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Abstract

of a phenotypic trait remains largely elusive.

to be incorporated and addressed.

Background: Despite our increasing recognition of the mechanisms that specify and propagate epigenetic
states of gene expression, the pattern of how epigenetic modifications contribute to the overall genetic variation

Results: We construct a quantitative model to explore the effect of epigenetic modifications that occur at specific
rates on the genome. This model, derived from, but beyond, the traditional quantitative genetic theory that is
founded on Mendel's laws, allows questions concerning the prevalence and importance of epigenetic variation

Conclusions: It provides a new avenue for bringing chromatin inheritance into the realm of complex traits,
facilitating our understanding of the means by which phenotypic variation is generated.

Background
Systematic or stochastic changes in chromatin states,
such as DNA methylation, chromatin remodeling, his-
tone modification and RNA interference, have been
thought to provide an additional driving force for
phenotypic variation in complex traits and diseases [1-9].
Different chromatin states, called epialleles, that occur in
the same sequence allele cannot be captured by an ana-
lysis based on DNA sequence alone [10]. With the
increasing availability of epigenome technologies, there
has been an unprecedented opportunity to understand
the role of epiallelic variants in maintaining and inducing
functional variation for organisms to better buffer against
environmental perturbations. This hence entails the de-
velopment of quantitative models that can enable our
knowledge about the amount and pattern of quantitative
variation determined by epialleles. By integrating with
linkage or association mapping strategies, these models
can retrieve epigenetic variation that cannot be estimated
presently [10-13].

There have been several publications on methodological
development for epigenetic detection [14-17]. Johannes
and Colome-Tatche [16] proposed an experimental
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approach for estimating epigenetic variation in experi-
mental crosses derived from epigenomically perturbed
isogenic lines. This approach is powered to model the
effects of epiallelic instability, recombination, parent-
of-origin effects, and transgressive segregation on pheno-
typic variation across generations. Tal et al. [15] derived
an expression form for covariances between relatives due
to epigenetic transmissibility. A statistical model based on
multiple testing procedures has been developed to iden-
tify the genomic regions of epigenetic variability among
different individuals from genome-wide DNA methylation
data [18]. These model developments, in a combination
with empirical studies, can be used to test the hypothesis
that epigenetic variation arising from chromatin modifi-
cations of DNA directly or indirectly is an important
contributor to the missing heritability [17,19].

Despite these advances, we are still unclear how much
of the phenotypic variation is contributed by epigenetic
modifications and, more importantly, through which
way epialleles trigger their effects on phenotypic values.
The motivation of this article is to develop a quantitative
model for estimating and testing the contribution of
epigenetic variants to quantitative trait variation. The
model allows the prediction of how much genetic vari-
ation is produced through a change in the rate of occur-
rence of epigenetic mutation and the effect of epigenetic
factors in a natural population. We particularly discuss

© 2012 Wang et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:rwu@phs.psu.edu
http://creativecommons.org/licenses/by/2.0

Wang et al. BMC Bioinformatics 2012, 13:274
http://www.biomedcentral.com/1471-2105/13/274

how the epigenetic effect interacts with other genetic
effects, such as additive and dominant, to affect pheno-
typic traits. By implementing it into genome-wide asso-
ciation studies [19], the model proposed provides useful
guidance for designing efficient and effective molecular
experiments to characterize a comprehensive picture of
the epigenetic variation of complex traits or diseases in
different organisms.

Model

Occurrence rate of methylation

Consider an epigenetic study population of # individuals
that are randomly drawn from a natural population, in
which a nucleotide site, with two alleles A; and A,, is
thought to affect a phenotypic trait. Let p and g (p + g = 1)
denote the allele frequencies of A; and A, in the nat-
ural population at Hardy-Weinberg equilibrium (HWE),
respectively. The genotypic frequencies of A1A;, A1A,,
and A,A, at the nucleotide site studied are expressed as
P’ 2pq, and ¢, respectively [20,21].

At the nucleotide site studied, some cytosines within a
CpG dinucleotide are methylated by adding a methyl
group to the 5 position of the cytosine pyrimidine ring.
With no loss of generality, allele A; is a cytosine which
is, if any, methylated into a new “allele” called the epial-
lele, denoted as A,, at a rate u. After DNA methylation,
the population frequencies of non-methylated A; allele,
epiallele A, and allele A, are (1 — u)p, up, and ¢, respect-
ively. Current technologies allow the distinction of
epialleles from non-methylated alleles. The process of
methylation and the resulting frequencies of six distin-
guishable genetic and epigenetic types are expressed as

Genotype/epigenotype Frequency Observation

No methylation { (1 —u)’p? + D1y + Dy { ni

A1Ay
A1A1¢{ AjA, One methylation 2u(1 — u)p* — 2Dy, Nie

A.A, Two methylations * u?p? + Dy, + Dy, Hee
A1A;  No methylation 2(1 — u)pg — 2Dy Ny
A1Ar=> )
AzA, One methylation 2upq — 2D,, Moe
AsAy P AA;  No methylation q* 4 D1z + Do, 122

(1)

where Dj,, Dy, and D,, are the coefficients of Hardy-
Weinberg disequilibrium (HWD) due to a non-random
association between alleles A; and A,, between allele A,
and epiallele A,, and between allele A, and epiallele A, re-
spectively. It is possible that the previous equilibrium of
the population is violated by DNA methylation, leading to
the HWD quantified by Dy, D1, and D,,. Thus, the geno-
type and epigenotype frequencies may be determined by
allele and epiallele frequencies and HWD coefficients.

Let #11, Miey Meer M1y Moy AN Moy (M1147M e+ Moo+ N1+
Hye+Myy = n) denote the observations of the cor-
responding genotypes/epigenotypes (1) in the study
population. Based on the frequencies of these genotypes/
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epigenotypes, we formulate a polynomial likelihood from
which to obtain the maximum likelihood estimates
(MLEs) of the allele frequencies, the occurrence fre-
quency of methylation, and HWD using

_ Mt e+ Mee £ (g + nye)

P . 2)
e e ®
g = w (4)
ble:au_w—% (5)
Do = itpg — ot (©)
Dy = (1 i)pg — 3> )

We are interested in investigating whether there is sig-
nificant occurrence of DNA methylation at the nucleo-
tide site. This can be tested by formulating a null
hypothesis, Ho: # = 0, vs. an alternative hypothesis,
Hy: u# # 0, under each of which the likelihoods (L, and L,)
are calculated, respectively. However, because the u value
in the Hy lies on the boundary of parameter space, the
log-likelihood ratio calculated,

LR = —2(log Ly-log L, ),

may not follow a standard chi-square distribution. Self and
Liang [22] showed that the null distribution of the LR test
statistic is a mixture of projections of chi-square variables
onto surfaces, with the aeights of mixtures that can be
derived analytically only in special cases. By establishing
the asymptotic null and alternative distributions of quasi-
likelihood ratio, rescaled quasi-likelihood ratio, Wald, and
score tests, Andrews [23] suggested the use of these test
statistics to test the boundary value of a model parameter.
While the first three test statistics are easy to com-
pute, the score test is more difficult by deriving the
first and second-order derivatives of the alternative
log-likelihood.

Similar tests can be performed for individual HWD,
Dy, D,,, or Di,, or their combinations, by formulating
the null hypotheses, respectively. Under the alternative
hypothesis H; associated with each null hypothesis
considered, the likelihood is calculated. The LR value
calculated is thought to be asymptotically chi-square
distributed with the degree of freedom equal to the dif-
ference in the number of parameters to be estimated
between the alternative and null hypotheses.
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Genetic and epigenetic effect

We assume that the study population is investigated
under a uniform condition so that the phenotypic vari-
ation can be simply partitioned into genetic/epigenetic
components and errors. There are only three genotypes,
A1A1, A1A,, and ALA,, prior to DNA methylation. Let a
denote the additive effect of the nucleotide site due
to the substitution of allele A; by A, or vice versa and
d denote the dominant effect due to the interaction
between the two alleles. The values of three genotypes
are diagrammed over an axis as follows:

Genotype A2A2 A1A2 A1A1
Genotypic value U—a U pu+d p+a (8)
Net genotypic value -a 0 d a

Origin

As described above, allele A; is assumed to be methy-
lated into the epiallele A,. The values of six distinguish-
able genetic and epigenetic types are expressed as

Estimated Value

i
Zi:1yi/n11

u+ar e
{ ot Han+a.) +due { 2l

ptae i/ Mee

Genotype/epigenotype
A1A;  No methylation
AlAlz{ A1A.  One methylation
A.A., Two methylations

Expected Value

. 1 Mz X
Ady A1A; No methylatlf)n u—La, +dp Zi:lyl/nlz
AzA, One methylation U—la) +dy, me i/ 1z
AzA; P AyA;  No methylation U—ar—ae -

ZZJ’:‘/ n

()
where the genotypic value of the trait is decomposed
into different components, i.e., the overall mean (y), the
additive effects due to the substitution of allele A; (a;)
and epiallele A, by allele A, (a.), and the dominance
effects due to the interaction between allele A; and
epiallele A, (d.), between allele A; and allele A, (d;»)
and between allele A, and epiallele A, (d>,).

Let y; denote the phenotypic value of the trait for indi-
vidual i (i =1, ..., n) in the study population. The MLEs
of the genotypic value for each genotype/epigenotype
can be obtained by simply taking its mean over all
individuals belonging to this genotype/epigenotye (9).
The genetic and epigenetic effects can be estimated by
solving a group of regular equations for the genotypic
values (9), i.e.,

nu nyp
P 1 i i Z‘ﬂyi
— i= o i= i= 10

3 [ ( Nee * Moo ( )
1 z 1)/,7 z 1y’ Zz 1)/; (11)
3

. Vlie i yl Hee _)/L

dle — Zlfl (Zl 1 Zl 1 ) (12)

Mie
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dye = ni;yi _% <Zni2_2lyl Zl 1yl> (13)
dyy = Z;:qi;yi (Zz l1y‘ Zz 1y‘> (14)

Each of these effects (10) — (14) can be tested by the
log-likelihood ratio approach. For an epigenetic study,
we are more interested in testing the epigenetic effect of
the nucleotide site a, and dominant effects due to the
interactions between the alleles and epiallele d;, and d,,.
The log-likelihood ratio test statistics for each hypothesis
test is thought of being asymptotically chi-square
distributed with the degree of freedom equal to the dif-
ference in the number of parameters to be estimated
between the alternative and null hypotheses.

Genetic and epigenetic variation

We first give the genetic variance explained by the nucleo-
tide site studied prior to DNA methylation. By defining a
new parameter called the average effect a = a + (g—p)d
[20], we derived the overall genetic variance of the trait due
to this site as ©)

oﬁ = 2pqa’® + (2pqd)’*=0> + o> (15)

where o7 = 2pqa’ is the additive genetic variance depending
on both a and d, and o7 = (2pgd)” is the dominant genetic
variance only depending on d. Both additive and domin-
ance variances are affected by the relative magnitudes of al-
lele frequencies p and g. These two variances reach their
maximums when two alternative alleles A; and A, occur at
the same frequency.

In what follows, we model how the epigenetic change
contributes to the genetic variance of a complex trait
based on the frequencies (1) and values of genotypes/
epigenotypes (9). The total genetic variation among the
six genotypes/epigenotypes is derived as

02G = &l% [(1 — u)2p2 +D12 + Dle} + 613 [M2p2 +Dle + DZe]
1 2
+ (a1 + a.)*[q* + D12 + D2 ] + [E(ﬂl +a.) + dle:|
2 1 2
X [214(1 — M)p — 2D13] =+ |:—§(11 —+ dle]

2
X [2upq — 2Dy) + [f%ae + du}
% [2(1 — u)pq — 2D12] —

where m is the population mean expressed as

m=a[(1—u)p—q]+a(up —q)
+ 2d1, [u(l — u)p2 — Dle} + 2ds.(upg — Dy,)
+ 2d12[(1 — u)pq — D13

(16)

It can be seen from equation (16) that the total genetic
variance includes 15 different parts, i.e.,
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0% = ‘7?41 Additive effect of the original alleles prior to methylation
+ 02 Additive effect of the epiallele
+ ‘7316 Domiant effect between the original allele and epiallele
+ 0229 Domiant effect between the original allele and epiallele
+07, Domiant effect between the original alleles
+ 02 a Multiplicative additive x additive effect involving the epiallele
+ aﬁlx . Multiplicative additive x dominant effect involving the epiallele
+ aﬁlx by, Multiplicative additive x dominant effect involving the epiallele
+ 02 a, Multiplicative additive x dominant effect with no epiallele
+ 02 .., Multiplicative additive x dominant effect involving the epiallele
+ aiex e Multiplicative additive x dominant effect involving the epiallele
+ oﬁex iy Multiplicative additive x dominant effect involving epiallele
+ 07 v, Multiplicative dominant x additive effect involving the epiallele
+ 0%, vap, Multiplicative additive x dominant effect involving the epiallele

2
+ Oy, xdyy

Here, we define a new heritability, called the epi-
genetic heritability, which describes the proportion of
the phenotypic variance explained by the effect of the
epiallele and its interactions with the other effects,
expressed as

2 2

2 2
0 — 0, — 04,0

H? — ay xXdip (17)

e

b

Also, we use the proportion of the epigenetic variance
to the total genetic variance to describe the relative con-
tribution of epigenetic methylation to the overall genetic
variance, expressed as

2 2 2 2
R =267 % = %y = Taixdy (18)

e

2
oG

These two parameters can be used to assess the con-
tribution of DNA methylation to the total phenotypic
variation of a quantitative trait.

Numerical analysis

In this section, we performed numerical analyses to in-
vestigate how epigenetic marks contribute to the herit-
ability of a complex trait. The occurrence of epigenetic
marks is described by population genetic parameters in-
cluding the occurrence rate of the epiallele and its
Hardy-Weinberg disequilibria with unmarked alleles.
The effect of epigenetic marks can be specified by quan-
titative genetic parameters including the epigenetic effect
of the epiallele and its interactions with other effects.
As analyzed above, population genetic parameters (p, g, u,
D, Dy, D1») and quantitative genetic parameters (a;, .,

Multiplicative additive x dominant effect involving the epiallele

die doe dio) contribute to the genetic variance in a com-
plex way (16). We will analyze the contribution of
epigenetic marks by separately investigating how these
population and quantitative genetic parameters affect R>.

Population genetic effect

Suppose there is a study population in which methylated
sites are observed for a phenotypic trait. Consider a nu-
cleotide site with two alleles A; and A,, one of which,
say Aj, is methylated at a rate u (u takes any value in
[0,1]). This methylation may violate the previous HWE
assumption. Based on a simple algebraic analysis, we
obtain the intervals of D;,, D,, and D;, as follows:

[(1—u)2p2 + u*q* + (Dyy —|—D2e)} <D <(1-u)p?

[u2p2 + q2 + (Dle + Du)] <Dy.<upq

NN =N =

[(1-2)’p* + & + (D1 + Dae)|sD1a<(1-u)pq

Because of DNA methylation, the change of the gen-
etic variance explained by the site takes place. By fixing
quantitative genetic parameters, we quantitatively exam-
ined the impacts of different occurrence rates of methy-
lation and different HWD coefficients on the epigenetic
ariance. A small value of occurrence rate may lead to
the formation of substantial epigenetic variance, al-
though this phenomenon depends on the disequilib-
rium degree of association between two original alleles
produced following methylation (Figure 1). The epigenetic
variance is also positively associated with the degree of
disequilibrium for the unmarked alleles and epiallele
(Figure 2).
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Figure 1 Change of the proportion of the epigenetic variance
over the total genetic variance (R?) as a function of the
occurrence rate of methylation in a natural population. The
total and epigenetic genetic variances are calculated by assuming
population genetic parameters (p, g, U, Dye, Doe, D15) = (04, 0.6,

u, 0.05,0.05, Dy>) (allowing u and D, to change) and quantitative
genetic parameters (ay, de, die, Gae, di2) = (04, 0.05, 0.05, 0.05, 0.05).

=019 19

Figure 2 Change of the proportion of the epigenetic
variance over the total genetic variance (R?) as a function

of Hardy-Weinberg disequilibrium (HED) coefficients

formed between the original allele and epiallele in a natural
population after DNA methylation. The total and epigenetic
genetic variances are calculated by assuming population genetic
parameters (p, g, U, Dy, Do, D12) = (04, 0.6, U, Dy, Do, 0) (allowing
u, D1, and D, to change) and quantitative genetic parameters
(a1, e, dier daer dr2) = (04, 0.05, 0.05, 0.05, 0.05).
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Quantitative genetic effect

By fixing population genetic parameters, the influence of
genetic effects triggered by the epiallele was investigated.
A small value of the additive effect a, formed by the
epiallele brings about considerable epigenetic variance
(Figure 3). This influence increases with increasing a,
values. The epigenetic variance is also remarkably
affected by the dominant effect between the original
alleles and epiallele (Figure 4). It is clear that these effect
parameters contribute to the epigenetic variance also
through their complex interactions.

Computer simulation

Our model allows the estimation and test of epigenetic
effects. We carried out simulation studies to examine
the statistical properties of the model. A study popula-
tion was simulated by assuming a set of population and
quantitative genetic parameters and a normally distribu-
ted residual error with mean zero and variance scaled
under a range of trait heritabilities. As expected, the esti-
mation precision increases with increasing sample size
and heritability. A sample size 400 is sufficient to pro-
vide reasonable estimates of all population genetic para-
meters (Table 1). Note that the estimation precision of
the population parameters does not rely on the size
of heritability. In general, the reasonable estimation

s A
o
2F 2,=0.00
a,=0.02
2,=0.05
@l
o
2;=0.10
ol
o
o~
1.
=
o
Nl
o
=3
e 1 1 L ' L L L
0.0 0.1 0.2 0.3 0.4 0.5 0.6
8e
Figure 3 Change of the proportion of the epigenetic
variance over the total genetic variance (R2) as a function
of the additive genetic effect due to the substitution of
the original allele by the epiallele. The total and epigenetic
genetic variances are calculated by assuming population genetic
parameters (p, g, U, Die, Do, Di5) = (04, 0.6, 0.2, 0, 0, 0) and
quantitative genetic parameters (ay, de, die, doe, di2) = (a3, e, 0.05,
0.05, 0.05) (allowing a; and @, to change).
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Figure 4 Change of the proportion of the epigenetic

variance over the total genetic variance (Rﬁ) as a function

of the dominant genetic effect due to the interaction between
the original allele and epiallele. The total and epigenetic genetic
variances are calculated by assuming population genetic parameters
(0, G, U, D1, D>e, D15) = (04, 0.6, 02,001, 001, 0) and quantitative
genetic parameters (ay, e, die, dae, di2) = (008, 0.12, die, doe, d12)
(allowing d;, d5e and d;, to change).

of quantitative genetic parameters, especially domin-
ant genetic effects, needs a much larger sample size,
say 1000 (Table 1). As expected, the estimation preci-
sion of genetic effects is sensitive to heritability. In
practice, every effort should be given to precisely
measure the phenotypic trait, aimed to increase the
level of heritability.

We also investigated the power of detecting epiallelic
HWD occurrence and epigenetic effects as well as the
false positive rates for epigenetic effect identification
under different heritabilities and sample sizes (Table 2).
Given a medium sample size 400, the model possesses
adequate power (> 0.95) for the detection of small epial-
leli HWD coefficients, along with small false positive
rates (< 0.10). The power of the model to detect epigen-
etic effects was calculated by testing the hypothesis, Hy:
a, = di, = dy. = 0 vs. H;: at least one of the effects in
the Hy is not equal to zero, and comparing the resulting
log-likelihood ratio test statistic with the critical thresh-
old of a chi-square distribution with three degrees of
freedom. The proportion of the number of simulation
replicates that reject the null hypothesis over the total
number of simulation replicates is empirically used as
the power of the model. The power of epigenetic effect
detection is very sensitive to the magnitude of the epi-
genetic effect, heritability and sample size (Table 2).
When the epigenetic effect is small, the model has low
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Table 1 MLEs of population and quantitative genetic
parameters from simulated data with different
heritabilities (H?) and sample sizes (n)

True H?>=0.05 H*=0.1 H*=0.2
MLE SD MLE SD MLE SD

n=400 0.1 0.099 (0.019) 0.100 (0.017) 0.099 (0.020)
u

p 04 0.399 (0.020) 0400 (0.022) 0403 (0.018)
D> 001 0011 (0010) 0.008 (0.011) 0.009 (0.012)
Die 001 0010 (0.003) 0.010 (0.003) 0.010 (0.003)
D 001 0010 (0.004) 0.010 (0.005) 0.010 (0.004)
U 1 1.002 (0.096) 1.009 (0.066) 1.002 (0.043)
a 02 0.201 (0.113) 0.193 (0.085) 0.198 (0.049)
ae 005 0060 (0.181) 0.064 (0.134) 0.054 (0.080)
iy 005  0.050 (0.076) 0.049 (0.055) 0.049 (0.032)
dre 005  -0015(0485)  —0008 (0401) 0010 (0.267)
e 005 0027 (0279) 0.047 (0171) 0042 (0.116)
n=1000 0.1 0.101 (0.014) 0.101 (0.013) 0.102 (0.013)
u

p 04 0401 (0012) 0400 (0.012) 0401 (0.011)
D> 001 0010 (0.007) 0.009 (0.007) 0.010 (0.007)
Die 001 0010 (0.003) 0.010 (0.002) 0.010 (0.002)
Dse 001 0010 (0.003) 0.010 (0.003) 0.010 (0.003)
u 1 1.003 (0.053) 0.996 (0.039) 1.000 (0.027)
a 02 0.202 (0.067) 0.207 (0.049) 0.200 (0.031)
ae 005 0051 (0.099) 0.037 (0.068) 0.050 (0.050)
iy 005 0051 (0.048) 0.047 (0.035) 0051 (0.023)
dre 005  0.056 (0.269) 0.046 (0.191) 0038 (0.122)
he 005 0048 (0.158) 0057 (0.111) 0.054 (0.081)

The MLEs of parameters and their standard deviation (in parentheses) were
calculated from 200 simulation replicates.

power to detect it, although the power increases with
increasing heritability and sample size. To detect a small
epigenetic effect, a large sample size (2000 or more) is
required for a precisely measured phenotype (with a
large heritability). For a medium-size epigenetic effect,
a sample size 1000 may be adequate for its detection
if then phenotype is precisely measured. In general,
the model has reasonably small false positive rates even
for a medium sample size (Table 2).

Implementing the epigenetic model into GWAS

The epigenetic model proposed can be implemented to
genome-wide association studies (GWAS). In GWAS, it
is likely that we have a million of methylated sites
detected throughout the entire genome on a much smal-
ler number of samples. Moreover, samples collected
for human GWAS are highly heterogeneous in terms
of genetic background, gender, age, race, and many
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Table 2 The power of epigenetic-effect detection by the
epigenetic model and its false positive rates (FPR) under
different sample sizes (n) and heritabilities (H?)

n ae=d.=d,, H =005 H =01 H =02
Power 400 005 0.055 0.090 0.160
1000 005 0.090 0.125 0355
2000 005 0.115 0205 0630
5000 005 0215 0415 0975
1000 0.1 0.085 0255 0780
2000 0.1 0.265 0525 0975
5000 0.1 0495 0950 1.00
FPR 400 005 0.050 0045 0.065
1000 005 0.060 0025 0.045
2000 005 0.030 0010 0.045
5000 005 0085 0.050 0070
1000 0.1 0.045 0.040 0.040
2000 0.1 0.055 0025 0030
5000 0.1 0.050 0.020 0.045

other demographic characteristics. These demographic
factors should be modeled as covariates. For a single
methylated site, we can build a linear model to describe
the phenotypic value of individual i by considering its
multifactorial determinants, expressed as

Yi=p+Enar + §pnae + {izdie + igdae
R s L
+ &isdin + Z aruy + Z inslvsl +e (19)
r=1 s=1 [=1

where &, ..., {5 are the indicator variable for subject
i that corresponds to a specific genetic or epigenetic
effect at a methylated site, ;. (r = 1, ..., R) is the value
of the rth continuous covariate, such as age and BMI,
for subject i, a, is the effect of the rth continuous covari-
ate, vy (I =1, ..., Ly, s=1, ..., 098) is the effect of the /th
level for the sth discrete covariate, such as race, gender,
and treatment, with _ /*;us] = 0 where L is the number
of levels for the sth discrete covariate, x;; is an indicator
variable of subject i who receives the /th level of the sth
discrete covariate, and e; is a random error.

A standard multiple linear regression approach can be
used to estimate all the effects described in model (19).
If the test is made individually for each of the meth-
ylated sites, the significance of each effect should be
adjusted by multiple comparison approaches such as
Bonferroni or FDR.

Analysis of one single methylated site at a time is
limited for statistical inference about a comprehensive pic-
ture of the genetic and epigenetic architecture of complex
phenotypes. The best way such a picture is illustrated is to
analyze all sites simultaneously. Li et al. [24] proposed a

Page 7 of 9

new approach by incorporating the least absolute shrinkage
and selection operator (lasso) [25] to simultaneously
analyze a larger number of variables using a much smaller
sample size. A detailed algorithm for the Bayesian lasso
has been derived [24] and can be readily implemented to
GWAS aimed to identify epige- netic variants.

Discussion

Epigenetic alternations have been increasingly recognized
to play an important role in generating and maintaining
quantitative genetic variation for complex phenotypes
underlying physiology and diseased [6,7,9,26-28]. Prelim-
inary estimates in plants suggest that it can account for
up to 30% of the variation in commonly studied pheno-
types such as height and flowering time [8]. Many theoret-
ical models have been available to analyze the contributions
of epigenetic marks to missing heritability in genome-wide
association studies (GWAS) [14-18]. In this article, we
extended Mendelian inheritance-based genetic principles to
derive a quantitative framework by which to analyze the
pattern of how DNA methylation contributes to overall
genetic variance. By defining several epigenetic effect para-
meters, the analytical framework allows the mechanistic
characterization of epigenetic actions within the quantita-
tive genetic context.

Through numerical analysis, a small incidence of DNA
methylation as well as a small effect due to methylation
alternations could lead to a substantial increase of gen-
etic variance, suggesting that epigenetic marks may be
an important cause for genetic diversity in nature. Given
our finding, the neglection of epigenetic variants in
many current GWAS may partly explain the problem of
missing heritability [17]. Simulation studies suggest that
the model can provide reasonable estimates of epigenetic
effect parameters with a sample size of 200 — 400, even
when the trait studied has a small heritability. It should
be pointed out, however, that this conclusion is based
on a well-controlled study in which there are few back-
ground noises. For the GWAS in humans, the estimated
genetic variation is likely to be confounded by many fac-
tors, such as population structure, heterogeneous genetic
background, demographic complexity, and highly noisy
phenotypic measurements among others. To remove
these confounding effects from genetic and epigenetic
analysis, a considerably large sample size may be needed.

The model only considers a single methylated site.
However, there is no technical difficulty in extending the
model to explore two or more sites at the same time
which may interact with each other to produce a com-
plex network of epistasis [29]. For two methylated sites,
a total of 25 interaction parameters are formed between
parameter sets each composed of (ai, a,, die, doe di2)
for each site. In this case, an exponentially increasing
sample size and more precise phenotypic measurement



Wang et al. BMC Bioinformatics 2012, 13:274
http://www.biomedcentral.com/1471-2105/13/274

(aimed to increase the trait’s heritability) are needed. For
the methylated population, originally existing HWE as-
sumption may be violated in which case it is not possible
to use gametic linkage disequilibria to specify the associ-
ation between the two sites. Wu et al. [30] proposed a
robust approach to analyze the marker-marker associ-
ation by deriving a so-called zygotic linkage disequilib-
rium model. Wu et al.’s approach can be incorporated to
identify the contribution of epigenetic marks at two sites
to the overall genetic variance.

Epigenetic changes may be an adaptation to environ-
mental perturbations [5,17,28]. Thus, it is crucial to
incorporate the epigenetic model into a genotype-
environment interaction study. By doing so, we can
identify which and how epigenetic effects interact with
the environment to determine final phenotypes so that
the genetic etiology of quantitative variation can be
better elucidated. In addition, there is a considerable
body of evidence that epigenetic effects may transmitted
from one generation to next [31,32], although other
studies found the reprogramming of epigenetic effects
during meiosis [5,33,34]. By embedding our epigenetic
model into a family-based design, we can develop a
powerful approach to test the relative importance of
these two phenomena in trait control [35-37]. Trad-
itional models analyze the inheritance of quantitative
traits based on Mendel’s laws, failing to study the contri-
bution of epigenetic modifications. In addition, many
GWAS are based on a case—control study in which
genotype frequencies are compared between two groups.
To study the association between epigenetic effects and
a particular disease, such as cancer, we can incorporate
quantitative epigenetic models as described by equations
(10) — (14) into a case—control framework, allowing each
effect to be tested. The integration of general quantita-
tive genetic models and a case—control design has been
discussed and its statistical properties investigated
through analytical derivations and computer simulations
[38-40]. With these extensions, the new model proposed
in this article by integrating traditional quantitative gen-
etic theory and the latest discoveries of epigenetic effects
will allow geneticists to chart a more comprehensive
picture of the genetic landscape for complex pheno-
types underlying agricultural production, physiology and
human diseases.
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