For a PROC curve, Preci-
sion is plotted versus TPR. As a further performance
measure, the Matthews correlation coefficient (MCC)
has been introduced [29]:

MCC =
TP · TN − FP · FN

√
(TP + FN)(TP + FP)(TN + FP)(TN + FN)

(9)

MCC-values are considered a fair measure to assess
performance on unbalanced sets of positives and nega-
tives, as observed here [57]. In all formulae, TP is the
number of true positives, TN the number of true nega-
tives, FP the number of false positives and FN the num-
ber of false negatives. For example, when classifying
catalytic sites with SVMCAT, positives are the selected
CAT_sites and negatives are all other residue-positions
of the considered MSAs.

Classifying by means of support vector machines
We utilized the libsvm library [58] with a Gaussian
radial basis function kernel and determined during
training optimal parameters gRBF and C by means of a
grid search [59]. Prior to presenting features to the
SVM, they were normalized according to

MCC =
TP · TN − FP · FN

√
(TP + FN)(TP + FP)(TN + FP)(TN + FN)

(10)

Here, Ve(k) is for residue k the value of feature e, and
min(Ve) and max(Ve) are the smallest and the largest
value determined for this feature.
Our 2C-SVMs predict for each residue-position k,

whether it is a catalytic site (SVMCAT), a ligand-binding
site (SVMLIG), or a site important for structure
(SVMSTRUC). Taking SVMCAT as an example, an a pos-
teriori probability pclass (k), here it is pCAT (k), for the
label “k is a catalytic site” was deduced from the dis-
tance of the feature set for k and the hyperplane separ-
ating catalytic and non-catalytic residue-positions [60].
We utilized pclass (k) to assess performance and to

assign classes. Training and assessment was organized
as an 8-fold cross validation. For each training step, the
number of positive and negative cases was balanced, i.e.
for SVMCAT, residue-positions from CAT_sites and the
same number of non-catalytic sites was selected. In
order to eliminate sampling bias during the grid search,
each parameter was deduced as means from training
trials with the same positives and 50 different, randomly
selected sets of negative cases. To compute the
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performance measures (e.g. MCC-values), all positive
and all negative cases belonging to the selected subset
of MSAs were classified.
Analogously, an MC-SVM was applied to the four

classes CAT_sites, LIG_sites, STRUC_sites, and
NOANN_sites. The output of the MC-SVM consists of
four class-probabilities pclass (see [60]) for each residue-
position. These were deduced from the a posteriori
probabilities of the six 2C-SVMs, which were trained on
one specific combination of two classes, each. Each resi-
due-positions k was assigned to the class, whose pclass-
value was largest. p-values were determined as follows:
For each class and each residue, the respective cumula-
tive distribution was deduced from the pclass-values of
all residue-positions k not belonging to the considered
class. I. e., the p-value for a Glu-residue with pSTRUC-
value s(k) is the fraction of all Glu-residues from
NOANN_sites reaching or surpassing s(k).

Additional material

Additional file 1: A plot comparing abund(k, CLASS)-values, Figures
and Tables giving performance-values of 2C-SVMs, and Tables
listing the composition of datasets. (PDF 327 kb).
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