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Abstract

Background: A key question when analyzing high throughput data is whether the information provided by the
measured biological entities (gene, metabolite expression for example) is related to the experimental conditions, or,
rather, to some interfering signals, such as experimental bias or artefacts. Visualization tools are therefore useful to
better understand the underlying structure of the data in a ‘blind’ (unsupervised) way. A well-established technique
to do so is Principal Component Analysis (PCA). PCA is particularly powerful if the biological question is related to
the highest variance. Independent Component Analysis (ICA) has been proposed as an alternative to PCA as it
optimizes an independence condition to give more meaningful components. However, neither PCA nor ICA can
overcome both the high dimensionality and noisy characteristics of biological data.

Results: We propose Independent Principal Component Analysis (IPCA) that combines the advantages of both PCA

data with respect to the biological experiment.

1

high dimensional biological data sets, and on mixomics

and ICA. It uses ICA as a denoising process of the loading vectors produced by PCA to better highlight the
important biological entities and reveal insightful patterns in the data. The result is a better clustering of the
biological samples on graphical representations. In addition, a sparse version is proposed that performs an internal
variable selection to identify biologically relevant features (sIPCA).

Conclusions: On simulation studies and real data sets, we showed that IPCA offers a better visualization of the

data than ICA and with a smaller number of components than PCA. Furthermore, a preliminary investigation of the
list of genes selected with sIPCA demonstrate that the approach is well able to highlight relevant genes in the

IPCA and sIPCA are both implemented in the R package mixomics dedicated to the analysis and exploration of
web-interface.

Background

With the development of high throughput technologies,
such as microarray and next generation sequencing
data, the exploration of high throughput data sets is
becoming a necessity to unveil the relevant information
contained in the data. Efficient exploratory tools are
therefore needed, not only to assess the quality of the
data, but also to give a comprehensive overview of the
system, extract significant information and cope with
the high dimensionality. Indeed, many statistical
approaches fail or perform poorly for two main reasons:
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the number of samples (or observations) is much smal-
ler than the number of variables (the biological entities
that are measured) and the data are extremely noisy.

In this study, we are interested in the application of
unsupervised approaches to discover novel biological
mechanisms and reveal insightful patterns while redu-
cing the dimension in the data. Amongst the different
categories of unsupervised approaches (clustering,
model-based and projection methods), we are specifi-
cally interested in projection-based methods, which line-
arly decompose the data into components with a desired
property. These exploratory approaches project the data
into a new subspace spanned by the components. They
allow dimension reduction without loss of essential
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information and visualization of the data in a smaller
subspace.

Principal component analysis (PCA) [1] is a classical
tool to reduce the dimension of expression data, to
visualize the similarities between the biological samples,
and to filter noise. It is often used as a pre-processing
step for subsequent analyses. PCA projects the data into
a new space spanned by the principal components (PC),
which are uncorrelated and orthogonal. The PCs can
successfully extract relevant information in the data.
Through sample and variable representations, they can
reveal experimental characteristics, as well as artefacts
or bias. Sometimes, however, PCA can fail to accurately
reflect our knowledge of biology for the following rea-
sons: a) PCA assumes that gene expression follows a
multivariate normal distribution and recent studies have
demonstrated that microarray gene expression measure-
ments follow instead a super-Gaussian distribution
[2-5], b) PCA decomposes the data based on the maxi-
mization of its variance. In some cases, the biological
question may not be related to the highest variance in
the data [6].

A more plausible assumption of the underlying distri-
bution of high-throughput biological data is that feature
measurements following Gaussian distributions repre-
sent noise - most genes conform to this distribution as
they are not expected to change at a given physiological
or pathological transition [7]. Recently, an alternative
approach called Independent Component Analysis (ICA)
[8-10] has been introduced to analyze microrray and
metabolomics data [2,6,11-13]. In contrary to PCA, ICA
identifies non-Gaussian components which are modelled
as a linear combination of the biological features. These
components are statistically independent, i.e. there is no
overlapping information between the components. ICA
therefore involves high order statistics, while PCA con-
strains the components to be mutually orthogonal,
which involves second order statistics [14]. As a result,
PCA and ICA often choose different subspaces where
the data are projected. As ICA is a blind source signal
separation, it is used to reduce the effects of noise or
artefacts of the signal since usually, noise is generated
from independent sources [10]. In the recent literature,
it has been shown that the independent components
from ICA were better at separating different biological
groups than the principal components from PCA
[2,5-7]. However, although ICA has been found to be a
successful alternative to PCA, it faces some limitations
due to some instability, the choice of number of compo-
nents to extract and high dimensionality. As ICA is a
stochastic algorithm, it needs to be run several times
and the results averaged in order to obtain robust
results [5]. The number of independent component to
extract and choose is a hard outstanding problem. It has
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been the convention to use a fixed number of compo-
nents [2]. However, ICA does not order its components
by ‘relevance’. Therefore, some authors proposed to
order them either with respect to their kurtosis values
[9], or with respect to their 1, norm [2], or by using
Bayesian frameworks to select the number of compo-
nents [15]. In the case of high dimensional data sets,
PCA is often applied as a pre-processing step to reduce
the number of dimensions [2,7]. In that particular case,
ICA is applied on a subset of data summarized by a
small number of principal components from PCA.

In this paper, we propose to use ICA as a denoising
process of PCA, since ICA is good at separating mixed
signals, i.e. noise vs. no noise. The aim is to generate
denoised loading vectors. These vectors are crucial in
PCA or ICA as each of them indicates the weights
assigned to each biological feature in the linear combi-
nation that leads to the component. Therefore, the goal
is to obtain independent components that better reflect
the underlying biology in a study and achieve better
dimension reduction than PCA or ICA.

Independent Principal Component Analysis (IPCA)
makes the assumption that biologically meaningful com-
ponents can be obtained if most noise has been
removed in the associated loading vectors.

In IPCA, PCA is used as a pre-processing step to
reduce the dimension of the data and to generate the
loading vectors. The FastICA algorithm [9] is then
applied on the previously obtained PCA loading vectors
that will subsequently generate the Independent Principal
Components (IPC). We use the kurtosis measure of the
loading vectors to order the IPCs. We also propose a
sparse variant with a built-in variable selection procedure
by applying soft-thresholding on the independent loading
vectors [16,17] (sSIPCA).

In the ‘Results and Discussion’ Section, we first com-
pare the classical PCA and ICA methodologies to IPCA
on a simulation study. On three real biological datasets
(microarray and metabolomics datasets) we demonstrate
the satisfying samples clustering abilities of IPCA. We
then illustrate the usefulness of variable selection with
sIPCA and compare it with the results obtained from the
sparse PCA from [18]. In the ‘Methods’ Section, we pre-
sent the PCA, ICA and IPCA methodologies and describe
how to perform variable selection with sIPCA.

Results and Discussion

We first performed a simulation study where the loading
vectors follow a Gaussian or super-Gaussian distribution.
On three real data sets, we compared the kurtosis values
of the loading vectors as a way of measuring their non-
Gaussianity and ordering the IPCs. The samples cluster-
ing ability of each approach is assessed using the Davies
Bouldin index [19]. Finally, the variable selection
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performed by sIPCA and sPCA are compared on a simu-
lated as well as on the Liver Toxicity data sets.

Simulation study
In order to understand the benefits of IPCA compared
to PCA or ICA, we simulated 5000 data sets of size n =
50 samples and p = 500 variables from a multivariate
normal distribution with a pre-specified variance-covar-
iance matrix described in the ‘Methods’ Section. Two
cases were tested.

1. Gaussian case. The first two eigenvectors v; and v,
both of length 500, follow a Gaussian distribution.

2. Super-Gaussian case. In this case the first two
eigenvectors follow a mixture of Laplacian and uniform
distributions:

L(0,25) k= 301,...,350

po [LHO025) =1, 50
1k u(o,1) otherwise.

u(o,1) otherwise, and Vak ™ {

Table 1 records the median of the angles between the
simulated (known) eigenvectors and the loading vectors
estimated by the three approaches. PCA gave similar
results in both simulation cases, and was able to well
estimate the loading vectors, while ICA performed
poorly in both cases. IPCA performed quite poorly in
the Gaussian case, but outperformed PCA in the super-
Gaussian case.

Table 2 displays the kurtosis values of the first 5 load-
ing vectors. In IPCA the components are ordered with
respect to the kurtosis values of their associated loading
vectors, while in the FastICA algorithm the components
are ordered with respect to the kurtosis values of the
independent components. In the super-Gaussian case,
these results show that the kurtosis value is a good post
hoc indicator of the number of components to choose,
as a sudden drop in the values corresponds to irrelevant
dimensions (from 3 and onwards). Low kurtosis values
in the Gaussian case indicate that non-Gaussianity of
the loading vectors cannot be maximized, and that the
assumptions of IPCA are not met (i.e. a small number
of genes heavily contribute to the observed biological
process).

Tables 1 and 2 seem to suggest that ICA performs
poorly in both Gaussian and super-Gaussian case, even
if we would expect quite the contrary in the super-

Table 1 Simulation study: angle (median value) between
the simulated and estimated loading vectors simulated
with either Gaussian or super-Gaussian distributions.

Method Gaussian super-Gaussian
Vi V2 Vi V2
PCA 2048 21.61 2047 21.62
ICA 85.70 84.39 82.13 77.77
IPCA 70.05 69.72 1246 14.08
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Table 2 Mean value of the kurtosis measure of the first 5
loading vectors in the simulation study for PCA, IPCA
and & ICA.

PCA ICA IPCA
Gaussian case loading 1 -0.007 -0.015 0.54
loading 2 -0.009 -0.013 0.21
loading 3 -0.012 -0.013 -0.01
loading 4 -0.011 -0.013 -0.20
loading 5 -0.015 -0.015 -041
super-Gaussian case loading 1 34.75 0.28 5258
loading 2 34.16 043 33.81
loading 3 -0.01 042 0.27
loading 4 -0.01 044 -0.02
loading 5 -0.02 047 -0.25

Gaussian case. In the high dimensional case, PCA is
used as a pre processing step in the ICA algorithm. It is
likely that such step affects the ICA input matrix and
that the ICA assumptions are not met. Therefore, the
performance of ICA seems to be largely affected by the
high number of variables.

PCA gave satisfactory results in both cases. In the
super-Gaussian case, PCA is even able to recover some
of the super-Gaussian distribution of the loading vec-
tors. However, IPCA is able to recover the loading
structure better than PCA in the super-Gaussian case
(angles are smaller in Table 1 and kurtosis value is
much higher for the first loading for IPCA). Depending
on the (unknown) nature of the data set to be analyzed,
it is therefore advisable to assess both approaches.

Application to real data sets

Liver Toxicity study

In this study, 64 male rats were exposed to non-toxic
(50 or 150 mg/kg), moderately toxic (1500 mg/kg) or
severely toxic (2000 mg/kg) doses of acetaminophen
(paracetamol) in a controlled experiment [20]. In this
paper, we considered 50 and 150 mg/kg as low doses,
and 1500 and 2000 as high doses. Necropsies were per-
formed at 6, 18, 24 and 48 hours after exposure and the
mRNA from the liver was extracted. The microarray
data is arranged in matrix of 64 samples and 3116
transcripts.

Prostate cancer study

This study investigated whether gene expression differ-
ences could distinguish between common clinical and
pathological features of prostate cancer. Expression pro-
files were derived from 52 prostate tumors and from 50
non tumor prostate samples (referred to as normal) using
oligonucleotide microarrays containing probes for
approximately 12,600 genes and ESTs. After preproces-
sing remains the expression of 6033 genes (see [21]) and
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101 samples since one normal sample was suspected to
be an outlier and was removed from the analysis.

Yeast metabolomic study

In this study, two Saccharomyces cerevisiae strains were
used - wild-type (WT) and mutant (MT), and were carried
out in batch cultures under two different environmental
conditions, aerobic (AER) and anaerobic (ANA) in stan-
dard mineral media with glucose as the sole carbon
source. After normalization and preprocessing, the meta-
bolomic data results in 37 metabolites and 55 samples that
include 13 MT-AER, 14 MT-ANA, 15 WT-AER and 13
WT-ANA samples (see [22] for more details).

Choosing the number the components with the kurtosis
measure

As mentioned by [5], one major limitation of ICA is the
specification and the choice of the number of components
to extract. In PCA, the cumulative percentage of explained
variance is a popular criterion to choose the number of
principal components, since they are ordered by decreas-
ing explained variance [1]. For the case of high dimension-
ality, many alternative ad hoc stopping rules have been
proposed without, however, leading to a consensus (see
[23] for a thorough review). In Liver Toxicity, the first 3
principal components explained 63% of the total variance,
in Yeast, the first 2 principal components explained 85%
of the total variance. For Prostate that contains a very
large number of variables, the first 3 components only
explain 51% of the total variance (7 principal components
would be necessary to explain more than 60%). However,
from a visualization perspective, choosing more than 3
components would be difficult to interpret.

The kurtosis values of the loading vectors from PCA,
ICA and IPCA are displayed in Table 3. These values
differ from one approach to the others, as well as their
order. In IPCA, the kurtosis value of the associated
loading vectors gives a good indicator of the ability of
the components to separate the clusters, since we are
interested in extracting signals from non-Gaussian dis-
tributions. Respectively, the first 2, 1 and 2 components
seem enough in Liver Toxicity, Prostate and Yeast to

Table 3 Kurtosis measures of the loading vectors for
PCA, IPCA and & ICA.

Dataset PCA ICA IPCA
Liver Toxicity study loading 1 6.588 7.697 9.700
loading 2 1912 2737 6.982
loading 3 6.958 4.799 0.672
Prostate cancer study loading 1 -1.527 -0.553 1.513
loading 2 -0.561 0.723 -0.249
loading 3 1.176 1.640 -1.509
Yeast metabolomic study loading 1 4532 0.274 1.551
loading 2 12.261 -0.758 1437
loading 3 4.147 1.677 -0475
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extract relevant information with IPCA, as is further dis-
cussed below.

Sample representation

The samples in each data set were projected in the new
subspace spanned by the PCA, ICA or IPCA compo-
nents (Figure 1, 2 and 3). This kind of graphical output
gives a better insight into the biological study as it
reveals the shared similarities between samples. The
comparison between the different graphics allows to
visualize how each method is able to partition the sam-
ples in a way that reflects the internal structure of the
data, and to extract the relevant information to repre-
sent each sample. One would expect that the samples
belonging to the same biological group, or undergoing
the same biological treatment would be clustered
together and separated from the other groups.

In Liver Toxicity, IPCA tended to better cluster the low
doses together, compared to PCA or ICA (Figure 1). In
Prostate (Figure 2), PCA graphical representations
showed interesting patterns. Neither the first, nor the
second component in PCA were relevant to separate the
two groups. Instead, it was the third component that
could give more insight into the expected biological char-
acteristics of the samples. It is likely that PCA first
attempts to maximize the variance of noisy signals, which
has a Gaussian distribution, before being able to find the
right direction to differentiate better the sample classes.
For IPCA, the first component seemed already sufficient
to separate the classes (as indicated by the kurtosis value
of its associated loading vector in Table 3), while two
components were necessary for ICA to achieve a satisfy-
ing clustering. For the Yeast study (Figure 3), even
though the first 2 principal components explained 85% of
the total variance, it seemed that 3 components were
necessary to separate WT from the MT in the AER sam-
ples with PCA, whereas 2 components were sufficient
with ICA and IPCA. For all approaches, the WT and MT
samples for the ANA group remain mixed and seem to
share strong biological similarities.

Cluster validation

In order to compare how well different methods perform
on a data set, different indexes were proposed to measure
the similarities between clusters in the literature [24]. We
used the Davies-Bouldin index [19] (see ‘Methods’ sec-
tion). This index has both a statistical and geometric ratio-
nale, and looks for compact and well-separated clusters.
The main purpose is to check whether the different
approaches can distinguish between the known biological
conditions or treatments on the basis of the expression
data. The approach that gives the smallest index is consid-
ered the best clustering method based on this criterion.
The results are displayed in Table 4 for a choice of 2 or 3
components. On the Liver Toxicity study, the Davies-
Bouldin index indicated that IPCA outperformed the
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Figure 1 Liver Toxicity study: Sample representation. Sample representation using the first two components from PCA, ICA and IPCA

other approaches using 2 components. When choosing 3
components, all approaches gave similar results. On Pros-
tate, ICA slightly outperformed IPCA for 2 components
and gave similar performances for 3 components. PCA
seemed clearly limited by the large number of noisy vari-
ables and was not able to provide a satisfying clustering of
the samples. ICA gave good clustering performance on the
Yeast data set for 2 components, followed by PCA and
IPCA. It is probable that there is very little noise in this
small data set.

In fact, the Davies-Bouldin index seemed to indicate
that for large data sets (Liver Toxicity and Prostate),
IPCA seems to perform best for a smaller number of
components than PCA. It is able to highlight relevant
information in a very small number of dimensions.
Variable selection
We first performed a simulation study to assess whether
sIPCA could identify relevant variables. We then applied
sIPCA to the Liver Toxicity study. In both cases, we com-
pared sIPCA with the sparse PCA approach (sPCA-rSVD-
soft from [18]) that we will subsequently call ‘sPCA’.

Simulated example
Using the simulation framework described in the ‘Meth-
ods’ Section, we considered two cases:

1. Gaussian case. The two sparse simulated eigenvec-
tors followed a Gaussian distribution:

N(0,1) k =301,...,350

s [ NO D E=1,...,50
] = =0 otherwise.

. and v
=0 otherwise, 2%k {

2. Super-Gaussian case. In this case, we have

~1(0,25) k = 301,...,350

s [~L0.25) k=1, ..., 50
1k =0 otherwise.

. and 2
=0 otherwise, 2k {

Each eigenvector has 50 non-zero variables and the
coefficients in the loading vectors associated to these
non-zero variables follow a Gaussian or super-Gaussian
distribution. sPCA and sIPCA were then applied on
each generated data set. Both approaches require the
degree of sparsity, which was set to 50, as an input para-
meter on each component. One can imagine that each
eigenvector describes a particular biological process
where 50 genes contribute heavily or very heavily to.
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Table 5 displays the correct identification rate of each
loading vector estimated by sPCA and sIPCA. Given
this non trivial setting, both approaches identified very
well the important variables, especially on the first
dimension, where sPCA slightly outperformed sIPCA.
On the second dimension, the performance of sPCA
and sIPCA differ as sPCA fails to differentiate each
sparse signal separately - it tended to select variables
from both dimensions in the second loading vector. On
the contrary, and especially in the super-Gaussian case,
sIPCA is able to identify each sparse eigenvector signal
separately, i.e. each simulated biological process. sSPCA
performed better in the Gaussian than in the super-
Gaussian case, whereas sSIPCA performed almost equally
well in both cases.

Real example with Liver Toxicity study
Choosing the number of genes to select
Figure 4 displays the Davies Bouldin index for various
gene selection sizes. SIPCA clearly outperformed sPCA.
In order to compare the biological relevance of the two

gene selections, a selection size of 50 genes per dimen-
sion, for 2 dimensions were arbitrarily chosen for the fol-
lowing analysis. Even if not optimal from the index
perspective, this choice was mostly guided by the number
of subsequent annotated genes that could be analyzed in
the biological interpretation. For each approach, the
genes lists of different sizes are embedded into each
other, and a compromise has to be made to obtain a suf-
ficient but not too large list of genes to be interpreted.
Comparison of the sparse loading vectors

The first and second sparse loading vectors for both
sPCA and sIPCA are plotted in Figure 5 (absolute
values). In the first dimension, the loading vectors of the
two sparse approaches are very similar (correlation of
0.98), a fact that was already indicated in the above simu-
lation study. Both approaches select the same variables.
On the second dimension, however, the sparse loading
vectors differ (correlation of 0.28) as IPCA (similar to
ICA) leads to an unnecessarily orthogonal basis which
may reconstruct the data better than PCA in the pre-
sence of noise and is sensitive to high order statistics in
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Figure 3 Yeast metabolomic study: sample representation. Sample representation using the first two or three components from PCA, ICA

the data rather than the covariance matrix only [25]. This
explains why sPCA and sIPCA give different subspaces.
Sample representation

The PCs and IPCs are displayed in Figure 6. Since most
of the noisy variables were removed, sPCA seemed to
give a better clustering of the low doses compared to
Figure 1. sIPCA and IPCA remain similar, which shows
that IPCA is well able to separate the noise from the
biologically relevant signal.

Table 4 Davies Bouldin index for PCA, ICA and IPCA on
the three data sets.

Biological relevance of the selected genes
We have seen that the independent principal compo-
nents indicate relevant biological similarities between
the samples. We next assessed whether these selected
genes were relevant to the biological study. The genes
selected with either sIPCA or sPCA were further investi-
gated using the GeneGo software [26], that can output
pathways, process networks, Gene Ontology (GO) pro-
cesses and molecular functions.

We decided to focus only on the first two dimensions
as they were sufficient to obtain a satisfying cluster of

Table 5 Simulation study: average percentage of

Dataset # of components  PCA ICA  IPCA correctly identified non-zero loadings (standard

Liver Toxicity study 2 components 1809 1923 1242 deviation) when 50 variables are selected on each

Liver Toxicity study 3 components 1523 1578 1525 dimension (each loading vector).

Prostate cancer study 2 components 4117 1679 1782 Method Gaussian super-Gaussian
Prostate cancer study 3 components 3312 2316 2315 Viq Vo Vq Vo

Yeast metabolomic study 2 components 1894 1788 2338 sPCA 90.30% (3.5) 725% (11.6) 8544% (4.3) 68.22% (10.6)
Yeast metabolomic study 3 components 2119 2139 2037 sIPCA 86.7% (8.3) 87.7% (8.1) 80.80% (8.6) 82.30% (84)
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the samples (see previous results). We therefore ana-
lyzed the two lists of 50 genes selected with either
sIPCA or sPCA for each of these two dimensions.
Amongst these 50 genes, between 33 to 39 genes were
annotated and recognized by the software.

Genes selected on dimension 1 Both methods selected
genes previously highlighted in the literature as having
functions in detoxification and redox regulation in
response to oxidative stress: 2 cytochrome P450 genes (1)
and heme oxygenase 1 were selected by sIPCA (sPCA)
on the first dimension (see Additional files 1 and 2). The
expression of these genes has been found to be altered in
biological pathways perturbed subsequent to incipient
toxicity [27-32]. These genes were also previously
selected with other statistical approaches by other collea-
gues on the same study [20].

A Gene Ontology enrichment analysis for each list of
genes was performed. GO terms significantly enriched
included biological processes related to response to
unfolded proteins, protein refolding and protein stimulus,
as well as response to chemical stimulus and organic sub-
stance (Additional file 3). Although very similar, the
sPCA gene list highlighted slightly more genes related to
these GO terms than the sIPCA gene selection. The GO
molecular functions related to these genes were, however,

more enriched with sIPCA: heme and unfolded protein
binding as well as oxidoreductase activity (Additional
file 4).

Genes selected on dimension 2 The gene lists from
dimension two not only highlighted response to
unfolded protein and to organic substance, but also cel-
lular carbohydrate biosynthesis process, trygliceride,
acylglycerol, neutral metabolic processes as well as cata-
bolic process and glucogenesis. For this dimension, how-
ever, it is sIPCA that selected more relevant genes that
enriched these terms (Additional file 5).

In terms of pathways, both approaches selected HSP70
and HSP90 genes. The HSP90 gene encodes a member
of the heat shock proteins 70 family. These proteins
play a role in cell proliferation and stress response,
which explained the presence of pathways found such as
oxidative stress [33,34] (Additional file 6). The HSP90
proteins are highly conserved molecular chaperones that
have key roles in signal transduction, protein folding
and protein degradation. They play an important roles
in folding newly synthesized proteins or stabilizing and
refolding denatured proteins after stress [35].

Summary This preliminary analysis demonstrates the
ability of sIPCA and sPCA to select genes that were
relevant to the biological study. These genes that are
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ranked as being ‘important’ by both approaches, partici-
pate in the determination of the components which are
linear combinations of the original variables. Therefore,
the expression of these selected genes not only help
clustering the samples according to the different treat-
ments or biological conditions but also have a biologi-
cally relevant meaning for the system under study.

Conclusions

We have developed a variant of PCA called IPCA that
combines the advantages of both PCA and ICA. IPCA
assumes that biologically meaningful components can be
obtained if most noise has been removed from the asso-
ciated loading vectors. By identifying non-Gaussian load-
ing vectors from the biological data, it better reflects the
internal structure of the data compared to PCA and
ICA. On simulated data sets, we showed that IPCA out-
performed PCA and ICA in the super-Gaussian case,
and that the kurtosis value of the loading vectors can be
used to choose the number of independent principal
components. On real data sets, we assessed the cluster
validity using the Davies Bouldin index and showed that
in high dimensional cases, IPCA could summarize the
information of the data better or with a smaller number
of components than PCA or ICA.

We also introduced sIPCA that allows an internal
variable selection procedure. By applying a soft-thresh-
olding penalization on the independent loading vectors,
sparse loading vectors are obtained which enable vari-
able selection. We have shown that sIPCA can correctly
identify most of the important variables in a simulation
study. For one data set, the genes selected with sIPCA
and sPCA were further investigated to assess whether
the two approaches were able to select genes that were
relevant to the system under study given these genes,
relevant GO terms, molecular functions and pathways
where highlighted. This analysis demonstrated the ability
of such approaches to unravel biologically relevant
information. The expression of these selected genes is
also decisive to cluster the samples according to their
biological conditions.

We believe that (s)IPCA approach can be useful, not
only to improve data visualization and reveal experimen-
tal characteristics, but also to identify biologically rele-
vant variables. IPCA and sIPCA are implemented in the
R package mixomics [36,37] and its associated web-
interface http://mixomics.qfab.org.

Methods

Principal Component Analysis (PCA)

PCA is a classical dimension reduction and feature
extraction tool in exploratory analysis, and has been
used in a wide range of fields. There exists different
ways of solving PCA. The most computationally efficient
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algorithm uses Singular value decomposition (SVD):
suppose X is a centered # x p matrix (the mean of each
column has been subtracted), where # is the number of
samples (or observations) and p is the number of vari-
ables or biological entities that are measured. Then the
SVD of data matrix X can be defined as

X = UDVT, (1)

where U is an # x p matrix whose columns are uncor-
related (i.e. UTU = Ip), Vis a p x p orthogonal matrix
(ie. VIV = Ip),and Disap x p diagonal matrix with
diagonal elements d;. We denote u; the columns of U and
v; the columns of V. Then wd is the jth principal compo-
nent (PC) and v; is the corresponding loading vector [1].
The PCs are linear combination of the original variables
and the loading vectors indicate the weights assigned to
each of the variables in the linear combination. The first
PC accounts for the maximal amount of the total var-
iance. Similarly, the jth (j = 2,..., p) PC can explain the
maximal amount of variance that is not accounted by the
previous j - 1 PCs. Therefore, most of the information
contained in X can be reduced to a few PCs. Plotting the
PCs enable a visual representation of the samples pro-
jected in the subspace spanned by the PCs. We can
expect that the samples belonging to the same biological
group, or undergoing the same biological treatment
would be clustered together and separated from the
other groups.
Limitation of PCA
Sometimes, however, PCA may not be able to extract
relevant information and may therefore provide mean-
ingless principal components that do not describe
experimental characteristics. The reason is that its linear
transformation involves second order statistics (i.e. to
obtain mutually non-orthogonal PCs) that might not be
appropriate for biological data. PCA assumes that gene
expression data have Gaussian signals, while it has been
demonstrated that many gene expression data in fact
have ‘super-Gaussian’ signals [2,4].

Independent Component Analysis (ICA)

Independent Component Analysis (ICA) was first pro-
posed by [8]. ICA can reduce the effects of noise or arte-
facts in the data as it aims at separating a mixture of
signals into their different sources. By assuming non-
Gaussian signal distribution, ICA models observations as a
linear combinations of variables, or components, which
are chosen to be as statistically independent as possible
(i.e. the different components represent different non-
overlapping information). ICA therefore involves higher-
order statistics [14]. In fact, ICA attempts to recover statis-
tically independent signal from the observations of an
unknown linear mixture. Several algorithms such as
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FastICA, Kernel ICA [38] and ProDenlICA [39] were pro-
posed to estimate the independent components. The Fas-
tICA algorithm maximizes non-Gaussianity of each
component, while Kernel ICA and ProDenICA minimize
mutual information between components. In this article,
we used the FastICA algorithm.

Let X (n x p) be the centered data matrix and S (1 x
p) the matrix containing the independent components
(IC). We can solve the ICA problem by introducing a
mixing matrix A of size n x n:

X = AS. (2)

The mixing matrix A indicates how the independent
components of S are linearly combined to construct X.
If we rearrange the equation above, we get

S =WX, (3)

where W (n x n) is the unmixing matrix that
describes the inverse process of mixing the ICs. If we
assume that A is a square and orthonormal matrix, then
W is simply the transpose of A. In practice, it is very
useful to whiten the data matrix X, i.e., to obtain Cov
(X) = L. This allows the mixing matrix A to be orthogo-
nal: Cov(AS) = I and SST = I = AAT = I. The ortho-
gonality of the matrix also enables fewer parameters to
be estimated. In the FastICA algorithm, PCA is used as
a pre-processing step to whiten the data matrix. If we
rearrange (1), we therefore obtain

u’ = D-WVTXT, (4)

since the columns of V are orthonormal. The rows of
U™ are uncorrelated and have zero mean. To complete
the whitening step, we can multiply UT by /n — 1, so
that the rows of U have unit variance. Then let {J be
the whitened PCs ( U = /n — 1UT). The ICs are esti-
mated through the following equation:

S =wu. (5)

ICA assumes that Gaussian distribution represent
noise, and therefore aims at identifying non-Gaussian
components in the sample space that are as independent
as possible. Recent studies have observed that the signal
distribution of microarray data are typically super-Gaus-
sian since only a small number of genes contribute
heavily to a specific biological process [2,5].

Two classical quantitative measures of Gaussianity are
kurtosis and negentropy.

« Kurtosis, also called the fourth-order cumulant is
defined as
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K = E{s{} - 3. (6)

where s; is the row of S, which has zero mean and
unit variance, j = 1... n. The kurtosis value equals zero if
s; has a Gaussian probability density function (pdf), is
positive if s; has a spiky pdf (super-Gaussian, i.e. the pdf
is relatively large at zero) and is negative if s; has a flat
pdf (sub-Gaussian, i.e. the pdf is rather constant near
zero). We are interested in the spiky and flat pdf (i.e.
non-Gaussian pdfs) since non-Gaussianity is regarded as
independence [9]. Note that although kurtosis is both
computationally and theoretically simple, it can be very
sensitive to outliers. The authors in [6] proposed to
order the ICs based on their kurtosis value.

+ In the FastICA algorithm, negentropy is used as it
is an excellent measurement of non-Gaussianity.
Negentropy equals zero if s; is Gaussian and is posi-
tive if s; is non-Gaussian. It is not only easy to com-
pute, but also very robust [9]. However, this measure
does not distinguish between super-Gaussianity and
sub-Gaussianity.
Limitation of ICA
Similar to PCA, ICA also suffers from high dimensional-
ity, which sometimes leads to the inability of the ICs to
reflect the (biologically expected) internal structure of
the data. Furthermore, since ICA is a stochastic algo-
rithm, it faces the problem of convergence to local
optima, leading to slightly different ICs when re-analyz-
ing the same data [40].

Independent Principal Component Analysis (IPCA)

To reduce noise and better reflect the internal structure
of the data generated by the biological experiment, we
propose a new approach called Independent Principal
Component Analysis (IPCA). Rather than denoising the
data or the PCs directly, as it is performed in ICA, we
propose instead to reduce the noise in the loading vec-
tors. Recall that the PCs, which are then used to visua-
lize the samples and how they cluster together, are a
linear combination of the original variables weighted by
their elements in the corresponding loading vectors.
Thus we will obtain denoised PCs by using ICA as a
denoising process of the associated loading vectors.

We make the assumption that in a biological system,
different variables (biological entities, such as genes and
metabolites) have different levels of expression or abun-
dance depending on the biological conditions. Therefore,
only a few variables contribute to a biological process.
These relevant variables should have important weights
in the loading vectors while other irrelevant or noisy vari-
ables should have very small weights. In fact, once the
loading vectors are denoised, we expect them to have a
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super-Gaussian distribution (as opposed to a Gaussian
distribution when noise is included, see Figure 7 for the
plot of a typical super-Gaussian and a Gaussian distribu-
tion). Maximizing non-Gaussianity of the loading vectors
will thus enable to remove most of the noise. IPCA is
described below and summarized in Table 6.

Extract the loading vectors from PCA

PCA is applied to the X (n x p) centered data matrix
using SVD to extract the loading vectors:

X = UDVT, (7)

where the columns of V contain the loading vectors.
Since the mean of each loading vector is very close to
zero, these vectors are approximately whitened and the
FastICA algorithm can be applied on the loading vectors.
Dimension reduction
Dimension reduction enables a clearer interpretation with-
out the computational burden. Therefore, only a small
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number of loading vectors, or, equivalently, a small num-
ber of PCs is needed to summarize most of the relevant
information. However, there is no globally accepted criter-
ion on how to choose the number of PCs to keep. We
have shown that the kurtosis value of the independent
loading vectors gives a post hoc indication of the number
of independent principal components to be chosen (see
‘Results and Discussion’ Section). We have experimentally
observed that 2 or 3 components were sufficient to high-
light meaningful characteristics of the data and to discard
much of the noise or irrelevant information.

Apply ICA on the loading vectors

The non-Gaussianity of the loading vectors can be max-
imized using equation (5):

S-WV', (8)

where V is the (p x m) matrix containing the m cho-
sen loading vectors, W is the (m x m) unmixing matrix
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Table 6 Summary of the IPCA algorithm.
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Algorithm Principal Component Analysis with Independent loadings (IPCA)

1. Implement SVD on the centered data matrix X to generate the whitened loading vectors V, and choose the number of components m to reduce

the dimension.

2. Implement FastiCA on the loading vectors V and obtain the independent loading vectors ST.

3. Project the centered data matrix X on the m independent loading vectors s; and get the Independent PCs ﬁj,j =1..m.

4. Order the IPCs by the kurtosis value of their corresponding independent loading vectors.

and S is the (m x p) matrix whose rows are the inde-
pendent loading vectors. The new independent principal
components (IPCs) are obtained by projecting X on S™:

U =xsT )

where {J is a (# x m) matrix whose columns contain
the IPCs.
Ordering the IPCs
Recall that ICA provides unordered components and
that the kurtosis measure indicates the Gaussian charac-
teristic of a pdf. [6] recently proposed to use the kurto-
sis measure of the ICs to order them. In IPCA, we
propose instead to order the IPCs according to the kur-
tosis value of the m independent loading vectors s; (j =
1... m), as we are mainly interested loading vectors with
a spiky pdf, indicated by a large kurtosis value.

Sparse IPCA (sIPCA)

Similar to PCA and ICA, the elements in the loading
vectors in IPCA indicate which variables are important
or relevant to determine the principal components.
Therefore, obtaining sparse loading vectors enables vari-
able selection to identify important variables of potential
biological relevance, as well as removing noisy variables
while calculating the IPCs in the algorithm.

Various sparse PCA approaches have been proposed
in the literature: SPCA [41], sSPCA-rSVD [18], SPC [42]).
In these approaches, the loading vectors are penalized
using Lasso [43] to perform an internal variable selec-
tion. In fact, all these sparse PCA variants can be
approximately solved by using soft-thresholding [17].
Our sparse IPCA therefore directly implements soft-
thresholding on the independent loading vector s; to
select the variables:

Sje = sign(sie) (I sje | =), (10)
where 7 is the threshold and is applied on each ele-
ment k of the loading vector s; (k = 1... p, j = 1... m) so
as to obtain the sparse loading vector §;. The variables
whose original weights are smaller than the threshold y
will be penalized to have zero weights. A classical
method to choose 7 is cross-validation. In practice, how-
ever, ¥ has been replaced by the degree of sparsity (i.e.,
the number of non-zero elements in each loading

vector, see following paragraph). In this way, we can
control how many variables to select and save some
computational time.

Using (s)IPCA

IPCA and sIPCA are implemented in the R package
mixomics which is dedicated to the analysis of large bio-
logical data sets [36,37]. The use of the approaches is
straightforward: the user needs to input the data set,
and to choose the number of components to keep
(usually set to a small value). In the case of the sparse
version, the number of variables to select on each
sIPCA dimension must also be given. The number of
components can be reconsidered afterwards by extract-
ing the kurtosis value of the loading vectors, i.e., identi-
fying when a sudden drop occurs in the obtained values
will indicate how many components are enough to
explain most of the information in the data.

The number of variables to select is still an open issue
(as pinpointed by many authors working on sparse
approaches, [18]) as in such studies, we are often limited
by the number of samples. Tuning the number of vari-
ables to select therefore mostly relies on the biological
question. Sometimes, an optimal but too short gene
selection may not suffice to give a comprehensive biolo-
gical interpretation, and sometimes, the experimental
validation might be limited in the case of a too large gene
selection.

In our example, for the sake of simplicity, we have set
the same number of variables to select on each
dimension.

Simulation studies

In the different simulation studies, we used the following
framework (previously proposed by [18]). X is the var-
iance-covariance matrix of size 500 x 500, whose first two
normalized eigenvectors v; and v, both of length 500 are
simulated for different cases described the the ‘Results and
Discussion’ Section. The other eigenvectors were drawn
from UO[1]. A Gram-Schmidt orthogonalization method
was applied to obtain the orthogonal matrix V whose col-
umns contain v; and v, and the other eigenvectors. To
make the first two eigenvectors dominate, the first two
eigenvalues were set to ¢; = 400, ¢, = 300 and ¢; = 1 for
k = 3,..., 500. Let C = diag{c;,..b., c500} the eigenvalue
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matrix, then £ = VCV™. The data are then generated from
a multivariate normal distribution N(0, X), with 7 = 50
samples and p = 500 variables.

Davies-Bouldin index

Davies-Bouldin measure is an index of crisp cluster
validity [19]. This index compares the within-cluster
scatter with the between-cluster separation. It was cho-
sen in this study because of its statistics and geometric
rationale. The Davies-Bouldin index is defined as

1 K o+ Oj
i+0j

max ,
K; i d(C,’,C]’)

where ¢; is the centroid of cluster i, and o; is the aver-
age distance of all elements in cluster i to centroid c;
and d(c; c;) is the distance between the two centroids, K
is the number of known biological conditions or treat-
ments. Depending on the number of components that
were chosen, we applied a 2- or 3-norm distance. Geo-
metrically speaking, we are seeking to minimize the
within-cluster scatter (the numerator) while maximizing
the between class separation (the denominator). There-
fore, for a given number of components, the approach
that gives the lowest index has the best clustering

ability.

Additional material

Additional file 1: List of genes from sIPCA. List of genes and gene
title selected by sIPCA on each dimension on Liver Toxicity study.

Additional file 2: List of genes from sPCA. List of genes and gene title
selected by sPCA on each dimension on Liver Toxicity study.

Additional file 3: GeneGo analysis. Comparison of the GO processes
for the genes selected on dimension 1 with sIPCA and sPCA on Liver

Toxicity study.

Additional file 4: GeneGo analysis. Comparison of the GO molecular

functions for the genes selected on dimension 1 with sIPCA and sPCA
on Liver Toxicity study.

Additional file 5: GeneGo analysis. Comparison of the GO processes
for the genes selected on dimension 2 with sIPCA and sPCA on Liver
Toxicity study.

Additional file 6: GeneGo analysis. Comparison of the GeneGO
pathways maps for the genes selected on dimension 1 with sIPCA and
sPCA on Liver Toxicity study.
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