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Abstract

Background: High-throughput technologies such as DNA, RNA, protein, antibody and peptide microarrays are
often used to examine differences across drug treatments, diseases, transgenic animals, and others. Typically one
trains a classification system by gathering large amounts of probe-level data, selecting informative features, and
classifies test samples using a small number of features. As new microarrays are invented, classification systems that
worked well for other array types may not be ideal. Expression microarrays, arguably one of the most prevalent
array types, have been used for years to help develop classification algorithms. Many biological assumptions are
built into classifiers that were designed for these types of data. One of the more problematic is the assumption of
independence, both at the probe level and again at the biological level. Probes for RNA transcripts are designed to
bind single transcripts. At the biological level, many genes have dependencies across transcriptional pathways
where co-regulation of transcriptional units may make many genes appear as being completely dependent. Thus,
algorithms that perform well for gene expression data may not be suitable when other technologies with different
binding characteristics exist. The immunosignaturing microarray is based on complex mixtures of antibodies
binding to arrays of random sequence peptides. It relies on many-to-many binding of antibodies to the random
sequence peptides. Each peptide can bind multiple antibodies and each antibody can bind multiple peptides. This
technology has been shown to be highly reproducible and appears promising for diagnosing a variety of disease
states. However, it is not clear what is the optimal classification algorithm for analyzing this new type of data.

Results: We characterized several classification algorithms to analyze immunosignaturing data. We selected several
datasets that range from easy to difficult to classify, from simple monoclonal binding to complex binding patterns
in asthma patients. We then classified the biological samples using 17 different classification algorithms. Using a
wide variety of assessment criteria, we found ‘Naïve Bayes’ far more useful than other widely used methods due to
its simplicity, robustness, speed and accuracy.

Conclusions: ‘Naïve Bayes’ algorithm appears to accommodate the complex patterns hidden within multilayered
immunosignaturing microarray data due to its fundamental mathematical properties.
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Background
Serological diagnostics have received increasing scrutiny
recently [1,2] due to their potential to measure anti-
bodies rather than low-abundance biomarker molecules.
Antibodies avoid the biomarker dilution problem and
are recruited rapidly following infection, chronic, or
autoimmune episodes, or exposure to cancer cells. Sero-
logical diagnostics using antibodies have the potential to
reduce medical costs and may be one of the few methods
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that allow for true presymptomatic detection of disease.
For this reason, our group has pursued immunosignaturing
for its ability to detect the diseases early and with a low
false positive rate. The platform consists of a peptide
microarray with either 10,000 or 330,000 peptides per
assay. This microarray is useful with standard mathematical
analysis, but for a variety of reasons, certain methods of
classification enable the best accuracy [3,4]. Classification
methods differ in their ability to handle high or low num-
bers of features, the feature selection method, and the fea-
tures’ combined contribution to a linear, polynomial, or
complex discrimination threshold. Expression microarrays
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are quite ubiquitous and relevant to many biological
studies, and have been used often when studying classifica-
tion methods. However, immunosignaturing microarrays
may require that we change our underlying assumptions as
we determine the suitability of a particular classifier.
In order to establish the question of classification suit-

ability, we examine a basic classification algorithm, Linear
Discriminant Analysis (LDA). LDA is widely used in ana-
lyzing biomedical data in order to classify two or more
disease classes [5-8]. One of the most commonly used
high-throughput analytical methods is the gene expression
microarray. Probes on an expression microarray are
designed to bind to a single transcript, splice variant or
methy variant of that transcript. These one-on-one inter-
actions provide relative transcript numbers and cumula-
tively help to define high-level biological pathways. LDA
uses these data to define biologically relevant classes based
on the contribution of differentially expressed genes. This
method often uses statistically identified features (gene
transcripts) that are different from one condition to an-
other. LDA can leverage coordinated gene expression to
make predictions based on a fundamental biological
process. The advantage of this method is that relatively
few features are required to make sweeping predictions.
When features change sporadically or asynchronously, the
discriminator predictions are adversely affected. This
causes low sensitivity in exchange for occasionally higher
discrimination. Tree-based methods use far more features
to obtain a less biased but less sensitive view of the data.
These methods can partition effects even if the effect sizes
vary considerably. This approach can be more useful than
frequentist approaches where it is important to maintain
partitions in discreet groups.
Immunosignaturing has its foundations in both phage

display and peptide microarrays. Most phage display
methods that use random-sequence libraries also use
fairly short peptides, on the order of 8–11 amino acids
[9]. Epitope microarrays use peptides in the same size
range, but typically far fewer total peptides, on the order
of hundreds to thousands [10]. Each of these methods
assumes that a single antibody binds to a single peptide,
which is either detected by selection (phage display) or
by fluorescent secondary antibody (epitope microarray).
Immunosignaturing uses long 20-mer random-sequence
peptides that have potentially 7 or more possible linear
epitopes per peptide. Although immunosignaturing must
make do with only 10,000 to ~300,000 peptides, the
information content derived from partial binding makes
these data useful in ways quite different from phage
display [11-15].
The complexity in analysis arises from the many-to-

many relationship between peptide and antibody (Figure 1).
This relationship imposes a particular challenge for classifi-
cation because a simple one-to-one relationship between
probe and target, idiomatic for gene expression microar-
rays, allows a coherent contribution of many genes that
behave coordinately based on biological stimuli. That
idiom is broken for immunosignaturing microarrays, where
each peptide may bind a number of different antibodies
and every antibody might bind a number of peptides. Un-
less disease-specific antibodies find similar groups of pep-
tides across individuals, very little useful information is
available to the classifier. The aim of this work is to assess
the performance of various classification algorithms on
immunosignaturing data.
We have considered 17 diverse data mining classification

methods. For feature selection, we used a simple t-test
when we examined two classes, and a fixed-effects 1-way
ANOVA for multiple classes with no post-hoc stratifica-
tion. We have assessed these algorithms’ ability to handle
increasing numbers of features by providing four different
sets of peptides with increasing p-value cutoff. The four
levels include from 10 (minimum) to >1000 (maximum)
peptides. Each algorithm is thus tested under conditions
that highlight either synergistic or antagonistic effects as
the feature numbers increase.

Methods
Technology
A peptide microarray described previously [11-15] was
used to provide data for analysis. Two different sets of
10,000 random peptide sequences are tested. The two
peptide sets are non-overlapping and are known as
CIM10Kv1 and CIM10Kv2. Peptides are printed as in [1].

Sample processing
Samples consist of sera, plasma or saliva – each produces
a suitable distribution of signals upon detection with an
anti-human secondary IgG-specific antibody. Samples are
added to the microarray at 1:500 dilutions in sample buf-
fer (1xPBS, 0.5% Tween20, 0.5% Bovine Serum Albumin
(Sigma, St. Louis, MO)), IgG antibodies are detected
through a biotinylated secondary anti human IgG anti-
body (Novus anti-human IgG (H+L), Littleton, CO),
which binds the primary. Fluorescently labeled streptavi-
din is used to label the secondary antibodies and scanned
with an Agilent ‘C’ laser scanner in single-color mode. 16-
bit images are processed using GenePix Pro 8, which pro-
vides the tabular information for each peptide in a con-
tinuous value ranging from 0–65,000. Four unique data
sets have been used in this analysis, 2 run on the
CIM10Kv1 and 2 on the CIM10Kv2. Each individual sam-
ple was run in duplicate; replicates with >0.8 Pearson cor-
relation coefficient were considered for analysis.

Datasets
Center for Innovations in Medicine, Biodesign Insti-
tute, Arizona State University has an existing IRB



Figure 1 One-to-one correspondence found in gene expression microarrays is not observed for the immunosignaturing arrays. We
propose that a single peptide may bind numerous antibodies, and have shown that a single antibody can bind hundreds of different peptides.
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0912004625, which allows analysis of blinded samples
from collaborators.

a.) Type 1 diabetes data set: This dataset contains 80
sera samples (41 controls and 39 type 1 diabetes
children ages 6 to 13). These samples were tested on
the CIM10kV1microarrays.

b.)Alzheimer’s disease data set: This dataset contains
23 samples (12 controls and 11 Alzheimer’s disease
subjects). These were tested on the CIM10kV2
microarrays.

c.) Antibodies dataset: This dataset contains 50 samples
and has 5 groups monoclonal antibodies, arbitrarily
arranged. All monoclonals were raised in mouse,
and use the same secondary detection antibody.
Samples were run on the CIM10kV1 microarrays.

d.)Asthma dataset: This dataset consists of 47 unique
samples containing serum from patients with 4
distinct classes, corresponding to the household
environment. Condition A consists of 12 control
subjects who had no environmental stimuli.
Condition B consists of 12 subjects who had stimuli
but no asthma-related symptoms. Condition C
consists of 11 subjects who had no stimuli but with
clinical asthma. Condition D consists of 12 subjects
who have both stimuli and clinical asthma. Samples
were tested on the CIM 10 kV2 microarrays. Asthma
datasets were been analyzed by considering all four
conditions using ANOVA in order to study the
combined effect of stimuli and asthma on subjects
and then by considering pair wise comparison of
condition A vs. B, A vs. C, and B vs. D.

Data preprocessing, normalization and feature selection
The 16-bit tiff images from the scanned microarrays
were imported into GenePix Pro 6.0 (Molecular Devices,
Santa Clara, CA). Raw tabular data were imported into
Agilent’s GeneSpring 7.3.1 (Agilent, Santa Clara, CA).
Data were median normalized per array and log10 trans-
formed. For feature selection we used Welch-corrected
T-test with multiple tested (FWER= 5%). For multiple
groups (Antibody and Asthma datasets) we used 1-way
fixed-effects ANOVA.

Data mining classification algorithms
Four distinct peptide features are chosen for the com-
parison study. For each analysis, peptides are selected by
t-test or ANOVA across biological classes, with 4 differ-
ent p-value cutoffs. Cutoffs were selected to obtain
roughly equivalent sized feature sets to assess the ability
of each algorithm to process sparse to rich feature sets.
Once the significant features were collected, data was
imported into WEKA [16] for classification. The algo-
rithms themselves spanned a wide variety of classifiers
including Bayesian, regression based methods, meta-
analysis, clustering, and tree based approaches.
We obtained accuracy from each analysis type using

leave-one-out cross-validation. We obtained a list of t-
test or ANOVA-selected peptides at each stringency
level. The highest stringency uses peptides with p-values
in the range of 10-5 to 10-10 and contains the least
‘noise’. The less-stringent second set uses p-values ap-
proximately 10-fold higher than the most stringent. The
third contains the top 200 peptides and the forth con-
tains ~1000 peptides at p< 0.05. Although different
numbers of peptides are used for each dataset, each pep-
tide set yields the same general ability to distinguish the
cognate classes. The WEKA default setting of para-
meters were used for every algorithm to avoid bias and
over fitting. These default parameters are taken from the
cited papers listed below for each algorithm. Brief details
of default parameters and algorithms are listed

I. Naïve Bayes: Probabilistic classifier based on
Bayes theorem. Numeric estimator precision
values are chosen based on analysis of the
training data. In the present study, normal
distribution was used for numeric attributes
rather than kernel estimator [17].

II. Bayes net: Probabilistic graphical model that
represents random variables and conditional
dependencies in the form of a directed acyclic
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graph. A Simple Estimator algorithm has been
used for finding conditional probability tables for
Bayes net. A K2 search algorithm was used to
search network structure [18,19].

III. Logistic Regression (Logistic R.): A generalized
linear model that uses logistic curve modeling to
fit the probabilistic occurrence of an event[20].
The Quasi-Newton method is used to search for
optimization. 1x108 has been used for ridge values
in the log likelihood calculation [21].

IV. Simple Logistic: Classifier for building linear
logistic regression models. For fitting the logistic
model ‘LogitBoost’, simple regression functions are
used. Automatic attribute selection is obtained by
cross validation of the optimal number of
‘LogitBoost’ iterations [22]. Heuristic stop
parameter is set at 50. The number of maximum
iterations for LogitBoost has been set to 500.

V. Support Vector Machines (SVM): A non-
probabilistic binary linear classifier that constructs
one or more hyper planes to be can be used for
classification. For training support vector classes,
John Platt’s sequential minimal optimization
algorithm was used which replaces all missing
values [23]. Here multiclass problems are used
using pair-wise classification. The complexity
parameter is set to 1. Epsilon for round off error is
set to 1x10*-12. PolyKernel is the set to be kernel.
The tolerance parameter is set to 0.001 [24,25].

VI. Multilayer Perceptron (MLP): A supervised
learning technique with a feed forward artificial
neural network through back-propagation that
can classify non-linearly separable data [26,27].
The learning rate is set to 0.3 and momentum
applied during updating weights is set to 0.2. The
validation threshold use to terminate the
validation testing is set to 20.

VII. K nearest neighbors (KNN): Instance based
learning or lazy learning which trains the classifier
function locally by majority note of its neighboring
data points. Linear NN Search algorithm is used
for search algorithm [28,29]. K is set to 3.

VIII. K Star: Instance based classifier that uses
similarity function from the training set to classify
test set. Missing values are averaged by column
entropy curves and global blending parameter is
set to 20 [30].

IX. Attribute Selected Classifier (ASC): ‘Cfs subset’
evaluator is used during the attribute selection
phase to reduce the dimension of training and
test data. The ‘BestFit’ search method is invoked
after which J48 tree classifier is used [31].

X. Classification via clustering (K means): Simple k
means clustering method is used where k is set to
the number of classes in the data set [32]. Euclidean
distance was used for evaluation with 500 iterations.

XI. Classification via Regression (M5P): Regression is
a method used to evaluate the relationship
between dependent and independent variables
through an empirically determined function. The
M5P base classifier is used which combines
conventional decision tree with the possibility of
linear regression at the nodes. The minimum
number of instances per leaf node is set to 4 [33].

XII. Linear Discriminant Analysis (LDA): Prevalent
classification technique that identifies the
combination of features that best characterizes
classes through linear relationships. Prior
probabilities are set to uniform and the model as
homoscedastic.

XIII. Hyper Pipes: Simple, fast classifier that counts
internally defined attributes for all samples and
compares the number of instances of each attribute
per sample. Classification is based on simple counts.
Works well when there are many attributes [34].

XIV. VFI: Voting feature interval classifier is a simple
heuristic attribute-weighting scheme. Intervals are
constructed for numeric attributes. For each
feature per interval, class counts are recorded and
classification is done by voting. Higher weight is
assigned to more confident intervals. The
strength of the bias towards more confident
features is set to 0 [35].

XV. J48: Java implementation of C4.5 algorithm. Based
on the Hunt’s algorithm, pruning takes place by
replacing internal node with a leaf node. Top-
down decision tree/voting algorithm [36]. 0.25 is
used for the confidence factor. No Laplace
method for tree smoothing [37].

XVI. Random Trees: A tree is grown from data that has
K randomly chosen attributes at each node. It
does not perform pruning. K-value (log2 (number
of attributes) + 1) is set at zero. There is no depth
restriction. The minimum total weight per leaf is
set to 1 [34].

XVII. Random Forest (R. Forest): Like Random Tree,
the algorithm constructs a forest of random trees
[38] with locations of attributes chosen at
random. It uses an ensemble of unprune decision
trees by a bootstrap sample using training data.
There is no restriction on the depth of the tree;
number of tress used is 100.

Time performance
CPU time was calculated for every algorithm at the four
different significance levels. This time was measured on
a standard PC (Intel dual core, 2.2 GHz 3 Gb RAM) that
was completely dedicated to WEKA. To measure CPU
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time, open source jar files from WEKA were imported
to Eclipse where the function ‘time ()’ was invoked prior
to running the classification including the time required
for cross validation. Most Windows 7 services were
switched off; the times reported were an average of 5
different measurements.

Results
Overall performance accuracy of classification algorithms
over all data sets
For each dataset, accuracies are measured at four levels
(top 10, 50,200, 1000 peptides) at various levels of signifi-
cance. Overall average performance measure is calculated
for each algorithm for a given data set. Table 1 shows the
overall average percentage score for each algorithm calcu-
lated by averaging accuracy, specificity, sensitivity and area
under ROC curve under all levels of significance. Scores
>90% are marked in bold. MLP algorithm did not finish
due to huge memory requirements on last level of signifi-
cance and is averaged based on first three levels of signifi-
cance. For type 1 diabetes, Alzheimer’s and antibodies
dataset, >6 algorithms scored >90% average score. Over-
all, Naïve Bayes had the highest average score (90.4%) and
was always among top 3 algorithms among all datasets.

Performance accuracy of classification algorithms at
different levels of significance over all data sets
For each data set, different levels of significance are
chosen to measure the performance accuracy of each
Table 1 Overall performance measure of classification algorit

Algorithms T1D Az Ab Asthma

Naïve Bayes 92.0 93.4 91.5 77.7

MLP 90.1 92.7 90.2 71.1

SVM 91.6 88.0 90.7 71.3

VFI 90.5 92.2 75.5 62.6

Hyper Pipes 89.8 89.7 81.3 62.3

R. Forest 91.5 82.4 93.3 62.8

Bayes Net 90.3 87.7 92.5 53.9

K-means 88.3 91.8 80.7 59.6

Logistic R. 90.6 93.3 60.4 50.7

SLR 92.2 71.8 90.1 72.2

KNN 91.4 81.5 52.5 55.8

K star 81.9 90.7 89.4 53.5

M5P 85.1 58.7 83.2 60.0

J48 80.3 69.7 78.4 48.7

Random Tree 83.8 71.7 76.2 52.9

ASC 76.8 70.0 77.9 43.1

LDA 69.7 52.0 89.1 70.8

T1D: Type 1 diabetes datasets, Az: Alzehemer’s dataset, Ab: Antibodies dataset. Tab
score. Score >90% are marked in bold. Naïve Bayes scored the overall highest aver
algorithm. These levels contain approximately equal
number of peptides for each data set. The first level con-
tains 10 peptides selected from the t-test (lowest p value)
and hence contains the least noise. Next, approximately
50 peptides, 200 peptides and 1000 peptides were
chosen for the other three levels.
Tables 2, 3, 4, 5, 6, 7, 8 shows 4 different performance

measures (accuracy, specificity, sensitivity and area
under ROC curve) at different levels of significance over
7 datasets. For the Asthma dataset, we considered all
conditions A-D together, then performed the pair-wise
comparisons of condition A and B, condition A and C,
and condition B and D at three different levels of signifi-
cance. Measures >90% are marked in bold. For the dia-
betes dataset, 9 algorithms achieved >90% score. For
Alzheimer’s and the Antibodies dataset, 6 algorithms
achieved >90% score. Naïve Bayes scored 100% in all 4
measures at the first level of significance in the Alzhei-
mer’s dataset and scored 91.5% average score on the
Antibodies dataset. For the Asthma datasets, the highest
score was <80%. Only Naïve Bayes had >90% specificity
for more than one level of significance. For two condi-
tions in Asthma datasets, Naïve Bayes and VFI scored
>90% average score.

Comparative analysis of worst time performance of
classification algorithms over data sets
The amount of time taken by each algorithm to build
the model and perform cross validation was measured.
hms on datasets

A & B A & C B & D Avg. Rank

90.8 93.5 93.6 90.4 1

84.7 92.7 89.3 87.3 2

86.1 88.4 93.1 87.0 3

87.7 93.4 92.7 84.9 4

82.0 86.6 87.8 82.8 5

80.6 81.4 81.1 81.9 6

80.2 83.2 85.1 81.8 7

77.8 83.3 83.6 80.7 8

81.5 84.8 90.7 78.9 9

65.0 68.5 84.7 77.8 10

87.5 75.7 89.0 76.2 11

64.3 68.8 70.7 74.2 12

75.2 73.4 79.6 73.6 13

70.6 68.4 76.7 70.4 14

69.3 60.8 75.0 70.0 15

72.0 63.1 76.7 68.5 16

62.8 69.7 52.6 66.7 17

le showing algorithms overall performance in each datasets based on average
age score of 90.4%.



Table 2 Performance measures of data mining algorithm at different levels of significance over Type 1 diabetes
dataset

SIGNIFICANCE p< 5 x 10-13 p< 5 x 10-10 p< 5 x 10-7 p< 5 x 10-4

Algorithm Acc. Sp Sn AUC Acc. Sp Sn AUC Acc. Sp Sn AUC Acc Sp Sn AUC Avg.

SLR 87.5 85.0 89.7 0.93 92.5 90.2 94.9 0.97 92.5 92.0 92.0 0.96 92.5 90.0 94.9 0.96 92.2

Naïve Bayes 90.0 85.4 95.0 0.97 91.3 90.2 92.3 0.98 92.5 90.2 95.0 0.96 89.0 85.4 92.3 0.92 92.0

SVM 88.8 82.9 94.9 0.89 90.0 82.9 97.4 0.90 93.8 90.2 97.4 0.93 93.8 92.7 94.9 0.94 91.6

R. Forest 87.5 87.8 87.2 0.96 92.5 90.2 94.9 0.97 91.5 87.8 94.9 0.97 88.8 85.4 92.3 0.94 91.5

KNN 92.5 90.2 94.9 0.95 95.0 92.7 97.4 0.96 90.0 85.4 94.9 0.93 85.0 80.5 89.7 0.90 91.4

Logistic. R 86.3 87.8 84.6 0.82 92.5 90.2 94.9 0.97 92.5 92.7 97.4 0.97 87.5 92.7 82.1 0.92 90.6

VFI 87.5 82.9 92.3 0.95 92.5 90.2 94.9 0.97 88.8 85.4 92.3 0.95 87.5 82.9 92.3 0.92 90.5

Bayes Net 91.3 90.2 92.3 0.97 90.0 85.4 94.9 0.98 90.0 85.4 94.9 0.95 83.8 78.0 89.7 0.89 90.3

MLP 80.0 80.5 79.5 0.89 91.3 90.2 92.3 0.98 93.8 90.2 97.4 0.99 dnf dnf dnf dnf 90.1*

Hyper Pipes 87.5 90.2 84.6 0.96 91.3 90.2 92.3 0.97 90.0 90.2 89.7 0.95 83.8 92.7 74.4 0.92 89.8

K-means 91.3 82.9 100 0.92 90.0 82.9 97.4 0.90 86.3 78.0 94.9 0.87 85.0 75.6 94.9 0.85 88.3

M5P 88.8 85.4 92.3 0.94 85.0 80.5 89.7 0.94 81.3 78.0 84.6 0.87 78.8 73.2 84.6 0.85 85.1

Random Tree 85.0 87.8 82.1 0.85 78.8 75.6 82.1 0.79 87.5 85.4 89.7 0.88 83.8 85.4 82.1 0.84 83.8

K star 87.5 87.8 87.2 0.96 91.3 85.4 97.4 0.98 90.0 85.4 94.9 0.97 53.8 100 5.1 0.54 81.9

J48 86.3 85.4 87.2 0.79 81.3 82.9 79.5 0.83 78.8 82.9 74.4 0.72 80.0 85.4 74.4 0.73 80.3

ASC 86.3 85.4 87.2 0.79 80.0 82.9 76.9 0.80 80.0 87.8 71.8 0.78 66.3 80.5 51.3 0.55 76.8

LDA 88.8 82.9 94.9 0.96 91.3 85.4 97.4 0.95 40.0 96.7 15.8 0.68 21.3 94.4 0.0 0.48 69.7

Acc: Accuracy, Sp: Specificity, Sn: Sensitivity, AUC: Area under ROC curve, Avg: Average score in % for each algorithms, dnf: “Did Not Finish”, * denotes Avg. from 3
significance levels. Measures >90% are marked in bold.

Table 3 Performance measures of data mining algorithm at different levels of significance over Alzheimer’s dataset

SIGNIFICANCE p<5 x 10-5 p< 5 x 10-4 p< 5 x 10-3 p< 5 x 10-2

Algorithm Acc. Sp Sn AUC Acc. Sp Sn AUC Acc. Sp Sn AUC Acc Sp Sn AUC Avg.

Naïve Bayes 100 100 100 1.00 91.3 82.0 100 0.96 91.3 82.0 100 0.96 86.5 91.0 84.0 0.94 93.4

Logistic. R 95.0 90.0 100 0.99 95.7 90.0 100 0.97 91.3 90.0 91.7 0.90 91.3 90.0 91.7 0.90 93.3

MLP 91.3 90.9 91.7 0.97 95.6 90.9 100 0.97 87.0 90.9 83.3 0.97 dnf dnf dnf dnf 92.7*

VFI 91.3 90.9 91.7 0.87 95.7 90.9 100 0.92 91.3 81.8 100 0.89 91.3 81.8 100 1.00 92.2

KNN 91.3 90.9 91.7 0.93 95.6 90.9 100 0.93 86.9 90.9 83.3 0.95 91.3 90.9 91.7 0.92 91.8

K-means 82.6 100 66.7 0.83 91.3 90.9 100 0.91 95.7 90.9 100 0.96 91.3 81.8 100 0.90 90.7

Hyper Pipes 91.3 81.8 100 0.98 95.7 90.9 100 0.97 91.3 81.8 100 0.95 73.9 81.8 66.7 0.90 89.7

SVM 87.0 90.9 83.3 0.87 95.7 90.9 100 0.95 82.6 81.8 83.3 0.83 87.0 81.8 91.7 0.87 88.0

Bayes Net 91.3 81.8 100 0.96 91.3 90.9 91.7 0.95 87.0 81.8 91.7 0.86 78.3 81.8 75.0 0.84 87.7

R. Forest 86.9 81.8 91.7 0.94 82.6 81.8 83.3 0.93 73.9 72.7 75.0 0.89 72.6 81.8 75.0 0.84 82.4

K star 95.7 90.9 100 0.98 91.3 90.9 91.7 0.94 78.2 81.8 75.0 0.86 56.5 18.2 91.7 0.64 81.5

SLR 86.9 81.8 91.7 0.96 73.9 72.7 75.0 0.82 60.9 63.6 58.3 0.80 52.2 54.5 50.0 0.69 71.8

Random Tree 78.3 72.7 83.3 0.78 60.9 54.5 66.7 0.61 73.9 63.6 83.3 0.74 73.9 81.8 66.7 0.74 71.7

ASC 73.9 63.6 83.3 0.61 68.9 63.6 58.3 0.56 73.9 81.8 66.7 0.75 78.2 63.9 91.7 0.61 70.0

J48 73.9 63.6 83.3 0.61 60.9 63.6 58.3 0.56 73.9 81.8 70.0 0.75 78.3 63.6 91.7 0.61 69.7

M5P 69.5 54.5 83.3 0.80 52.2 45.5 58.3 0.73 56.5 45.5 66.7 0.43 56.5 36.4 75.0 0.44 58.7

LDA 69.6 72.7 66.7 0.81 34.8 40.0 75.0 0.45 34.8 0.0 100 0.30 30.4 100 0.0 0.52 52.0

Acc: Accuracy, Sp: Specificity, Sn: Sensitivity, AUC: Area under ROC curve, Avg: Average score in % for each algorithms, dnf: Did not Finish”, * denotes Avg. from 3
significance levels. Measures >90% are marked in bold.
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Table 4 Performance measures of data mining algorithm at different levels of significance over Antibodies dataset

SIGNIFICANCE p< 5 x 10-8 p< 5 x 10-7 p< 5 x 10-6 p< 5 x 10-5

Algorithm Acc. Sp Sn AUC Acc. Sp Sn AUC Acc. Sp Sn AUC Acc Sp Sn AUC Avg.

R. Forest 90.0 93.0 90.0 0.96 90.0 91.0 90.0 0.97 92.0 94.0 92.0 0.96 94.0 96.0 94.0 0.97 93.3

Bayes Net 88.0 92.0 88.0 0.96 88.0 91.0 88.0 0.96 94.0 95.0 94.0 0.95 92.0 95.0 92.0 0.96 92.5

Naïve Bayes 88.0 94.0 88.0 0.96 88.0 94.0 88.0 0.96 88.0 94.0 88.0 0.96 88.0 94.0 88.0 0.96 91.5

SVM 80.0 86.6 80.0 0.86 86.0 89.9 86.0 0.89 94.0 96.6 97.0 0.95 96.0 96.9 96.0 0.96 90.7

MLP 80.0 89.8 80.0 0.91 86.0 89.9 86.0 0.96 94.0 96.6 94.0 0.99 dnf dnf dnf dnf 90.2*

SLR 84.0 91.6 84.0 0.89 86.0 83.2 86.0 0.92 90.0 93.5 90.0 0.97 92.0 95.0 92.0 0.96 90.1

KNN 82.0 90.7 82.0 0.92 84.0 88.7 84.0 0.94 86.0 91.2 86.0 0.95 92.0 96.4 92.0 0.95 89.4

Logistic R. 72.0 85.3 72.0 0.92 84.0 90.1 84.0 0.93 92.0 96.4 92.0 0.98 90.0 96.1 90.0 0.98 89.1

M5P 80.0 91.5 80.0 0.92 76.0 87.4 76.0 0.90 78.0 89.4 78.0 0.91 74.0 85.4 74.0 0.89 83.2

Hyper Pipes 64.0 83.6 64.0 0.90 72.0 84.9 72.0 0.90 80.0 87.5 80.0 0.92 80.0 87.1 80.0 0.93 81.3

K star 88.0 93.4 88.0 0.94 94.0 97.2 94.0 0.95 82.0 91.8 82.0 0.93 20.0 90.2 20.8 0.68 80.7

J48 80.0 92.5 80.0 0.86 72.0 87.0 72.0 0.87 70.0 87.6 70.0 0.79 64.0 86.1 64.0 0.77 78.4

ASC 82.0 91.7 82.0 0.87 72.0 82.9 72.0 0.82 70.0 87.8 70.0 0.76 64.0 88.5 64.0 0.75 77.9

Random Tree 72.0 90.3 72.0 0.81 64.0 82.1 64.0 0.73 68.0 87.7 68.0 0.78 74.0 89.7 74.0 0.82 76.2

VFI 72.0 88.5 72.0 0.86 64.0 91.9 64.0 0.85 58.0 94.7 58.0 0.86 52.0 94.5 52.0 0.89 75.5

LDA 68.0 84.5 68.0 0.88 40.0 81.1 40.0 0.71 42.0 89.7 48.8 0.54 20.0 88.4 25.0 0.58 60.4

K means 46.0 68.7 46.0 0.57 46.0 68.7 46.0 0.57 40.0 68.1 40.0 0.54 40.0 68.1 40.0 0.54 52.5

Acc: Accuracy, Sp: Specificity, Sn: Sensitivity, AUC: Area under ROC curve, Avg: Average score in % for each algorithms, dnf: Did not Finish”, * denotes Avg. from 3
significance levels. Measures >90% are marked in bold.

Table 5 Performance measures of data mining algorithm at different levels of significance over Asthma dataset 4
classes

SIGNIFICANCE p<5 x 10-5 p< 5 x 10-4 p< 5 x 10-3 p< 5 x 10-2

Algorithm Acc. Sp Sn AUC Acc. Sp Sn AUC Acc. Sp Sn AUC Acc Sp Sn AUC Avg.

Naïve Bayes 61.7 87.2 61.7 0.82 68.1 89.3 68.1 0.86 72.3 90.8 72.3 0.87 70.2 90.0 70.2 0.86 77.7

SLR 57.5 85.8 57.4 0.80 57.4 85.6 57.4 0.81 72.3 90.7 72.3 0.85 55.3 86.1 55.3 0.76 72.2

SVM 55.3 86.2 55.3 0.77 55.3 86.2 55.3 0.77 61.7 87.2 61.7 0.82 66.0 87.6 66.0 0.81 71.3

MLP 55.3 86.1 55.3 0.82 53.2 84.6 53.2 0.80 63.8 87.8 63.8 0.88 dnf dnf dnf dnf 71.1*

Logistic R. 48.9 87.0 48.9 0.78 53.2 84.4 53.2 0.79 59.6 86.4 59.6 0.84 68.0 89.2 68.1 0.86 70.8

R. Forest 48.9 86.9 48.9 0.77 48.9 86.9 48.9 0.77 46.8 81.1 46.8 0.75 40.4 80.0 40.4 0.71 62.8

VFI 48.9 82.8 48.9 0.66 48.9 82.9 48.9 0.67 51.0 83.6 51.1 0.69 46.8 81.9 46.8 0.77 62.6

Hyper Pipes 51.1 83.4 51.1 0.72 53.2 84.0 53.2 0.70 46.8 71.8 46.8 0.74 42.6 80.3 42.0 0.75 62.3

M5P 48.9 82.8 48.9 0.79 55.3 86.1 55.3 0.81 42.5 81.0 42.6 0.68 27.6 75.8 27.7 0.57 60.0

KNN 42.5 87.1 42.6 0.69 46.8 86.6 46.8 0.67 44.6 88.0 44.7 0.69 36.2 79.7 36.2 0.67 59.6

K means 40.4 81.9 40.4 0.60 46.8 82.2 46.8 0.65 42.6 80.7 42.6 0.62 34.0 78.0 34.0 0.56 55.8

Bayes Net 38.3 79.3 38.3 0.56 36.2 77.8 36.2 0.56 44.7 81.4 44.7 0.63 36.2 77.6 36.2 0.60 53.9

K star 48.9 83.0 48.9 0.70 38.3 79.4 38.3 0.63 36.2 79.4 36.2 0.62 23.4 76.4 23.4 0.49 53.5

Random Tree 29.8 76.6 29.8 0.53 40.4 80.2 40.4 0.60 38.3 79.5 38.3 0.59 40.4 80.2 40.4 0.60 52.9

LDA 53.2 84.4 53.2 0.80 27.7 80.0 32.5 0.57 8.5 86.5 16.7 0.56 14.9 83.6 23.3 0.53 50.7

J48 27.7 75.4 27.7 0.52 27.7 75.9 27.7 0.49 42.6 80.8 42.6 0.58 31.9 77.1 31.9 0.52 48.7

ASC 27.7 76.0 27.7 0.52 19.2 71.8 19.1 0.46 29.8 76.7 29.8 0.52 21.2 74.8 21.3 0.45 43.1

Acc: Accuracy, Sp: Specificity, Sn: Sensitivity, AUC: Area under ROC curve, Avg: Average score in % for each algorithms, dnf: Did not Finish”, * denotes Avg. from 3
significance levels. Measures >90% are marked in bold.

Kukreja et al. BMC Bioinformatics 2012, 13:139 Page 8 of 15
http://www.biomedcentral.com/1471-2105/13/139



Table 6 Performance measures of data mining algorithm at different levels of significance on A & B conditions

SIGNIFICANCE p< 5 x 10-4 p<5 x 10-3 p< 5 x 10-2

Algorithm Acc. Sp Sn AUC Acc. Sp Sn AUC Acc. Sp Sn AUC Avg.

Naïve Bayes 87.5 83.3 91.7 0.84 91.7 83.3 100 0.97 91.7 83.3 100 0.96 90.8

VFI 79.2 75.0 83.3 0.93 91.7 83.3 100 0.95 87.5 75.0 100 0.90 87.7

K means 87.5 83.3 91.7 0.88 91.7 83.3 100 0.92 83.3 75.0 91.7 0.83 87.5

SVM 83.3 83.3 83.3 0.83 87.5 91.7 83.3 0.87 87.5 83.3 91.7 0.88 86.1

MLP 79.2 83.3 75.0 0.70 91.7 91.7 91.7 0.95 dnf dnf dnf dnf 84.7*

Hyper Pipes 83.3 75.0 91.7 0.91 83.3 83.3 83.3 0.93 70.8 83.3 58.3 0.88 82.0

Logistic R. 66.7 83.3 50.0 0.76 95.8 91.7 100 0.92 79.2 83.3 75.0 0.85 81.5

Random Forest 79.2 83.3 75.0 0.91 79.2 75.0 83.3 0.86 79.2 75.0 83.3 0.78 80.6

Bayes Net 83.3 75.0 91.7 0.87 83.3 83.3 83.3 0.83 75.0 75.0 75.0 0.67 80.2

KNN 75.0 83.3 66.7 0.85 75.0 91.7 58.3 0.90 75.0 91.7 58.3 0.84 77.8

M5P 75.0 83.3 66.7 0.74 75.0 75.0 75.0 0.79 75.0 75.0 75.0 0.74 75.2

ASC 62.5 66.7 58.3 0.65 79.2 83.3 75.0 0.85 70.8 75.0 66.7 0.76 72.0

J48 62.5 66.7 58.3 0.65 79.2 83.3 75.0 0.85 66.7 75.0 58.3 0.72 70.6

Random Tree 70.8 75.0 66.7 0.70 70.8 75.0 66.7 0.70 66.7 66.7 66.7 0.67 69.3

SLR 70.8 75.0 66.7 0.80 66.7 75.0 58.3 0.77 50.0 50.0 50.0 0.60 65.0

K star 66.7 91.7 41.7 0.83 58.3 100 46.7 0.83 50.0 0.0 100 0.50 64.3

LDA 79.2 83.3 75.0 0.84 61.2 64.5 54.5 0.52 29.2 14.3 100 0.56 62.8

Acc: Accuracy, Sp: Specificity, Sn: Sensitivity, AUC: Area under ROC curve, Avg: Average score in % for each algorithms, dnf: Did not Finish”, * denotes Avg. from 3
significance levels. Measures >90% are marked in bold.
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Table 9 shows the time in milliseconds for each algo-
rithm at the lowest level of significance when the num-
ber of peptides nears 1000. Random Tree was the
Table 7 Performance measures of data mining algorithm at d

SIGNIFICANCE p< 5 x 10-4 p<5 x 10-3

Algorithm Acc. Sp Sn AUC Acc. Sp

Naïve Bayes 91.3 91.7 91.0 0.94 96.0 100

VFI 95.6 100 90.0 0.97 95.6 100

MLP 86.9 91.7 81.8 0.97 95.6 100

SVM 95.6 100 90.9 0.96 95.7 100

Hyper Pipes 95.7 100 90.9 0.99 82.6 91

Logistic R. 86.0 91.7 81.8 0.96 95.7 100

KNN 91.3 100 81.8 0.92 91.3 100

Bayes Net 95.7 100 90.9 0.99 82.6 8

Random Forest 87.0 83.3 90.9 0.93 82.6 8

K means 69.6 83.3 54.5 0.69 95.7 100

M5P 91.3 91.7 90.9 0.86 65.2 5

LDA 91.3 100 81.8 0.97 65.2 7

K star 73.9 91.7 54.5 0.93 78.2 100

SLR 87.0 83.3 90.9 0.89 73.9 7

J48 69.6 66.7 72.7 0.76 69.6 5

ASC 65.6 66.7 72.7 0.76 69.6 6

Random Tree 73.9 91.7 54.5 0.73 73.9 6

Acc: Accuracy, Sp: Specificity, Sn: Sensitivity, AUC: Area under ROC curve, Avg: Aver
significance levels. Measures >90% are marked in bold.
fastest, at ~1000 milliseconds (average) to complete the
task, while MLP was the worst which did not finish due
to high memory requirements. Random tree, Hyper
ifferent levels of significance on A & C conditions

p< 5 x 10-2

Sn AUC Acc. Sp Sn AUC Avg.

90.9 0.99 91.3 100 81.8 0.95 93.5

90.0 0.97 87.0 83.3 90.0 0.95 93.4

90.9 0.98 dnf dnf dnf dnf 92.7*

90.9 0.96 73.9 75.0 72.7 0.74 88.4

.7 72.7 0.90 78.2 83.3 72.7 0.83 86.6

90.9 0.92 69.6 83.3 54.5 0.76 84.8

81.8 0.94 65.2 66.7 63.6 0.72 83.3

3.3 81.8 0.92 69.6 66.7 72.7 0.64 83.2

3.3 81.8 0.91 69.5 66.7 72.7 0.75 81.4

90.9 0.95 60.9 63.6 63.6 0.63 75.7

8.3 72.7 0.72 65.2 58.3 72.7 0.56 73.4

1.7 58.6 0.77 17.4 25.0 100 0.52 69.7

54.5 0.82 47.8 0.0 100 0.50 68.8

5.0 72.7 0.74 43.5 41.7 45.5 0.45 68.5

8.3 81.8 0.77 60.9 58.3 63.6 0.66 68.4

6.7 72.7 0.76 47.8 66.7 27.3 0.49 63.1

6.7 81.8 0.74 34.8 33.3 36.4 0.35 60.8

age score in % for each algorithms, dnf: Did not Finish”, * denotes Avg. from 3



Table 8 Performance measures of data mining algorithm at different levels of significance on B & D conditions

SIGNIFICANCE p<5 x 10-4 p< 5 x 10-3 p< 5 x 10-2

Algorithm Acc. Sp Sn AUC Acc. Sp Sn AUC Acc. Sp Sn AUC Avg.

Naïve Bayes 91.7 100 83.3 0.95 91.7 91.7 91.7 0.92 95.8 91.7 100 0.98 93.6

SVM 91.7 100 83.3 0.92 91.7 91.7 91.7 0.92 95.8 100 91.7 0.96 93.1

VFI 87.5 100 75.0 0.93 91.7 100 83.3 0.94 95.8 100 91.7 1.00 92.7

Logistic R. 79.1 83.3 75.0 0.92 100 100 100 1.00 87.5 91.7 83.3 0.97 90.7

MLP 87.5 91.7 83.3 0.94 87.5 83.3 91.7 0.96 dnf dnf dnf dnf 89.3*

K means 87.5 91.7 83.3 0.88 91.4 91.7 91.7 0.92 87.5 83.3 91.7 0.88 89.0

Hyper Pipes 87.5 83.3 91.7 0.89 91.7 91.7 91.7 0.87 83.3 75.0 91.7 0.90 87.8

Bayes Net 83.3 83.3 83.3 0.89 87.5 91.7 83.3 0.86 83.3 83.3 83.3 0.84 85.1

SLR 83.3 83.3 83.3 0.88 79.2 66.7 91.7 0.90 87.5 100 75.0 0.89 84.7

KNN 79.2 75.0 83.3 0.80 83.3 83.3 83.3 0.83 87.5 91.7 83.3 0.90 83.6

Random Forest 83.3 83.3 83.3 0.83 79.2 83.3 75.0 0.84 79.2 83.3 75.0 0.81 81.1

M5P 87.5 91.7 83.3 0.88 79.2 83.3 75.0 0.73 75.0 83.3 66.7 0.69 79.6

ASC 91.7 100 83.3 0.83 75.0 83.3 66.7 0.61 70.8 75.0 66.7 0.64 76.7

J48 91.7 100 83.3 0.83 75.0 83.3 66.7 0.61 70.8 75.0 66.7 0.64 76.7

Random Tree 83.3 91.7 75.0 0.83 70.8 66.7 75.0 0.71 70.8 66.7 75.0 0.71 75.0

K star 70.8 66.7 75.0 0.83 79.2 75.0 83.3 0.82 58.3 100 16.7 0.58 70.7

LDA 62.5 72.3 60.9 0.75 50.0 65.0 48.0 0.71 20.8 42.6 18.6 0.45 52.6

Acc: Accuracy, Sp: Specificity, Sn: Sensitivity, AUC: Area under ROC curve, Avg: Average score in % for each algorithms, dnf: Did not Finish”, * denotes Avg. from 3
significance levels. Measures >90% are marked in bold.

Table 9 Worst case time performance (in ms) of
classification algorithms

Data set Diabetes Alzheimer’s Antibodies Avg. (in ms) Rank

Random Tree 1809 491 1478 1260 1

KNN 3016 607 910 1511 2

Hyper Pipes 2486 602 2180 1756 3

Naïve Bayes 4780 1158 2480 2806 4

VFI 7440 1357 3000 3932 5

J48 16581 1385 11731 9899 6

K star 25974 2348 6341 11555 7

SVM 10496 2722 29008 14076 8

R. Forest 50087 8032 21452 26524 9

M5P 50290 8563 23452 27435 10

Bayes Net 55672 9031 25000 29901 11

K-means 85955 12405 29658 42672 12

SLR 632840 48215 605365 428806 13

LDA 658668 869523 632983 720391 14

Logistic R. 1589092 1146783 1315256 1350377 15

ASC 5444533 2465021 4565896 4158483 16

MLP dnf dnf dnf NA 17

Table showing time performance in milliseconds over >1000 peptides for
three datasets. Random Tree, KNN, Hyper Pipes and VFI were among the
fastest. MLP were among the slowest with dnf: “Did not finish”. Time
measurements less than 10 seconds are marked in bold.
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Pipes, Naïve Bayes, VFI and KNN were the five fastest
algorithms; each took less than ~4000 milliseconds to
complete classification of >1,000 peptides. Logistic Re-
gression and Attribute Selected Classifier, MLP were
among the slowest algorithms taking more than 20 min-
utes to perform classification of >1,000 peptides. The
absolute ranking for every algorithm was consistent per
dataset; only three datasets have been considered to
measure time performance.

Comparative analysis of time performance of
classification algorithms at different levels of significance
over three data sets
For each level of significance, time was measured for each
algorithm to build the model and for cross validation. At
the highest level of significance (about 10 peptides), each al-
gorithm were fast enough to complete the task in under 25
seconds. Execution times increased as the level of signifi-
cance was lowered due to the higher number of features
and increased difficulty in constructing the model. Table 10
shows classification algorithms time performance at various
levels of significance.

Results summary
We have explored several disparate classifiers using a rela-
tively new type of microarray data: immunosignaturing
data. The tested algorithms come from a broad family of



Table 10 Time performance (in ms) of classification algorithms on datasets

Diabetes dataset Alzheimer’s dataset Antibodies dataset

p value< 5x10-13 5x10-10 5x10-7 5x10-4 5x10-5 5x10-4 5x10-3 5x10-2 5x10-8 5x10-7 5x10-6 5x10-5

R. Tree 337 408 571 1809 184 200 218 491 250 265 608 1478

KNN 265 333 585 3016 130 156 239 607 187 234 414 910

Hyper Pipes 226 274 630 2486 119 259 423 602 281 312 736 2180

Naïve Bayes 250 456 1120 4780 182 340 500 1158 265 362 892 2480

VFI 299 561 1384 7440 187 337 623 1357 280 368 1379 3000

J48 415 833 3718 16581 166 256 712 1385 468 880 3011 11731

K star 468 1387 4150 25974 187 260 666 2349 299 562 2340 6341

SVM 3313 3635 5304 10496 1054 1108 1389 2722 18297 18372 23712 29009

R. Forest 5717 11889 18254 50087 952 1852 4843 8032 5004 6749 13848 21452

M5P 701 2583 7717 50290 290 524 2324 8563 2632 4711 12033 23452

Bayes Net 718 2087 5653 55672 334 662 4996 9031 733 1140 3394 25000

K means 2618 6651 11876 85955 593 1123 7212 12405 850 908 3442 29658

SLR 11215 26380 79308 632840 1330 3413 22625 48215 17389 20649 89107 605365

LDA 683 1044 7994 658668 402 699 35568 869523 1512 2018 17373 632983

Logistic R. 1204 2592 24687 1589092 629 1651 48659 1146783 1654 9379 255103 1315256

ASC 864 3504 32836 5444533 518 1859 36849 2465021 1217 1763 25496 4565896

MLP 23759 314076 4572305 dnf 2057 30342 2789485 dnf 22916 156905 3277395 dnf

Table showing time performance in milliseconds on all level of significance for three datasets. MLP were among the slowest with dnf: “Did not finish”. Time
measurements less than 10 seconds are marked in bold.

Table 11 Summary of performance and time measures of
classification algorithms

# Rank 1 # Rank 2 # >90% Distance Time

Naïve Bayes 5 1 6 −0.3 2X

MLP 0 0 4 −3.4 7615X

SVM 0 1 3 −3.6 11X

VFI 0 2 4 −5.7 3X

Hyper Pipes 0 0 0 −7.9 1X

R. Forest 1 0 2 −8.8 21X

Bayes Net 0 1 2 −8.8 24X

K-means 0 0 1 −9.9 34X

Logistic R. 0 1 3 −11.8 1072X

SLR 1 1 2 −12.9 340X

KNN 0 0 1 −14.4 1X

K star 0 0 1 −16.5 9X

M5P 0 0 0 −17.0 22X

J48 0 0 0 −20.2 8X

Random Tree 0 0 0 −20.7 1X

ASC 0 0 0 −22.1 3300X

LDA 0 0 0 −24.0 572X

#Rank 1, Rank 2: No. of times algorithm ranked 1st and 2nd on 7 datasets,
#> 90%: No. of times algorithm scored overall average score >90% on 7
datasets, Distance: magnitude an algorithm trails behind on average from the
Rank 1 for the datasets (5% or less distance are marked in bold). Time:
performance slower with respective to fastest algorithm. Time performances
slower by 5 folds to fastest algorithm are marked in bold.
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approaches to classify data. We chose algorithms from
Bayesian, regression, trees, multivariate and meta analysis
and we believe we have sampled sufficiently that the
results are relevant. From Table 2 we found that Naïve
Bayes had a higher average performance than all other
algorithms tested. Naïve Bayes achieved> 90% average for
2 classes datasets where there is a clear distinction be-
tween two classes. For the multi-class the Antibodies data-
set, where there is a clear difference between different
types of antibodies, Naïve Bayes scored 88% average ac-
curacy and was ranked third, close to the 93.3% accuracy
of random forest. On the Asthma dataset, containing four
classes, none of the algorithms were able to achieve more
than 75% accuracy. This matches the biological interpret-
ation very well. Naïve Bayes outperformed all algorithms
for speed and accuracy, achieving 77.7% average score
overall. Naïve Bayes was one of the top five fastest algo-
rithms, ~500 times faster than the logistic regression. A
summary of the all algorithms performance measures and
time is given in below and described in Table 11. Distance
metrics have been defined to access performance mea-
sures for all algorithms compared to the highest scoring
algorithm on a given dataset.

I. Naïve Bayes: Naïve Bayes performed best overall
with> 90% overall average score. It was always
among the top 3 algorithms in all 7 comparisons. It
ranked first 5 out 7 times when comparing all
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datasets. It was on an average just 0.3% behind the
rank 1 algorithm in overall comparison. It is 2X
slower than the fastest algorithm due to its
mathematical properties. It would be feasible to
perform large-scale classification studies using Naïve
Bayes.

II. Multilayer Perceptron (MLP): It ranked second with
overall score of 87.3% and was very close to SVM.
The overall score is biased since MLP did not finish
for level containing ~1000 peptides and hence
scored was averaged from just the three levels. It
was the slowest algorithm and infeasible to perform
large-scale classification.

III. Support Vector Machines (SVM): Although it
ranked third, it was not significantly different from
the MLP in terms of performance measures. It was
700X faster than MLP and achieved >90%
measured accuracy 3 times. Both MLP and SVM
were <5% behind the rank 1 algorithm on average.

IV. VFI: VFI ranked fourth in overall performance
measures and was the among top 5 fastest algorithms
due to its voting method. Four times it obtained
>90% average overall accuracy and ranked 2nd twice.

V. Hyper Pipes: Hyper pipes ranked fifth overall in
performance measures and was among the fastest
of the tested algorithms, likely due to its inherently
simplistic ranking method. It was <8% from first
place 6 times.

VI. Random Forest: Random forest ranked sixth in
overall performance measures and performed better
on datasets having multiple classes (Antibodies and
Asthma). It was 21 times slower than the fastest
algorithm due to bootstrapping.

VII. Bayes net: Ranked in the middle for overall
accuracy and time. It scored >90% overall
measures twice. It was slower than the Naïve
Bayes due to construction of networks in the form
of an acyclic graph and it is relatively inefficient
compared to Naïve Bayes due to the change in
network topology during assessment of probability.

VIII.K means: K-means ranked eighth in overall
performance measures and was 34X slower than
the fastest algorithm in time performance due to
the multiple iterations required to form clusters. It
performed far better for 2 classes compared to
multiple classes because guaranteed convergence,
scalability and linear separation boundaries are
more easily maintained.

IX. Logistic Regression: Logistic regression ranked ninth
in overall accuracy. It was >90% three times. It was
among the worst in time performance, being ~1000
times slower than the fastest algorithm as it needs to
regress on high number of features. It is efficient for
small numbers of features and sample sizes> 400.
X. Simple Logistic: It ranked tenth in overall
performance measures and ranked first on the
diabetes dataset. It ranked second in multiclass
Asthma dataset. It was slow in time performance
due to LogitBoost iterations.

XI. K nearest neighbors: It performed well on the 2
classes dataset but didn’t perform as well for multi
class datasets. It was >90% performance for only
rather difficult Diabetes dataset. This may be
related to evenly defined but diffuse clusters
related to the subtle differences between the
Asthma patients.

XII. K star: It performed >90% for only the Diabetes
dataset and was 9 times slower than the fastest
algorithm. This algorithm may also be sensitive to
the even and diffuse clusters described by this
dataset.

XIII.M5P: It did not perform well on either time
performance or accuracy. It never achieved >90%
average score and was 22 times slower than the
fastest algorithm due to formation of
comprehensive linear model for every interior
node of the unpruned tree.

XIV. J48: Top 5 fastest algorithm due to rapid
construction of trees. It was >20% behind from
the rank 1 algorithm on an average; its lower
performance may possibly be due to formation of
empty/insignificant branches which often leads to
overtraining.

XV. Random Trees: It was the fastest algorithm since
it builds trees of height log(k) where k is the
number of attributes, however it achieves poor
accuracy since it performs no pruning.

XVI. Attribute Selected Classifier (ASC): One of the
slowest algorithms as it had to evaluate attributes
prior to classification. It underperformed in
performance measures due to the C4.5 classifier
limitations that prevent overtraining.

XVII. Linear Discriminant Analysis (LDA): Its
performance accuracy decreased as the number
of features increased due to its inability to deal
with highly variant data. It was slow (>500X
slower than the fastest algorithm) since it tries to
optimize class distinctions but the variance
covariance matrix increases dramatically as the
number of features increased.

Discussion
The comparisons provided in this article provide a
glimpse into how existing classification algorithms handle
data with intrinsically different properties than traditional
microarray expression data. Immunosignaturing provides
a means to quantify the dispersion of serum (or saliva)
antibodies that result from disease or other immune



Kukreja et al. BMC Bioinformatics 2012, 13:139 Page 13 of 15
http://www.biomedcentral.com/1471-2105/13/139
challenge. Unlike most phage display or other panning
experiments, fewer but longer random-sequence peptides
are used. Rather than converging to relatively few
sequences, the immunosignaturing microarray provides
data on the binding affinity of all 10,000 peptides with
high precision. Classifiers in the open-source program
WEKA were used to determine whether any algorithm
stood out as being particularly well suited for these data.
The 17 classifiers, which were tested, are readily available
and represent some of the most widely used classification
methods in biology. However, they also represent classi-
fiers that are diverse at the most fundamental levels. Tree
methods, regression, and clustering are inherently differ-
ent; the grouping methods are quite varied and top-down
or bottom-up paradigms address data structures in sub-
stantially different ways. Given this, we present and inter-
pret the results from our tests, which we believe will be
applicable to any dataset with target-probe interactions
similar to immunosignaturing microarrays.
From the comparisons above, Naïve Bayes was the su-

perior analysis method in all aspects. Naïve Bayes assumes
a feature independent model, which may account for its
superior performance. It relies on the degree of correlation
of the attributes in the dataset; for immunosignaturing, the
number of attributes can be quite large. In gene expression
data, where genes are connected by gene regulatory net-
works, there is a direct and significant correlation between
hub genes and dependent genes. This relationship affects
the performance of Naïve Bayes by limiting its efficiency
through multiple containers of similarly - connected fea-
tures [39-41]. In peptide-antibody arrays, where the signals
that arise from the peptides are multiplexed signals of
many antibodies attaching to many peptides, there is no
direct correlation between peptides, but there is a general
trend. Moreover, there is a competition of antibodies
attaching to a single peptide, which makes it difficult for
multiple mimotopes to show significant correlation with
each other. Thus, the 10,000 random peptides have no dir-
ect relationships to each other each contributes partially to
defining the disease state. This makes the immunosignatur-
ing technology a better fit for the assumption of strong fea-
ture independence employed by the Naïve Bayes
technique, and the fact that reproducible data can be had
at intensity values down to 1 standard deviation above
background enables enormous numbers of informative,
precise, and independent features. Presence or absence of a
few high- or low-binding peptides on the microarray will
not impact the binding affinity for any other peptide, since
the kinetics ensures that the antibody pool is not limiting.
This is important when building microarrays with
>300,000 features per physical assay, as in our newest
microarray. More than 90% of the peptides on either
microarray demonstrate normal distribution for binding
signals. This is important since feature selection methods
used in this analysis (t-test and one way ANOVA) and the
Naïve Bayes classifier all assume normal distribution of
features.
The Naïve Bayes approach requires relatively little

training data, which makes it a very good fit for the bio-
marker field. The sample sizes usually range from
N=20-100 for the training set. Naïve Bayes has other
advantages as well: it can train well on a small but high
feature data set and still yield good prediction accuracy
on a large test set. Any microarray with more than a few
thousand probes succumbs to the issue of dimensional-
ity. Since Naïve Bayes independently estimates each dis-
tribution instead of calculating a covariance or
correlation matrix, it escapes relatively unharmed from
problems of dimensionality.
The data used here for evaluating the algorithms were

generated using an array with 10,000 different features,
almost all of which contribute information. We have
arrays with >300,000 peptides per assay (current micro-
arrays are available from www.peptidearraycore.com)
which should provide for less sharing between peptide
and antibody, effectively spreading out antibodies over
the peptides with more specificity. This presumably will
allow resolving antibody populations with finer detail.
This expansion may require a classification method that
is robust to noise, irrelevant attributes and redundancy.
Naïve Bayes has an outstanding edge in this regard as it
is robust to noisy data since such data points are aver-
aged out when estimating conditional probabilities. It
can also handle missing values by ignoring them during
model building and classification. It is highly robust to
irrelevant and redundant attributes because if Yi is ir-
relevant then P (Class|Yi) becomes uniformly distribu-
ted. This is due to that fact that the class conditional
probability for Xi has no significant impact on the over-
all computation of posterior probability. Naïve Bayes will
arrive at a correct classification as long as the correct
classes are even slightly more predictable than the alter-
native. Here, class probabilities need not be estimated
very well, which corresponds to the practical reality of
immunosignaturing: signals are multiplexed due to com-
petition, affinity, and other technological limitation of
spotting, background and other biochemical effects that
exist between antibody and mimotope.

Time efficiency
As the immunosignaturing technology is increasingly
used for large-scale experiments, it will result in an ex-
plosion of data. We need an algorithm that is accurate
and can process enormous amounts of data with low
memory overhead and fast enough for model building
and evaluation. One aims for next-generation immuno-
signaturing microarrays is to monitor the health status
of a large population on an on-going basis. The number

http://www.peptidearraycore.com
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of selected attributes will no longer be limited in such a
scenario. For risk evaluation, complex patterns must be
normalized against themselves at regular intervals. This
time analysis would require a conditional probabilistic ar-
gument along with the capacity of accurately predicting
the risk with low computational cost. The slope of Naïve
Bayes on time performance scale is extremely small,
allowing it to process a large number of attributes.

Conclusion
Immunosignaturing is a novel approach which aims to
detect complex patterns of antibodies produced in acute
or chronic disease. This complex pattern is obtained
using random peptide microarrays where 10,000 random
peptides are exposed to antibodies in sera/plasma/saliva.
Antibody binding to the peptides is not one-to-one but a
more complicated and multiplexed process. The quantity
and appearance of this data appears numerically, distri-
butionally, and statistically the same as gene expression
microarray data, but is fundamentally quite different.
The relationships between attributes and functionality of
those attributes are not the same. Hence, traditional
classification algorithms used in gene expression data
might be suboptimal for analyzing immunosignaturing
results. We investigated 17 different kinds of classifica-
tion algorithm spanning Bayesian, regression, tree based
approaches and meta-analysis and compared their leave-
one-out cross-validated accuracy values using various
numbers of features. We found that the Naïve Bayes
classification algorithm outperforms the majority of the
classification algorithms in classification accuracy and in
time performance, which is not the case for expression
microarrays [42]. We also discussed its assumptions,
simplicity, and fitness for immunosignaturing data. More
than most, these data provide access to the information
found in antibodies. Deconvoluting this information was
a barrier to using antibodies as biomarkers. Pairing
immunosignaturing with Naïve Bayes classification may
open up the immune system to a more systematic ana-
lysis of disease.
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