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Abstract

Background: In a previous study we demonstrated that co-evolutionary information can be utilized for improving
the accuracy of ancestral gene content reconstruction. To this end, we defined a new computational problem, the
Ancestral Co-Evolutionary (ACE) problem, and developed algorithms for solving it.

Results: In the current paper we generalize our previous study in various ways. First, we describe new efficient
computational approaches for solving the ACE problem. The new approaches are based on reductions to classical
methods such as linear programming relaxation, quadratic programming, and min-cut. Second, we report new
computational hardness results related to the ACE, including practical cases where it can be solved in polynomial time.
Third, we generalize the ACE problem and demonstrate how our approach can be used for inferring parts of the
genomes of non-ancestral organisms. To this end, we describe a heuristic for finding the portion of the genome
(’dominant set’) that can be used to reconstruct the rest of the genome with the lowest error rate. This heuristic
utilizes both evolutionary information and co-evolutionary information.
We implemented these algorithms on a large input of the ACE problem (95 unicellular organisms, 4,873 protein
families, and 10, 576 of co-evolutionary relations), demonstrating that some of these algorithms can outperform
the algorithm used in our previous study. In addition, we show that based on our approach a ’dominant set’ cab
be used reconstruct a major fraction of a genome (up to 79%) with relatively low error-rate (e.g. 0.11). We find that
the ’dominant set’ tends to include metabolic and regulatory genes, with high evolutionary rate, and low protein
abundance and number of protein-protein interactions.

Conclusions: The ACE problem can be efficiently extended for inferring the genomes of organisms that exist
today. In addition, it may be solved in polynomial time in many practical cases. Metabolic and regulatory genes
were found to be the most important groups of genes necessary for reconstructing gene content of an organism
based on other related genomes.

Introduction
Reconstruction of ancestral genomic sequences is a clas-
sical problem in molecular evolution. The first algorithm
for reconstructing ancestral genomic sequences was sug-
gested around 40 years ago by Fitch [1]. This algorithm
was based on the Maximum Parsimony (MP) criteria

and was designed for sequences with a binary alphabet.
A few years later the algorithm was generalized by Sank-
off, for inputs with non-binary alphabets and multiple
edge weights [2]. More recently, similar approaches for
optimizing the maximum likelihood score (ML; instead
of maximum parsimony) emerged [3-8].
Reconstruction of ancestral genomic sequences was

employed in many biological and bioinformatical studies
in recent years. Specifically, it was used for studying var-
ious evolutionary questions [9-18]), for aligning genomic
sequences [19], and for inferring ancestral SNPs [20].
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In practice, the solution space of the ancestral
sequences reconstructing problem, tends to be popu-
lated with a large number of local and global maxima,
obscuring algorithm accuracy. Thus, the ancestral
sequences inferred by the conventional approaches tend
to have a relatively large number of errors. Based on the
fact that functionally and physically interacting proteins
tend to co-evolve [21-25], we have recently suggested
the Ancestral Co-Evolver approach, for improving the
accuracy of reconstructed ancestral genomes [26,27].
Our approach was based on utilizing information
embedded in the co-evolution of functionally/physically
interacting proteins.
The current study includes novel algorithms for the

ACE problem. In addition, we generalize our previous
approach showing that co-evolution is not only an
important statistical force that can be employed to infer
ancestral sequences, but it can also be used for inferring
the genomes of organisms existing today (i.e. the leaves
of the evolutionary tree). Such an approach can be uti-
lized for the analysis of metagenomic data (see, for
example, [28]). Furthermore a generalization of this
approach can be used for inferring biological networks
(e.g. protein-protein interactions and metabolic networks
[29,30]). As we demonstrate in this paper, this approach
is also a useful tool for studying genomic and molecular
evolutionary.
The rest of the paper is organized as follows. In sub-

section ’Definitions and Preliminaries’, we define the
notations and computational problems studied in the
paper. In subsection ’Some Computational Issues’, we
deal with the computational hardness of the ACE pro-
blem. We show that in many practical cases it can be
solved in polynomial time. In subsection ’Methods and
Algorithms’, we describe the biological data used in this
study, and a new set of algorithms for solving the ACE
problem. In addition, we describe a new approach for
detecting a part of the genome, which can then be used
for inferring the remaining gene content, with the low-
est error rate. In the last three subsections, we demon-
strate the ACE algorithms’ performance, by analyzing a
large dataset (an evolutionary tree, genomes and co-evo-
lutionary relations) corresponding to 95 unicellular
organisms [26], and discuss their features. The section
’Conclusions’ includes concluding remarks and a
discussion.

Results and discussion
Definitions and preliminaries
For simplicity, we assume a binary alphabet. However,
all the results here can be easily generalized to models
with more than two characters (see examples in [26]).
Each genome is represented by a binary sequence corre-
sponding to the states of all the proteins in the genome.

If the value of the i-th bit of the sequence is ’1’, it
means that the i-th protein is encoded in the genome; if
the i-th bit of the sequence is ’0’, then the i-th protein
is not encoded in the genome. As we explain later, there
may also be bits with unknown values (i.e. it is not
known if the protein appears in the genome or not); we
use the label ’?’ for such cases. In the current study, our
aim is to in addition infer these missing values.
In this work, neighbor sites in the input sequences

evolve independently, when they do not have a known
co-evolutionary relation. Thus, the basic components in
the model and algorithms are single characters. Our
goal is to reconstruct the ancestral states and missing
states at the leaves, for a set of organisms  of size
 = n . A phylogenetic tree is a rooted binary tree T =
(V(T), E(T)) with a leaf labeling function l, where V(T)
is the set of vertices and E(T) the set of edges.
In our context, a weight table is attributed to each

edge (u, v) = e Î E(T). This weight table includes a
weight (a positive real number), for each pair of labels
of two vertices (u, v) = e.
In this work, we assume that each node in a phyloge-

netic tree corresponds to a different organism. The
leaves in a phylogenetic tree correspond to organisms
existing today ( ) , while the internal nodes correspond
to organisms that have become extinct ( )′ . Thus, we
can name each node after its corresponding organism.
Let OT(⋅) denote a function that returns the index of the
organisms corresponding to each node in T, i.e. for
every v Î V(T), OT(v) is the index of the organism
(from  ∪ ′ ) corresponding to v.
The leaf labeling function is a bijection between the

leaf set L(T) and the set of genomic sequences (or sub-
sequences) corresponding to the organisms that exist
today,  . In our binary case, each label is a binary
sequence with missing entries and all the sequences
have the same length. As with conventional ML/MP, we
assume an i.i.d. case, where different characters in a
sequence evolve independently, thus we can describe an
algorithm for sequences of length one (i.e. each
sequence is ′1′, ′0′, or ′?′).
A full labeling of a phylogeny ˆ( )l T , is a labeling of

all the nodes of the tree such that the labels of the
leaves that are not missing are the same as the non-
missing values of l, i.e., for all cases that are not missing
values, l T l l∈ =L( ) ( ) ( )l l . In the current study, we
solve the gene content inference problem; where each
character in a label corresponds to a protein in a gen-
ome. As previously stated, if the value of a character is ′
1′ it means that the protein is coded in the genome and
if it is ′0′ it means that the protein is not coded in the
genome.
A co-evolving forest F =(SF = {T1, T2, …}, Ec(SF)) is a

set of phylogenetic trees, SF, with identical topology that
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correspond to the same organisms [i.e. each tree has the
same O(·)], and an additional set of edges, Ec(SF), that
connect pairs of nodes in different trees. This set of
edges represents the co-evolutionary relations between
pairs of protein families. Edges in Ec(SF) must connect
pairs of nodes that correspond to the same organism (i.
e. (v, u) Î Ec(SF), v Î V(T1), u Î V(T2) ⇒ OT1

(v) = OT2

(u); Figure 1); we call such pairs of nodes legal co-evolu-
tionary pairs.
The edges in Ec(SF) are named co-evolution edges,

while edges that constitute the evolutionary trees are
named tree edges. For example, Figure 1A. includes a co-
evolving forest with two trees (the co-evolution edges are
dashed with arrows, while the tree edges are continu-
ous). In this work we assume that new co-evolutionary
edges do not appear/disappear during evolution. Namely,
we assume that if there is a co-evolutionary edge
between a legal co-evolutionary pair of nodes in two
trees, then all the legal co-evolutionary pairs of nodes in
the two trees are connected by co-evolutionary edges. In

this study, we also assume that there is no change in
the co-evolutionary weight table, across legal co-evolu-
tionary pairs of nodes corresponding to a pair of phylo-
genetic trees. However, with suitable biological support/
data, the co-evolutionary weight tables may differ across
a pair of evolutionary trees (reflecting changes in co-
evolutionary relations across evolution). Thus, the parsi-
mony score in the case of the ACE problem can capture
the evolutionary events of proteins, while considering
our belief regarding the dependencies between pairs of
proteins.
A full labeling of a co-evolving forest ˆ( )l SF is a full

labeling, { ( ), ( ), }l lT T1 2  , of all the nodes of the phylo-
genetic trees in SF, including the missing values at their
leaves. The roots of a co-evolving forest are the set of
roots of the phylogenetic trees in the co-evolving forest.
As mentioned, a co-evolving forest also includes a

weight table for each co-evolution edge and each tree
edge. These weight tables are cost functions, which
return a real positive number for each pair of labels at

Figure 1 The Ancestral Co-Evolution A. A simple example of a co-evolving forest with three trees (each tree corresponds to a different gene
family), and one co-evolution edge connecting node x2 in tree T1 and node y2 in tree T2; the weight table corresponding to this co-evolution
edge is in red. The weight table corresponding to the tree edge (x1, x2) in T1 is in green. The values at the leaf x5 in tree T1 and the leaf y5 in
tree T2 are missing. B. The co-evolutionary graph corresponding to the co-evolving forest in A.
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the two ends of the edge. In the case of tree edges, these
weights reflect the probability of a mutation along the
edge. In the case of co-evolution edges, these weights
reflect the distribution of mutual occurrence of the
labels of the nodes at the ends of the edge.
This leads us to the formal definition of the problem

we are concerned with, the Ancestral Co-Evolution
(ACE) problem with missing variables at the leaves,
which is a generalization of the problem defined in [27]:
Problem 1 Ancestral Co-Evolution (ACE)
Input: A co-evolving forest, F = (SF, Ec(SF)) (possibly

with missing labels at the leaves), and a real number, B.
Question: Are there labels for the internal nodes of all

the trees in the co-evolving forest, and the missing values
at the leaves, such that the sum of the corresponding
weights along all the tree edges and the co-evolution
edges is less than B?
Note that in general, it is not necessarily required that

the solution for each tree separately, will be the most
parsimonious. The minimal sum of edge weights corre-
sponding to a co-evolving forest, F (Problem 1) is
denoted the cost of F. A co-evolutionary graph is an
undirected graph, which describes the co-evolution edges
in the co-evolving forest. In such a graph, each node cor-
responds to a tree in the co-evolving forest, and two
nodes are connected by an edge, if there is at least one
co-evolution edge between their corresponding trees. A
connected component in the co-evolving forest is a sub-
set of trees, such that their corresponding nodes in the
co-evolutionary graph induce a connected component
(see an example in Figure 1B.).
It is easy to see (more details in [26]) that if the opti-

mization criterion is maximum likelihood (see, for
example, [4]) for i.i.d models such as Jukes Cantor (JC)
[31], Neyman [32], or the model of Yang et al.[33], the
problem can be formalized as a maximum parsimony
problem with a non-binary alphabet and multiple edge
weights [2]. Thus, the Ancestral co-evolution problem
without co-evolution edges (|Ec(SF)| = 0), can describe a
Maximum Likelihood (ML) problem.
In this paper, we also study the problem of finding a

sub-set of the genes in a genome (one of the leaves in
some of the phylogenetic trees), such that it can be used
for reconstructing the rest of the gene content of this
genome with minimal error-rate, based on the informa-
tion embedded in the co-evolutionary forest (see Figure
2). We named this problem the Dominant Co-Evolution-
ary Set (DCES) problem (more details in section ’Algo-
rithm for the Dominant co-evolutionary set problem’).

Some computational issues
It has been shown that the ACE problem is NP-hard by
a reduction from the MAX-2SAT problem [27]. In this
section, we describe another simple reduction from/to

the ACE problem, and will use it to prove that the hard-
ness of the problem is related to anti-correlative weight
tables. In many practical cases the anti-correlative rela-
tions are rare; thus, the ACE problem can be solved in
polynomial time.
Let (a, b, c, d) denote the notation for a weight table

(either a weight table of tree edges or of co-evolutionary
edges, see Figure 1), where the costs a, b, c, d are for
the labels 00, 01, 10, 11 respectively at the ends of the
edge. Assume that the analyzed co-evolutionary forest
includes two types of edges: 1) green (”good”) edges of
the form (0,1,1, 0) corresponding to a positive correla-
tion between the two proteins along the tree edges (i.e.
the two proteins tend to appear/disappear in the same
organism); 2) red (”bad”) edges of the form (1, 0, 0, 1),
corresponding to a negative correlation between the two
proteins (i.e. when one of the proteins appears in a gen-
ome, the second usually does not). Note that these two
types of edges are the most informative ones (e.g. in
terms of entropy). Indeed, such edge weights have been
included in previous studies. For example, the classical
algorithm of Fitch [1] considers only green edges.
If all the edges are green, the problem becomes a

Min-Cut (defined below), which is polynomially solva-
ble. Thus, if all the weight tables are of the form (0, 1,
1, 0) (as in [1]), any topology of the co-evolutionary for-
est of the ACE problem, can be solved in polynomial
time.
Problem 2 Min-weighted Cut
Input: A weighted graph G = (V, E, W(E)).
Solution: A cut C = (S, T) which is a partition of V of

the graph G.
Objective: Minimize the total weight of all edges that

are in the set {(u, v) Î E|u Î S, v Î T}.
In the following lemma we formally show a reduction

from the ACE problem to the min-cut problem, for the
case where all the weight tables are of the form (0, 1, 1,
0). A similar reduction can be employed for reducing
min-cut to ACE.
Lemma 1 The ACE problem with only weight tables

of the form (0, 1, 1, 0) can be reduced to the min-cut
problem.
Proof Given a phylogenetic forest as an input to the

ACE, problem the instance of the min-cut problem
includes a graph G = (V, E), that is reconstructed as fol-
lows: V is the set of nodes of the phylogenetic forest (i.
e. the nodes of all the phylogenetic trees); E is the set of
edges in the co-evolutionary forest (both tree edges and
co-evolutionary edges).
Now, we will show that there is a cut of size |C| in G

iff the score of the ACE problem is |C|.
⇒ Suppose that there is a minimal cut C = (S, T), such

that the size of the cut is |C|. In the ACE problem, label
all the nodes in S with ’1’, and all the nodes in T with
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’0’. The edges (tree edges or co-evolutionary edges),
which increase the score of the ACE problem include
only the edges of the cut (other edges have two identical
labels at their ends). By the definition of the weight
table, each of these edges increases the ACE score by 1.
Thus, there exists a labeling for the ACE problem with
score |C|.
⇐ Suppose that there is a labeling for the ACE pro-

blem with score |C|. In the min-cut problem select all
the nodes that have the label ’1’ to be in S, and all the
nodes with label ’0’ to be in T. By the definition of the
weight tables, only edges with non-identical labels at
their ends contribute 1 to the ACE score, and each of
these edges is in the cut. Thus, the size of the cut is |C|.
□
However, if all tables are of the form (1, 0, 0, 1), the

problem becomes Min-UnCut, which is NP-hard (like
Max-Cut) [34].

Problem 3 Min-weighted UnCut
Input: A weighted graph G = (V, E, W(E)).
Solution: A cut C = (S, T) which is a partition of V of

a graph G.
Objective: Minimize the total weight of all edges that

are not in the cut (i.e. minimize the set {(u, v) Î E|((u,
v) Î S) ∨ ((v, u) Î T)}.
In the following lemma we formally show a reduction

from the ACE problem, to the min-Uncut problem, for
the case that all the weight tables are of the form (1, 0,
0, 1). A similar reduction can be applied for reducing
min-Uncut to ACE.
Lemma 1 The ACE problem with all the weight tables

of the form (1, 0, 0, 1) can be reduce to the min-UnCut
problem.
Proof Given a phylogenetic forest as an input to the

ACE problem, the instance of the min-Uncut problem
includes a graph, G = (V, E) that is reconstructed as

Figure 2 The Dominant Co-Evolutionary Set (DCES) problem A. The input to the DCES problem is a phylogenetic forest and a target
genome (red) corresponding to a certain leaf in all the phylogenetic trees (the leftmost leaf in this example). The goal is to find a subset of
proteins in the target genome such that given this subset of proteins (and the phylogenetic forest), it will be possible to infer the rest of the
genome; in this example, proteins from gene families T1, T2, T3, T4, T6, T8 are used to infer the rest of the target genome (the proteins marked
with ′?′; proteins T5, T7, T9 in the example). B. The problem can be reduced to a version of the dominant set problem [34] (see details in section
’Algorithm for the Dominant co-evolutionary set problem’). In the reduction we build a graph that includes a node for each gene family and
pairs of gene families are connected with edges if they have a strong co-evolutionary relation; we want to find a dominant set in this graph.

Birin and Tuller BMC Bioinformatics 2011, 12(Suppl 9):S12
http://www.biomedcentral.com/1471-2105/12/S9/S12

Page 5 of 15



follows: V is the set of nodes of the phylogenetic forest
(the nodes of all the phylogenetic trees); E is the set of
edges in the co-evolutionary forest (tree edges and co-
evolutionary edges).
⇒ Suppose that there is a minimal UnCut C = (S, T)

such that the size of the UnCut is |C|. In the ACE pro-
blem label all the nodes in S with ’1’, and all the nodes
in T with ’0’. The edges (tree edges or co-evolutionary
edges) that increase the score of the ACE problem, are
only the edges that are not in the cut (other edges do
not have two identical labels at their ends and according
to the weight table the weight of such edges is 0). By
the definition of the weight table, each of these edges
increases the ACE score by 1. Thus, there is a labeling
for the ACE problem with score |C|.
⇐ Suppose that there is a labeling for the ACE pro-

blem with score |C|. In the min-UnCut problem, select
all the nodes that have the label ’1’ to be in S, and all
the nodes with label ’0’ to be in T. By the definition of
the weight tables, only edges with two identical labels at
their ends contribute 1 to the ACE score, and each of
these edges are is not in the cut. Thus, the size of the
UnCut is |C|.
□
Let tu denote the upper bound on the number of pos-

sible assignments to the internal nodes, and the missing
values at the leaves of a single tree, in the co-evolution-
ary forest SF (i.e. in a co-evolutionary forest in which
the evolutionary trees have n nodes tu = 2n). Let TMin-

Cut(SF) denote the (polynomial) computational time it
takes to solve the min-cut problem corresponding to the
co-evolutionary forest SF. It is easy to see that if the co-
evolutionary forest includes r red edges, the optimal
assignment can be found in O(tu2·r · TMinCut(SF)) = O
(22·r·n · TMinCut(SF)), by implementing the min-cut algo-
rithm on all possible assignments to the evolutionary
trees at the ends of the red edges. Thus, this is a Fixed-
Parameter Tractable (FPT) algorithm with a running
time that is exponential with the number of red edges
and the size of the evolutionary trees. For example, if
we consider only the co-evolutionary information (see,
for example, [26]), an input with r red edges can be
solved in O(2r · TMinCut(SF)) time complexity.
Finally, it is easy to see that the results reported in

this section can be generalized to the case where the
edge tables include a instead of 1 and b instead of 0,
and b is small relatively to a (i.e. b <a/|E(SF)|; and E(SF)
is the set of edges in the phylogenetic forest).

Algorithms
This section includes a few algorithmic approaches for
inferring genomic sequences by co-evolution. The first
approach was suggested in our previous paper, whilst
the rest are novel.

A FPT algorithm and approximation heuristics
Here we describe very briefly the FPT algorithm and
corresponding approximation heuristics that were
described in [27]. This heuristic approach has 3 major
steps: 1) clustering/dividing the co-evolutionary forest to
small enough sub-forests (with relatively many co-evolu-
tionary relations among phylogenetic trees from the
same cluster/sub-forests); 2) Using a dynamic program-
ming algorithm (a version of the Sankoff algorithm [2])
for finding exact solutions for each of these sub-forests;
3) Improving the solution found in step 2) greedily. The
algorithm that is employed in step 2) finds the exact
optimal solution for the ACE problem, but its running
time is exponential with the size of the largest con-
nected component in the co-evolutionary graph.

A Quadratic and Linear Programming
In this subsection we demonstrate how the ACE pro-
blem can be formulated as a Quadratic Programming
(QP), and a Linear Programming (LP) problem. To this
end we define several variables that will be used in these
formulations. For each node vi in the co-evolutionary
forest (i.e. one of the nodes in the phylogenetic trees
that are in the phylogenetic forest), we define a variable
yi; In addition, for each edge (vi, vj) in the co-evolution-
ary forest, we define four variables, which we name edge
variables, one for each possible assignment of the ends
of the edge (( , ),( , ),( , ),( , )) : , , ,, , , ,0 0 0 1 1 0 1 1 00 01 10 11Y Y Y Yi j i j i j i j .
Let W W W Wi j i j i j i j, , , ,, , ,00 01 10 11 denote the four weights in
the weight table of the edge (vi, vj) (see Figure 3). We
will start with a definition of Quadratic Programming
(QP). Let x Î Rn denote a set of n variables; let c, xL, xU
Î Rn denote vectors of real numbers; let A Î Rm*n be a
matrix of real numbers; F is a symmetric positive-defi-
nite matrix; let bL, bu Î Rm be vectors of m real num-
bers. The general formulation of a Quadratic
Programming is as follows:
minxf(x) = 0.5 · xt · F · x + ct · x
such that:
(1) xL ≤ x ≤ xU
(2) bL ≤ Ax ≤ bU
In the case of Integer Quadratic Programming (IQP)

or integer programming, all the variables are integers (i.
e. either ’0’or ’1’).
The ACE problem can be easily defined as an IQP

problem (see Figure 3). In this case we consider the yi
variables defined above. These variables are 0 ≤ yi ≤ 1 in
the case of QP and yi = {0, 1} in the case of IQP. Based
on these variables and the weights in the weight tables,
we define for each edge (vi, vj) four terms:
Z Z Z Zi j i j i j i j, , , ,, , ,00 01 10 11 (details in Figure 3; in the case of yi
= {0, 1} only one of these terms is larger than zero). The
(Quadratic) optimization function is
min Z Z Z Zi j i j i j i j

i j
, , , ,

,

00 01 10 11+ + +∑ . In the case of yi = {0,
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1}, for each edge only one of the terms in the weight
tables is larger than zero.
As we show in the next section, solving IQP for large

inputs of the ACE is time consuming, and not practical
for large inputs. However, for small inputs, such an
approach may be useful.
In the rest, of this subsection we will show how to

formulate a Linear Programming (LP) relaxation or an
Integer Programming (IP) of the ACE problem. The
general formulation of a linear programming is as
follows:
minxf(x) = ct · x
such that:
(1) xL ≤ x ≤ xU
(2) bL ≤ Ax ≤ bU
The following is the reduction to a LP relaxation of

the ACE problem (Figure 3):
A. The variables:
(1) Y Y Y Yi j i j i j i j, , , ,, , ,00 01 10 11 are edge variables, such that

each of them hold a value stating whether this corre-
sponding assignment (i.e. the labeling of the two ends of
the edge) was chosen for this edge, (in the integer pro-
gramming case for each i, j only one of the terms is 1
and the rest are 0).
(2) The yi variables. Each of them should hold the

value stating the appropriate assignment for node i in
the co-evolutionary forest (0 or 1 in the case of integer
programming).
B. The target function:
x is a vector that includes all the variables mentioned

in A. The costs that are related to the edge variable (i, j)
are the corresponding weights in the weight table (Fig-
ure 3); i.e. c W c W c W c Wi j i j i j i j i j i j i j i j, , , , , , , ,, , ,00 00 01 01 10 10 11 11= = = = .
The cost corresponding to all the variables yi is 0.
C. Constraints on the variables:

(1) All variables must receive a value from [0, 1], i.e.:

0 100 01 10 11≤ ≤Y Y Y Yi j i j i j i j, , , ,, , ,

0 ≤ yi ≤ 1
(2) Every edge must get exactly one assignment, i.e.:

1 100 01 10 11≤ + + + ≤Y Y Y Yi j i j i j i j, , , , .

(3) Every node must have a consistent assignment
across all edges touching it. Thus, for every edge (i, j)
touching node i, it must hold that
1 100 01≤ + + ≤Y Y Yi i j i j, , . Thus, in the integer case either
yi = 0 or yi = 1. If yi = 0 every edge that includes i gets
an assignment where node i is assigned with 0; similarly,
for yi = 1 the edges that include are assigned such that
node i is equal to 1.
D. The Size of the problem:
Let E(SF) and V(SF) denote the total number of edges

and nodes in the co-evolutionary forest respectively.
The number of variables in the LP: 4 · |E(SF)| + |V(SF)|;
The number of constraints in the LP: 3 · |E(SF)|.
Thus, with the reductions described in this subsection,

packages that solve IQP, QP, LP, or IP can be used for
solving the ACE problem.

A Min-Cut based heuristic
As we mentioned in section ’Some Computational
Issues’, when the input includes only green edges it
becomes a Min-Cut and can be solved in polynomial
time.
Thus, a possible heuristics based on this phenomenon

includes the following steps:
1) Consider only the ”good” edges (round the weight

table of these edges to be of the type (0, A, A, 0)) and

Figure 3 Linear and Quadratic Programming for solving the ACE problem. Linear and Quadratic Programming for solving the ACE
problem.
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find the mean cut solution for these edges. We imple-
mented the min-cut algorithm of Stoer-Wagner [35].
2) Start with the min-cut solution found in 1) and run

a greedy algorithm based on the entire set of edges (see
[27] ).
If the number of ”bad” edges is small one can imple-

ment an FPT that is exponential with the number of
”bad” edges ( for each assignment of the bad edges, run
max-cut to find the assignment for the ”good” edges; as
was mentioned in section ’Some Computational Issues’).

Algorithm for the Dominant co-evolutionary set problem
In this subsection we describe a heuristic for solving the
Dominant Co-Evolutionary Set (DCES) problem. The
aim is to find a set of gene families (for example, COGs
[36]), that we name a ’dominant set’ (DS), such that in a
certain organism (i.e. a target genome) the proteins cor-
responding to this DS can be used for reconstructing
the rest of the proteins in the genome, with an error-
rate lower than a certain threshold. The missing pro-
teins in the genome are reconstructed based on the DS,
co-evolution and evolutionary information.
The central idea of our heuristic is a reduction of the

DCES problem to a version of the dominant set problem
which is described below. The following is the formal
definition of the dominant set problem.
Problem 4 Dominant set
Input: A graph G = (V, E, W(E)).
Solution: A subset D Î V such that every vertex not

in D is joined to at least one member of D by some
edge.
Objective: Minimize the size of D.

Let W1 and W2 denote two thresholds. A gene family
is a specific phylogenetic tree in the co-evolutionary for-
est. The relevant values corresponding to such a gene
family in the current context are the labels at the leaves
of the gene family tree. Given an input co-evolutionary
forest and a target genome j, we perform the following
steps (see also figure 4):
1. Set a variable Fi for each gene family in the co-evo-

lutionary forest, and generate a graph with a node for
each Fi. For each Fi there is a related binary vector cor-
responding to the values of the gene family in the differ-
ent organisms. Fi(j) = 1 designates that the gene family
is encoded in genome j, Fi(j) = 0 designates that the
gene family is not encoded in genome j.
2. Set a variable Ti for each protein in the target gen-

ome (e.g. genome j). This variable represents how well
we can infer the value of Fi(j) based on the tree struc-
ture, and the labels of the other leaves of the tree (i.e.
the values of the gene family Fi in the rest of the
organisms).
3. Let MP(Ti|Fi(j) = 0), MP(Ti|Fi(j) = 1) denote the

parsimony score of the evolutionary tree corresponding
to the gene family Fi, when setting the values of this
gene family in genome j (the target genome) to be Fi(j)
= 0 and Fi(j) = 1 respectively. Connect each Ti as a
node to the corresponding Fi node with an edge weight
W(Ti) = |MP(Ti|Fi(j) = 0) – MP(Ti|Fi(j) = 1)|/(min{MP
(Ti|Fi(j) = 1), MP(Ti|Fi(j) = 0)}). Roughly speaking a lar-
ger W(Ti) signifies that with higher probability we can
reconstruct Fi(j) based on the evolutionary tree of Fi.
4. Based on the binary vector related to each Fi, com-

pute for each Fi its empirical entropy, H(Fi); compute

Figure 4 The reduction used for solving the DCES problem. The reduction used for solving the DCES problem.
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for each pairs of variables Fi, Fl the empirical mutual
information (I(Fi, Fl)). Connect each pair of variables Fi,
Fl by an edge with weight I(Fi, Fl).
5. The result of the previous steps is a weighted graph

that represents the relations between all the Fi and Ti

variables defined above (see figure 4). We want to find a
minimal set (DS) of Fi variables such that each variable,
Fi not in the DS, either has a strong connection to its Ti

variable (i.e. its inference strength, based on the evolu-
tionary tree as the edge weight to the Ti variable, is
above W2) or/and it has strong connections to the other
nodes in the DS (i.e. it can be inferred based on the co-
evolutionary information – there is a set of nodes Fk1 ,
Fkn, in the DS such that [H(Fi) – (∑kjÎDS I(Fi, Fkj))]
<W1).
6. All the nodes Fi that have weak co-evolutionary

relations H(Fi) – (∑kjI(Fi, Fkj) >W1 and their connection
to the tree (Ti) is weak <W2 should be in the resultant
DS.
7. A DS with the thresholds W1 and W2, is a DS such

that for each node Fi outside the DS either a. H(Fi) –
(∑kj:kjÎDSI(Fi, Fki) <W1 or b. W(Ti) >W2

We used the following greedy algorithm to find the
minimal dominant set with the thresholds W1 and W2:
A. Start with all the nodes as a DS.
B. At each stage, remove a node Fj such that

max { ( ) ( , )}{ :( ( ) ) ( )}
:

F W Ti W F DS i i kj
kj kj DSi i

H F I F F< ∧ ∉ ∈
− ∑2 is

minimal.
C. Stop if

max { ( ) ( , )}{ :( ( ) ) ( )}
:

F W Ti W F DS i i kj
kj kj DSi i

H F I F F W< ∧ ∉ ∈
− >∑2 1 .

8. Given the DS, the missing values in the target gen-
ome (i.e. unknown Fk(j)) were reconstructed in the fol-
lowing manner:
A. Start with an initial guess of the missing values (e.g.

the one suggested by the DS and/or the Ti variables).
B. Based on this initial guess, infer all the labels of the

co-evolutionary forest (with one of the algorithms for
the ACE problem previously mentioned).
C. Change the labels of the missing values to improve

the general parsimony score, given the labels at the
ancestral states.
D. Repeat stages B. and C. till convergence (the

change in the ACE score is lower than a certain
threshold).
Note that we use the following approximation: H(Fi|

Fk1, Fk2,..) ≈ H(Fi) – I(Fi, Fk1) – I(Fi, Fk2) – … Thus, it
may be possible improve the accuracy (albeit increasing
the running time) of the algorithm, by removing from
the DS in each step the node Fk, that minimizes
max ( )F DS ii

H F DS∉ | . In addition, if one requires a range
of sizes for dominant sets (and error rates) the thresh-
olds W1, W2 may be altered.

Comparison of the different algorithms
In this section, we briefly report a comparison of the
run times, and the quality of the solutions found by the
aforementioned algorithms. The linear, integer, and
quadratic programming were implemented in Matlab,
using the commercial programming of TOMLAB opti-
mization environment (http://tomopt.com/tomlab/). We
used a Xeon 2.6GHz 64bit 2 cores x 4 cpu’s, with 4GB
of memory. As can be seen (see Table 1), the linear pro-
gramming archived a result that is optimal in terms of
the quality of the solution (lowest and optimal parsi-
mony score). The solution was similar to the one
obtained by the ACE [27] (98.9 % of the inferred sites
were identical). In addition, the running time of the FPT
heuristic for solving the ACE [27] was shorter than all
other algorithms, and the quality of the solutions found
by this approach (with and without the greedy stage) is
similar (though lightly higher) to the one obtained by
the linear programming approach. The integer program-
ming achieved the optimal solution (as the linear pro-
gramming), but with a long run time. The integer
quadratic programming and the min-cut heuristic,
though theoretically interesting, were not practical for
the large input we analyzed. The IQP failed due to
memory problems, and the min-cut heuristic was not
near convergence after a week of running.
The results of the linear programming
As mention in the previous section, the linear program-
ming generally returns a solution Î [0, 1]. Thus, in gen-
eral, the result found by the LP is a lower bound on the
optimal (minimal) possible solution of the ACE pro-
blem. Interestingly, when we implemented the (linear
programming) relaxation that was defined in the pre-
vious section, on the biological input, the values of all
the variables that were assigned by the linear program-
ming were Î {0, 1}. Thus, the linear programming
found an optimal (and legal) solution for the problem.
This result demonstrates, in accordance with subsection
’Some Computational Issues’, that in many practical
cases the optimal solution can be found in polynomial

Table 1 Comparison of the different algorithms for
solving the Ancestral co-evolution problem.

Method Network Score Running Time

IP optimal 0.06 7.6 hr

LP rounded and not rounded 0.06 6 hr

FPT heuristic before greedy 0.063102751 1.83 hr

FPT heuristic 0.060550424 2 hr

IQP – fail (memory problems)

Min-cut – more than a week
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time (for example by linear programming). In addition,
this result shows that the ACE solutions found by the
FPT heuristic in [26], are very near optimal (only
0.060550424/0.06 = 0.92% higher).
Demonstration of the algorithm for the dominant co-
evolutionary set problem
We used the procedure for solving the DCES problem
to analyze the genomes of six unicellular organisms.
The first three bacteria were chosen according to their
distance from the closest leaf in the phylogenetic tree: P.
aeruginosa, D. radiodurans, and E. coliOHE. Among
these three organisms, E. coliOHE has the closest leaf in
the phylogenetic tree (other E. coli strains; 0.65% of the
gene content is not similar) while P. aeruginosa has the
lowest gene content similarity to its closest leaf in the
phylogenetic tree (24% of the gene content is not simi-
lar). D. radiodurans has 18.3% non-similarity in gene
content to its closest leaf in the phylogenetic tree. We
analyzed three additional organisms: S. cereυisiae (an
eukaryote; 2% dissimilarity to the closets leaf), A. pernix
(an archaeon; 7% dissimilarity to the closest leaf), and B.
aphidicola (an endosymbiont; 32% dissimilarity to the
closest leaf).
The genome of each of these organisms was repre-

sented as a binary sequence, with 4873 entries (an entry
for each gene families). The aim was to reconstruct
parts of the genomes/sequences (i.e. determine the
values, ’0’ or ’1’, of parts of the sequences) based on its
remainder and the phylogenetic forest.

We modified the thresholds W1, W2 to obtain various
dominant set sizes, and computed the error rate when
reconstructing the rest of the genome based on the DS.
In addition, in each case, we computed the percentage
of the reconstructed sites, that were inferred based on
co-evolutionary information (i.e. not based on the Ti

variables; see the algorithm in the previous section). The
results are depicted in Figures 5 – 7. The error-rate is
represented as the percentage of the total number of
reconstructed sites that we correctly inferred. The size
of the DS is represented as the percentage of the sites
(out of 4873), that were used to reconstruct the remain-
ing sites.
Error rate As can be seen, large portions of the gen-
omes of organisms, such as P. aeruginosa and D. radio-
durans (66% and 79% of the genome respectively),
which do not have an evolutionary close neighbor in the
co-evolutionary forest, can be reconstructed based on
the rest of the corresponding genome, with a relatively
low error rate (0.2 and 0.11 respectively). In addition,
our results demonstrate that co-evolutionary informa-
tion (and not only phylogenetic information) was used
for the reconstruction of these genomes (up to 20% of
the sites were inferred based on co-evolutionary infor-
mation). It seems that co-evolutionary information is
more important when there are no evolutionary close
organisms in the co-evolutionary forest; for example, in
the case of E. coli and S. cerevisiae, the fraction of sites
that was inferred based on co-evolutionary data was

Figure 5 Error-rate results of the DCES problem. Implementation of the procedure for the DCES problem on six genomes: E. coliOHE (A.), D.
radiodurans (B.), and P. aeruginosa (C.), A. pernix (D.), B. aphidicola (E.) S. cerevisea (F.). For each organism, the graph includes the error rate (red; %
of the sites not in the DS were not reconstructed accurately based on the DS) and the % of sites that were reconstructed based on co-
evolutionary relations (blue; i.e. their value cannot be inferred based on their evolutionary tree), for different sizes of the dominant set (% from
the total number of proteins in the genome, x-axis).
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relatively low. B. aphidicola is interesting as it under-
goes a (’rare’) process of adaptation to a symbiotic life-
style, where the gene set of the ancestor has been
selectively reduced, so as to retain only those genes and
pathways required for the new lifestyle [37,38]. The
unique evolution of this endosymbiont challenged our
approach, which is based on the statistic of the evolu-
tion of ’normal’ (non-endosymbiont) organisms. Indeed
the error rate for this organism was slightly higher, but
still surprisingly low (e.g. 0.1 for DS of size 35%).
Finally, the algorithm performed well for genomes

from all three domains of life (error rate 0.04 and 0.005
for A. pernix and S. cerevisiae respectively).

Running times
Figure 6 includes the running time of the procedure for
solving the DCES problem as a function of the size of
the DS. It includes the running time of 90 implementa-
tions of the DCES algorithm on the six analyzed organ-
isms (15 samples for each organism), as a function of
the size of the DS. The different sizes of the DS are a
result of modifying the two thresholds (W1 and W2).
The typical running time for the analyzed phyloge-

netic forest is around 25 minutes (the range is between
8 and 97 minutes). Thus, the approach has practical
running times.
As can be seen in the figure, the running time usually

increases with the size of the DS. The running time
when the DS includes less than 100 gene families is
around 19 minutes, whilst the running time for cases

with a DS larger than 3500 gene families is around 32
minutes.

Biological analysis of the DS genes
We focused on S. cerevisiae aiming at understanding the
properties of the DS genes. We decided to analyze S.
cerevisiae as it is one of the most studied organisms in
the analyzed dataset, with various public large scale
measurements.
We began with studying the cellular function of the

DS genes. To this end we performed functional enrich-
ment analysis of the genes in the DS (Methods), based
on the biological process ontology [39]. The results
appear in Figure 7. As can be seen, the DS is mainly
enriched with metabolic genes, genes related to trans-
port, and genes related to various regulatory processes.
We continued with a study of the cellular characteris-

tics of the DS genes. In each case we compared the
genes in the DS to the relevant set of genes that are out-
side the DS (Methods). At the first stage, we checked if
the dN/dS (non-synonymous substitution rate divided
by synonymous substitution rate) of genes in the DS is
significantly different than the dN/dS of other genes. To
this end, we used the data of [40]. We found the dN/dS
of genes in the DS is significantly higher (0.0566 vs.
0.052; KS-test, p = 1.3913 * 10–5; Figure 8A). Next, we
checked if the Protein Abundance (PA) of genes in the
DS is significantly different than the PA of other genes.
To this end, we used the data of [41]. We found the PA
of genes in the DS is significantly lower (1.2 * 104vs.

Figure 6 Running time results of the DCES problem. The figure includes the running time of 90 implementations of the DCES algorithm on
the six analyzed organisms (15 samples for each organism), as a function of the size of the DS. The different sizes of the DS are a result of
modifying the two thresholds (W1 and W2).
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2.47 * 104; KS-test, p = 4.083 * 10–6; Figure 8B). Next,
we checked if the number of PP-interactions (PPI) of
genes in the DS is significantly different than the num-
ber of PPI of other genes. To this end, we used the data

of [26]. We found the number of PPI of the genes in
the DS is significantly lower than the number of PPI of
genes outside the DS (10.1 vs. 19.2; KS-test, p = 9.98 *
10–12; Figure 8C).

Figure 7 The DCES problem: cellular function enrichment of the DS genes in S. cerevisea. The figure includes cellular functions (biological
process ontology) that are enriched in the DS, based on the genome of S. cerevisea.
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The results presented in this section suggest that the
DS genes include many metabolic genes, they have rela-
tively high dN/dS, low protein abundance and low num-
ber of protein-protein interactions.
Genes with a high dN/dS tend to change rapidly

between organisms, thus can be inferred less well based
on other existing genomes. In addition, genes with a
relatively low number of protein-protein interactions
and protein abundance also tend to appear in a DS.

Such genes have less functional constraints and can thus
evolve faster. Furthermore, as such genes have less phy-
sical interactions and thus less co-evolutionary relations
with other genes, their state can not be inferred by most
of the other genes, and they should be added to the DS.
The fact that most of the genes in the DS are metabolic
and regulatory genes, demonstrates that these are the
processes that tend to change among the analyzed
organisms, supporting previous studies in the field
[24,42-45].

Conclusions
In this study we describe a few computational
approaches for inferring genomes based on co-evolu-
tionary relations. The algorithms described in this study
are based on reductions to commonly employed
approaches, such as linear programming (LP), quadratic
programming (QP), and min-cut. As there are many
free and commercial packages that solve LP and QP, the
reductions describe in this study should be very useful
in practice.
Furthermore, the current study also includes new

results related to the computational complexity of the
ACE problem. We report cases where an exact solution
to the ACE problem can be found in polynomial time.
As we demonstrate in the main text, such cases are
common when analyzing biological data. Thus, in prac-
tice many times the optimal solution of the ACE pro-
blem can be found in a relatively short time. In
addition, we describe a linear programming relaxation
that returns a solution that can be used as a lower
bound on the possible minimal solution. Thus, it can be
used for estimating the quality of a legal solution found
by the algorithms mentioned in this paper.
It is important to emphasize that the problem of find-

ing a minimal and maximal cut can be solved more effi-
ciently in graphs with certain properties. Thus, the
approach min/max-cut reduction, suggested in this
study, may be useful in such cases. For example, it is
known that the max-cut problem can be solved in poly-
nomial time in planar graphs [46]. Thus, if the co-evolu-
tionary forest is planer, the ACE with only red edges can
also be solved in polynomial time.
Finally, we formally describe for the first time strate-

gies for 1) inferring a genome based on a portion of it,
and 2) finding a part (subset of the proteins) of a target
genome such that it will be possible to reliably recon-
struct the rest of the target genome base on this subset.
Thus, by using this strategy one can sequence only a
section of a genome of interest, and infer its entire gene
content. This approach can be generalized to deal with
the inference of cellular networks (e.g. metabolic net-
works and protein-protein interaction networks). In
these cases, the input includes a target organism with a

Figure 8 The DCES problem: Properties of the DS genes in S.
cerevisea. Cellular properties of the DS genes in S. cerevisea
demonstrate that the DS genes have higher dN/dS (A.), lower
protein abundance (B.), and a lower degree in the PPI network (C.),
compared to genes that are not in the DS.
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partial cellular network and the cellular networks in
other organisms; the aim is to infer the rest of the cellu-
lar network of the target organism. One of the major
differences in the case of this generalization, is the fact
that both the nodes and the edges of the network need
be inferred.

Methods
The analyzed co-evolutionary forest
The evolutionary tree, the labeling of the leaves, and the
co-evolutionary information were downloaded from
[26]. This data includes the gene content (4873 gene
families) of 95 unicellular organisms (bacteria, archaea,
and eukaryotes). The classification to gene families was
based on the COG database [36,47]. See [26] for more
details regarding the input.

The co-evolutionary edges
We used the co-evolutionary data from [26]. These data
include pairs of proteins that exhibit various physical
and functional interactions. We ranked pairs of proteins
(co-evolutionary edges) according to the empirical
mutual information between their gene content vectors.
For two proteins x, and y let p(x), p(y), be the empirical
distribution of the state (’1’ or ’0’; appear or disappear in
the genome) of the proteins over the analyzed organ-
isms, and let p(x, y) be the joint empirical distribution
of the protein pair. The corresponding empirical mutual
information is I(x, y) = Σp(x, y) · log(p(x, y)/p(x) · p(y)).
Higher mutual information corresponds to stronger co-
evolution. The final co-evolutionary forest included 10,
576 edges (Figure 9). The weight table of a pair of
COGs included the –log(·) of the joint empirical distri-
bution of the two COG.
To estimate the number of red and green edges in the

co-evolutionary forest we computed the KL distance
between the weight table of each edge and the weight

tables of the green and red edges that were defined in
subsection ’Some Computational Issues’. The empirical
KL distance is defined as KL(x||y) = Σp(x) · log(p(x)/p
(y)). We found that 142 of the edges were red (KL dis-
tance to the red weight table is lower) and the rest of
them were green (KL distance to the green weight table
is lower).
The red edges relates to pairs of COG that tend to

mutually exclude each other (if a gene of one of the
COG appear in the organism the second usually does
not appear in this organism). For example the edge
between COG1467 (Eukaryotic-type DNA primase, cata-
lytic (small) subunit) and COG2812 (predicted type IV
restriction endonuclease) is red. The first one tend to
appear in archaea eukaryotes and the second in bacteria.

GO enrichment analysis and analysis of the cellular
features of DS genes
In all the GO enrichment analyzes, the set of S. cerevi-
siae genes that was mapped to the DS COGs was com-
pared to the S. cerevisiae genes that have a mapping to
COGs as a background. Similarly, the PA, PPI, and dN/
dS of the set of S. cerevisiae genes that was mapped to
the DS COGs was compared to the features of the S.
cerevisiae genes that have mappings to COGs.
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