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Abstract

and a detachment condition.

lower bounds on path frequencies.

Background: Enumeration of chemical graphs satisfying given constraints is one of the fundamental problems in
chemoinformatics and bioinformatics since it leads to a variety of useful applications including structure
determination of novel chemical compounds and drug design.

Results: In this paper, we consider the problem of enumerating all tree-like chemical graphs from a given set of
feature vectors, which is specified by a pair of upper and lower feature vectors, where a feature vector represents
the frequency of prescribed paths in a chemical compound to be constructed. This problem can be solved by
applying the algorithm proposed by Ishida et al. to each single feature vector in the given set, but this method
may take much computation time because in general there are many feature vectors in a given set. We propose a
new exact branch-and-bound algorithm for the problem so that all the feature vectors in a given set are handled
directly. Since we cannot use the bounding operation proposed by Ishida et al. due to upper and lower
constraints, we introduce new bounding operations based on upper and lower feature vectors, a bond constraint,

Conclusions: Our proposed algorithm is useful for enumerating tree-like chemical graphs with given upper and

Introduction

Development of novel drugs is one of the major goals in
chemoinformatics and bioinformatics. To achieve this pur-
pose, it is important not only to investigate common che-
mical properties over chemical compounds having
common structural patterns [1-3] but also to study meth-
ods of enumerating chemical structures satisfying given
constraints. The enumeration of chemical structures has a
long history. Actually, Cayley [4] considered the enumera-
tion of structural isomers of alkanes in the 19th century.
Applications for the enumeration of chemical compounds
include structure determination using mass-spectrum
and/or NMR-spectrum [5,6], virtual exploration of chemi-
cal universe [7,8], reconstruction of molecular structures
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from their signatures [9,10], and classification of chemical
compounds [11].

In the field of machine learning, the pre-image problem
[12,13] has been studied. In this problem, a desired object
is computed as a feature vector in a feature space, and
then the feature vector is mapped back to the input space,
where this mapped back object is called a pre-image. The
definition of the feature vectors based on the frequency of
labeled paths [14,15] or small fragments [11,16] has been
widely used. Akutsu and Fukagawa [17] formulated the
graph pre-image problem as the problem of inferring
graphs from the frequency of paths of labeled vertices,
which corresponds to the pre-image problem, and proved
that the problem is NP-hard even for planar graphs with
bounded degrees [17]. Nagamochi [18] proved that a
graph determined by frequency of paths with length 1 can
be found in polynomial time if any.

To enumerate tree-like chemical graphs, Fujiwara
et al. [19] proposed a branch-and-bound algorithm
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which consists of a branching procedure based on the
tree enumeration algorithm due to Nakano and Uno
[20,21] and bounding operations designed by the path
frequency and the atom-atom bonds. In addition, to
reduce the size of search trees, Ishida et al. [22] intro-
duced a new bounding operation, called the detach-
ment-cut, based on the result by Nagamochi [18].
Implementations of the algorithm proposed by Ishida
et al. [22] are available at a web server (http://sunflower.
kuicr.kyoto-u.ac.jp/tools/enumol/) for enumerating tree-
like chemical graphs with given path frequency. How-
ever, an instance with constraint which is specified by
one feature vector admits no solution in many cases.
Therefore, it is needed to introduce a more relaxed con-
straint than a single feature vector to obtain some solu-
tions in the tree-like chemical graph enumeration
problem.

In this paper, we are given a set of feature vectors, which
is specified by a pair of upper and lower feature vectors,
and enumerate all tree-like chemical graphs satisfying one
of the vectors. It seems that this can be done by simply
applying the algorithm proposed by Ishida et al. to each
single feature vector in the given set. However, this
method will take much computation time because in gen-
eral there are many feature vectors in a given set. We pro-
pose a new exact branch-and-bound algorithm for the
problem so that all the feature vectors in a given set are
handled directly.

Methods

Preliminaries and problem formulation

A graph is called a multigraph if multiple edges (i.e.,
edges with the same end vertices) are allowed; otherwise
it is called simple. A path P is a sequence v, ey, V1, €a, Vo,
.+ ) Vi of distinct vertices v; (i = 0, ..., k) and edges e;
that join v; _; and v; (j = 1, ..., k). Without confusion we
may write P = (vq, V1, ..., Vi). The length |P| of path P is
defined to be £, i.e., the number of edges. Assume that a
set X = {£1,6,, ...,¢s} (i.e., chemical elements) is given. Let
each label ¢ be associated with a valence val( ) e Z.. A
multigraph G is called X-labeled if each vertex v has a
label £(v) € %, and is called (X, val)-labeled if, in addition,
the degree of each vertex v is val(€(v)), i.e., the valence of
the element £(v). We regard chemical compounds as (Z,
val )-labeled, self-loopless, and connected multigraphs,
where vertices and labels represent atoms and elements,
respectively. For a path P = (v, vy, ..., Vi), we call £(P) =
£(vo), €(vy), ..., €(vy) the label sequence of P. Given a label
sequence ¢, let #t denote the number of paths P with £(P)
= tin a graph, where multiple edges with the same end-
vertices are treated as a single edge and paths are consid-
ered to be “directed.” The feature vector fi(G) of level K
(e Z,) of G is defined to be the vector whose entry fi(G)
[t] (|t] < K) represents #¢. See Fig. 1 for an example.
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Figure 1 A chemical compound and its feature vector. An
illustration of a (Z, val)-labeled multitree G and its feature vector f;
(G). Notice that multiple edges with the same end-vertices are
treated as one edge, where #0C = #CO = 2.

Let deg(v; G) denote the degree of a vertex v in a
graph G. The tree-like chemical graph enumeration pro-
blem with given one feature vector can be formulated as
follows [19].

Enumeration of Tree-like chemical graphs with given Path
Frequency (ETPF)

Given a set X of labels, a valence function val : X — Z,
and a feature vector g of level K, find all (£, val)-labeled
multitrees T such that fi(T) = g and deg(v;T) = val(£(v))
for all vertices v e WV(T).

Observe that a large number of chemical compounds
contain a high proportion of hydrogens. Based on this
fact, another model can be considered in the problem
ETPF by removing all hydrogen atoms. These two dif-
ferent models were proposed by Fujiwara et al. [19] and
Ishida [23].

In this paper, we consider the problem of enumerating

all tree-like chemical graphs based on given upper and
lower feature vectors because we want to relax the fea-
ture vector constraint in the problem ETPF. For feature
vectors g; and g, of level K, we define g; < g, to be gy[f]
< g[t] for any label sequence ¢ (|t| < K). The problem
of enumerating tree-like compounds from given two fea-
ture vectors can be formulated based on the problem
ETPF as follows (see Fig. 2 for an illustration).
Enumeration of Tree-like chemical graphs with given Upper
and Lower bounds on path Frequencies (ETULF)
Given a set X of labels, a valence function val : X — Z,
and feature vectors g;; and g; of level K (g; < gy)), find
all (£, val)-labeled multitrees T such that g; < fidT) < gy
and deg(v;T) = val(€(v)) for all vertices ve V(T).

For the problem ETULF, we assume that g;(£) = gi/(f)
for an atom type £ € X, where g(L) denotes the entry in
g that corresponds to a label sequence L (thus g(€) spe-
cifies the number of vertices of label ¢) and that g;(L) <
gu(L) for any label sequence L (|L] = 2).

Note that the number # of vertices is given by X, 5g(£).
To solve the problem ETULF, we start with an empty
graph, and repeatedly extend the current tree T by
appending a new vertex with each label £ € X to obtain a
valid tree (a tree that does not violate any constraints on
output trees) one by one until we get n vertices. In order
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Figure 2 An instance of ETULF. An instance of ETULF with upper and lower feature vectors, which admits two different solutions.

to avoid duplicate outputs, we follow the branch-and-
bound framework of Fujiwara et al. [19], which first
defines a canonical representation for isomorphic trees,
and then lists them using the algorithm of Nakano and
Uno [20,21] (the branching operation) discarding invalid
trees with some bounding operations. Since we cannot
directly use the bounding operation proposed by Ishida
et al. [22] due to upper and lower constraints, we intro-
duce some new bounding operations.

Canonical representation of trees and the branching
operation

In this section, we explain a canonical representation of
trees introduced by Fujiwara et al. [19] and the branching
operation based on the canonical representation.

First of all, we introduce a root of a tree based on the
following theorem.

Theorem 1 (Jordan [24]) For any tree with n' vertices,
either there exists a unique vertex v* such that each subtree
obtained by removing v* contains at mostL "T_lJ vertices, or
there exists a unique edge e* such that both of the subtrees
obtained by removing e* contain exactly "7 vertices.

Such a vertex v* and an edge e* in Theorem 1 are
called unicentroid and bicentroid, respectively. Either
unicentroid or bicentroid is called as centroid. Note that
there exists a bicentroid only for an even n'. Since a
case of bicentroid is similar to a case of unicentroid,
now we only explain a case of unicentroid.

Next we introduce a canonical representation of trees
that must be unique up to isomorphism. Let T be a tree
of n vertices rooted at a vertex vy (which is not necessa-
rily its unicentroid). Suppose that it is embedded in the
plane as an ordered tree, where v, is located at the top
part. Without loss of generality, let v, vy, ..., v,, _ | be
indexed by the depth-first search (DFS) that starts from
vo and visits vertices from the left to the right. Define
the depth d(v) of a vertex v to be the length of the
(unique) path from vy to v in T. The depth-label
sequence of T (L(T)) is defined to be

L(T) = (d(vo), {(vo) d(v1), H(v1),-- A1), AV 1))

Given an arbitrary order of labels, we define the order
of depth-label sequences as follows. For any T} and T5,
we denote L(T,) >L(T,) if L(Ty) is lexicographically lar-
ger than L(T,). Then the canonical representation of a
rooted tree is defined by the largest depth-label
sequence among all its plane embeddings. Actually this
is equivalent to the left-heavy plane embedding [20,21].

Thus our branching task is to list all centroid-rooted
left-heavy trees with #n vertices and m (= |X|) labels. Fol-
lowing the scheme [20,21], we define a parent-child
relation between two left-heavy trees. The parent P(T)
of a left-heavy tree T is obtained from T by removing
its rightmost leaf. Clearly P(T) is still left-heavy In this
way, we can define a family tree F(n,m) of left-heavy
trees whose leaves are exactly what we want to obtain.

Therefore we only need to enumerate the (leaf) nodes
of F(n,m). This can be done by starting from the
empty tree (the root node of F(n,m)) and repeatedly
appending a new leaf to some appropriate place on the
rightmost path of the current tree. Our branching
operation employs the algorithm of Nakano and Uno
[20,21], which extends the current tree T (i.e., finds a
child of T) in constant time [19].

Bounding operations
In this section, we explain how to check the validity of
the current tree T. If we can conclude that T and all its
descendants are not valid, then we can discard 7. Our
bounding operation discards T if at least one of the fol-
lowing criteria is violated:

(C1) The root of T remains the centroid of an output
(the centroid constraint);

(C2) deg(v;T) < val(l(v)) for all v e V(T) (the valence
constraint);

(C3) fx(T) < gy, and |T| = n and gy < fi(T) (the fea-

ture vector constraint);
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(C4) T can be extended to a connected and loopless
tree with # vertices (the detachment constraint);

(C5) T can have a descendant which has an appropriate
number of multiple bonds (the multiplicity constraint).

(C1) and (C2) are the same as the work by Fujiwara
et [. [19] and not difficult to check. (C3) and (C4) are
different from the work by Fujiwara et al. [19] and
Ishida et al. [22] due to upper and lower constraints.
(C5) is a new bounding operation that we propose in
this paper. In the following three subsections, we will
discuss three bounding operations resulting from (C3),
(C4), and (C5), called as feature-vector-cut, detachment-
cut, and multiplicity-cut, respectively.

Feature-vector-cut procedure

In the problem ETULF, we cannot use the bounding
operation proposed by Fujiwara et al. [19] directly due to
upper and lower feature vectors, but we can introduce a
bounding operation based on upper and lower feature vec-
tors by modifying Fujiwara et al.’s work slightly.

Let T denote a current tree, fz(7) denote the feature
vector of T, g, denote a given upper feature vector, and
g1 denote a given lower feature vector. By the feature
vector constraints in the problem ETULF, we check the
following condition.

fk(M) < gy- 1)

If T violates (1), then we discard T.

In addition, if |T| = n, then we check the following
condition based on the constraint of upper and lower
feature vectors.

gL < fr(T) < gy (2)

If T violates (2), then we discard T.

Detachment-cut procedure

This subsection describes the definition of detachment
[18] and a new bounding operation based on it for the
problem ETULF. Let G be a multigraph that may have
self-loops, which represents the graph obtained from a
chemical graph H by contracting the vertices with the
same label into a single vertex, where each vertex in G
corresponds a label in H (note that we do not eliminate
any edges in H in contracting vertices to obtain G). A
process of regaining H from G is described as follows.
Given a function r: V(G) — Z,, an r-detachment H of G
is a multigraph obtained from G by splitting each vertex
v e V(G) into a set of r(v) copies of v, denoted by W, =
WY v2 ., v}, so that each edge {u, vi € E(G) joins
some vertices u' € W, and v/ € W,. Hence an r-detach-
ment H of G is not unique in general. A self-loop {u, u}
in G may be mapped to a self-loop {«’,u'} or a non-loop
edge {u' i/} in a detachment H of G. Note that, for all ver-
tex pairs {u, v} € V(G), the number of edges between

Page 4 of 9

subsets W, and W, in H is equal to that of edges between
vertices # and v in G.

To obtain a chemical graph H as an r-detachment H
of G, we need to specify the degree of vertices (with the
same label) in H. For a function r : V(G) - Z,, an r-
degree specification is a set p of vectors
p(v)=(p1, P2, Pyy)) forve V(G) such that

z pi = deg(v;G),

1<i<r(v)

which is necessary for all the edges incident to vertex
v in G to be assigned to split vertices v' € W, comple-
tely. An r-detachment H of G is called a p-detachment
if each v € V satisfies

deg(v';H) = p; forall vie W, = {yllyzlmvf(v)},

which is a requirement that each vertex v; in H must
have the prescribed degree p!. Figure 3 illustrates a
p-detachment H for a graph G = (V, E) with V = {g, b, ¢},
a function r with r(a) = 4, r(b) = 3, r(c) = 1, and a degree
specification p with p(a) = (2, 2, 3, 2), p(b) = (2, 3, 1),
p(c) = (3). The next theorem gives a characterization of a
multigraph G that admits a connected and loopless
p-detachment.

Theorem 2 (Nagamochi [18]) Let G = (V, E) be a
multigraph, v : V — Z, and p:V — Zfr(")(v eV). Then
G has a connected and loopless p-detachment H if and
only if the following hold:

r(X)+c(G-X)-d(X,V;G)<1 (VXcV,X=# ),
1< p! <d(v;G)+d({v},{v};G) (VveV,i=12,...,1(v)),

where r(X) = X o xr(v), ¢(G') denotes the number of
connected components of a graph G', G — X denotes the
graph obtained from a graph G by removing the vertices
in X together with all edges incident to vertices in X, and

rla)=4

pa)=(2,2,3,2) (a)—(a)

@ r(c)=1
PO)=(3) )

) by W

pB)=(2,3,1)
A p-detachment H of G
G=(E) H = (Uyey W, E)

Figure 3 A multigraph and a p-detachment. A multigraph G and
a p-detachment H of G.
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d(A, B; G) denotes the number of edges (u, v) € E with u
€ Aandve B.

Ishida et al. [22] proposed a bounding operation for
the problem ETPF based on Theorem 2. However, we
cannot use the bounding operation proposed by Ishida
et al. for the problem ETULF due to upper and lower
constraints. We now describe our new bounding opera-
tion based on detachments for the problem ETULF. The
new bounding operation, called detachment-cut tests
whether the current multitree 7" has a multitree that is
consistent with given path frequencies among its des-
cendants in the family tree, based on the difference
between the feature vector fx(T) and the input feature
vectors g;; and g;.

Let ¢y, €5, ..., €5 be input labels and g, g1 -
7., be feature vectors. Let ry, ..., 7, be the vertices in the
rightmost path to which a new leaf can be appended
and niR(l <i<s) denote the number of vertices r; (0 <
j < h) with £(r;) = ¢;. For each label sequence ¢, #¢
denotes the number of paths P in T with €(P) = ¢. From
gu» g1, and T, we define new feature vectors g'u and
g of level K = 1 to be

Sy K+l

(1<i<y),
(i=s+1),
, gU(Zifj)—#fifj (1<i,j<s),
8u(£i£j)={nR

i

gull)—#0;+nf
1

gul’) :{

(I<i<s j=s+1),
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Q)= 8= e (1<iss),

t 1 (i:s+1)’
TR L B
L\*i%j an (1Si$5,j:5+1).

We next introduce a vertex with a new label £,,; of
valence & + 1 (for example, label A in Fig. 4), a graph
Gy = (Vy, Ey) with a vertex set Viy = {v1, ..., Vs, Vi1 |
ewy) = ¢, 1 < i < s + 1} and edge set
Ey ={ejle; ={v;,v;},d{v;}.{v;};Gy) = g,U(Ziéj)/l <ij<s+1},
and a graph G; = (V,E;) with a vertex set V; = {vy, ...,
Vs, Vsu1 | €(vi) = €, 1 < i < s + 1} and edge set
Ep ={ejley={vivi},d({vi} {v;};GL) = X,L([ifj)rl Sij<s+1},
Note that d({v}, {v;}; G) means a multiplicity of the edge
{v»vj} in a graph G. The function r and degree specifica-
tion p are defined to be

rw)=gu(t;) Q<i<s+1),
val(/(v;)) (vie {ro,.es 1, 1<j<r(v)),
pi= val({(v;)) —deg(vi; T)+1 (vie {ry,.... 1}, 1< j<r(v)).

v

Using Gy, Gz, 1, and p, we can check if a current mul-
titree T violates (C4). We need to check whether none
of the following two conditions is violated.

@) deg(v;G)< Y. pl (Ve V),

1<i<r(v)

g

H O C HO HC OC CC

1045 4 7 5 5
&

H O C HO HC OC CC

1045 3 6 3 4

\

’

gU

H O C A HO HC OC CC AO AC

53313 3 3 2 1 2

’

g

H O C A HO HC OC CC AO AC

53312 2 1 1 1 2

Figure 4 Detachment-cut. Bounding operation by detachment-cut, where vectors g @, £9, g,(£, £, g'U(Z, Z') ,and g'L(ﬂ, f') are defined for
unordered pairs {¢, £ and those with value=0 are omitted in the tables.

rH)=5,1{(0)=3,1(C)=3,r(a)=1
p(H) =(1,1,1,1,1), p(0) = (2,2,2),
p(C) = (4,3.3), p(A) = (3)
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b)) r(X) + c(Gy - X) —d(X, Vi; Gy) <1 (VX E Vyy,
X =z D).

In the first condition, we check whether the number
of the rest of bonds is large enough to satisfy the lower
feature vector constraint. In the second condition, we
check whether T has a connected and loopless descen-
dant based on G;; and Theorem 2.

Multiplicity-cut procedure

This subsection describes a new bounding operation
based on multiplicity for the problem ETULEF. Let g(£)
be the number of vertices with label £ € X that are
obtained from given the feature vector. Now we assume
that g(€) for all £ € ¥ are fixed in the problem ETULF.
Then we can calculate the number of edges in output
trees in the problem ETULF. Let n be the number of
vertices in output trees. If we treat a multiple edge as a
set of single edges, the number of edges e,, in an output
tree is given by:

e, = % 2 val(¢)g(?).

ley,

On the other hand, if we treat a multiple edge as a
simple one, the number of edges e, in an output tree is
equal to #n — 1 due to the tree-like constraint. Now we
consider

M=e, —e,,

which means that only M edges are used to construct
multiple bonds in an output tree. Note that M > 0. We
calculate M from an input of the problem ETULF before
the enumeration algorithm starts.

Let T = (V, E) be a multitree, and 2, denote the mul-
tiplicity of e € E. The multiplicity M(T) of T is defined
to be

M(T) = Z(me ~1).

ecE
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Now we describe the multiplicity-cut based on M(T)
and M.

Let T be the current rooted multitree in the branching
operation, M(T) be the multiplicity of T, RP(T) = (ro, 71,
..., Tr) be the rightmost path of T, T; be the new rooted
multitree obtained by appending a new leaf p to a vertex
r; (0 £ i < k), and RP(T;) be the rightmost path of T;. The
rightmost path RP(T;) of T; is updated by appending p to
the end of RP(T) when a new leaf p is appended to r;,
that is, RP(T;) = (ro, 71,.--» I'» p). Then we can determine
the multiplicities of the edges {(r;, r; _1),j =k k-1, ..., i
+ 1} due to the valence constraint, at the same time, we
update M(T;). We denote the multiplicity of an edge (r;,
r; _ 1) in T; by Mul(rj, r; _ 1 | T;). When we update the
multiplicity of the edge (r;,r; _ 1), M(T;) is updated as
follows:

T o 4 M)+ Mul(r ey |T) -1 (i=Fk)
(i) = M(T;) + Mul(rj, 1y | T) =1 (i+1<j<k-1).
By the definition of M, a valid multitree T; satisfies
M(T)) € M. 3)

If T; violates (3), then we discard T; . See Fig. 5 for an
illustration of this.

Results

This section reports the experimental results of our algo-
rithm. First of all, we mention that the problem ETULF
can be solved by applying the algorithm proposed by
Ishida et al. [22] to each single feature vector in a given
set of feature vectors, i.e., the problem ETULF can regard
as a set of the problem ETPF. Then we call an algorithm
for the problem ETULF based on the algorithm proposed
by Ishida et al. RepEnum (Repeated Enumeration). On
the other hand, we call our algorithm SimEnum (Simul-
taneous Enumeration). It is to be noted that RepEnum is
one of the fastest tools to enumerate tree-like chemical

©

©
® G‘.

©
? ) — ? ) ? ,, ? )
P
© ® © @® © @ © ® O
T To (discarded) Ti (discarded) 1>
M(T) =1 M(To) =2 M(T1) =2 M(T2) =1

Figure 5 Multiplicity-cut. An illustration of the multiplicity-cut procedure, where M = 1.
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structures from a given molecular formula (i.e., feature
vector with K = 0) [22] and, to our knowledge, there does
not exist any other available tool to enumerate chemical
structures from a given feature vector based on path fre-
quency (i.e., feature vector with general K).

Now we compare the performances of two algorithms,
SimEnum and RepEnum, and we also compare the per-
formances of two algorithms, SimEnum including multi-
plicity-cut and SimEnum not including multiplicity-cut.
We have tested the algorithm SimEnum for some widths
between upper and lower feature vectors. Tests were

Table 1 Comparison of previous method and our method

Page 7 of 9

carried out on a PC with CPU AMD Athlon Dual Core
Processor 5050e using instances based on some chemical
compounds selected from the KEGG LIGAND database
[25] (http://www.genome.jp/ligand/). Note that we treat a
benzene ring contained in these compounds as a new vir-
tual atom of valence six.

We define w e Z, to be a width between upper and
lower feature vectors. From a feature vector g, we con-
struct two feature vectors g;; and g;, as follows. For each
entry a > 0 of g, let g;; be the upper feature vector, where
each entry a;; is given by a + w and g; be the lower one,

Entry Formula SimEnum RepEnum
n K w f, time (s) nodes solutions time (s) nodes solutions solved
1 1 3° 103704 177,074,686 414,890 16332 44,340,488 414,890 729
2 1 3'8 297 392,246 44 TO. 2,381,360,000 NLF. 65,909,572
3 1 33 122 145213 2 TO. 3,293,260,000 N.F. 96,360,588
C00062 26 4 1 3% 033 34,539 1 TO. 2,780,050,000 N.F. 81,766,176
CoH14N>04 5 1 37! 0.24 20,361 1 TO. 1,561,230,000 N.F. 45,918,529
6 1 38 0.25 15,166 1 TO. 569,590,000 N.F. 16,752,647
7 1 3% 0.18 14,547 1 TO. 79,870,000 NLF. 2,349,117
1 1 3¢ TO. 377,260,000 NF. TO. 413,000,000 N.F. 460
2 1 38 7.24 845,760 25 TO. 1,442,760,000 N.F. 70,175,902
3 1 3% 281 307,151 7 TO. 3,316,970,000 N.F. 195,115,882
C03343 37 4 1 3% 1.03 99,945 1 TO. 2,494,780,000 N.F. 146,751,764
Cr6H204 5 1 3% 0.98 87,600 1 TO. 1,050,480,000 N.F. 61,792,941
6 1 38 0.76 60,194 1 TO. 315,820,000 NLF. 18,577,647
7 1 3% 0.57 42,538 1 TO. 41,450,000 N.F. 2/438,235
1 1 38 TO. 157,320,000 N.F. TO. 200,490,000 N.F. 1,388
2 1 3% 37.59 1,940,295 238 TO. 2,911,390,000 N.F. 66,167,954
3 1 3% 1.71 60,792 3 TO. 2,673,940,000 N.F. 60,771,363
C07178 46 4 1 37! 035 14,248 1 TO. 1,925,490,000 N.F. 43,761,136
CoHaN505 5 1 3% 027 10,866 1 TO. 743,940,000 N.F. 16,907,727
6 1 310 027 10,680 1 TO. 93,880,000 N.F. 2,133,636
7 1 3% 0.24 9,276 1 TO. 19,270,000 N.F. 437,954
1 1 3° TO. 382,470,000 N.F. TO. 552,290,000 N.F. 61
2 1 316 TO. 211,800,000 N.F. TO. 530,930,000 N.F. 10,451,912
3 1 3% 1395.13 144,244,042 206 TO. 3,314,260,000 N.F. 194,956,470
C03690 61 4 1 3% 12136 11,332,363 4 TO. 2,392,530,000 N.F. 140,737,058
CouH350, 5 1 3%/ 83.70 6,978,557 2 TO. 958,650,000 NLF. 56,391,176
6 1 37 40.11 2,923,819 1 TO. 298,600,000 N.F. 17,564,705
7 1 3% 16.50 1,096,128 1 TO. 38,670,000 N.F. 2,274,705

Comparison of SimEnum and RepEnum for the problem ETULF.
Note:

(1) C00062, C03343, C07178, and C03630 are the chemical compounds in the KEGG LIGAND database, respectively;
(2) n is the number of vertices in an instance preprocessed by replacing each benzene ring with a new atom having six valences;

(3) K is the level of given feature vectors;

(4) w is the width for constructing upper and lower feature vectors;
(5) f, is the number of feature vectors in a given set;

(6) “time (s)" is the CPU time in seconds;

(7) T.O. means “time over” (the time limit is set to be 1,800 seconds);

(8) “nodes” is (the sum of) the number of nodes of family trees that are traversed;

(9) “solutions” is the number of all possible solutions;

(10) “solved” is the number of feature vectors which the algorithm RepEnum solved in the time limit; and (11) N.F. means “not found.”
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where each entry a; is given by max{0, a — w}. Note that
if w = 0, then an instance for the problem ETULF is
equivalent for the problem ETPF.

Table 1 and Additional file 1 show the results of the
comparison. We find that the algorithm RepEnum can-
not solve all the problems with K = 2 within the time
limit since the number of feature vectors in a given set
is exponentially increasing with K. On the other hand,
Table 1 shows that the algorithm SimEnum can solve
the problem much faster for a larger K. This shows that
the algorithm SimEnum runs significantly faster than
the algorithm RepEnum. It is also seen that RepEnum
can only examine a very small portion of feature vectors
in most cases. Additional file 1 shows that the algorithm
SimEnum including multiplicity-cut runs faster than the
algorithm SimEnum not including multiplicity-cut for
almost all of the instances. This shows that the multipli-
city-cut operation works well to improve enumeration
efficiency.

Table 2 shows the results on the performance for
varying width w for the problem ETULF. The search
space in the problem ETULF is exponentially increasing
with w. However, it seems that the number of search
nodes and computation time are not exponentially
increasing with w. This suggests that the algorithm
SimEnum works efficiently for the large search space in
the problem ETULF.

Here, we briefly discuss practical values on K and w
though we do not have concrete evidence and these
values depend on target classes of chemical compounds.
It is suggested from the results on similar feature vectors
[9,10,15] that K between 3 to 10 should be used. Though
there is no previous result on w, it is seen from Table 2
that w cannot be large because there may exist too many
solutions. Therefore, w less than 4 should be used.

Conclusions

We considered the problem of enumerating all tree-like
chemical graphs from a given set of feature vectors,
which is specified by upper and lower feature vectors
based on frequencies of paths, and proposed a new
exact branch-and-bound algorithm. Our experimental
results show that our algorithm outperforms the naive
algorithm based on a previous method. In comparison
to the algorithm based on Ishida et al. [22], our algo-
rithm can greatly reduce the number of search nodes
and the computation time and enumerate all the feasible
solutions in many instances.

However, the search space of the problem ETULF is
much larger than that of the problem ETPF due to
upper and lower constraints and in fact there are many
search nodes for solving the problem ETULF by our
algorithm. One of the future works is to improve the
bounding operations, or introduce a new bounding

Page 8 of 9
Table 2 Comparison of varying width
Entry Formula SimEnum
n K w time (5) nodes solutions
2 0 0.51 55,196 6
2 1 358 400,501 44
2 2 7.58 835,509 503
C00062 26 2 3 10.84 1,163,548 2,351
CeH14N504 2 4 12.55 1,349,057 5430
2 5 13.29 1,431,075 9,852
2 50 14.31 1,537,496 25425
2 0 034 35,952 9
207 839 845,760 25
2 2 4827 4,815,369 41
03343 37 2 3 14983 14,781,738 305
Ci6H2204 2 4 377.01 37,435,878 40,732
2 5 639.68 63,459,180 106,870
2 50 111875 110,703,034 510,079
2 0 233 111,781 16
2 1 46.81 2,246,578 238
2 2 96.52 4,715,072 1,375
C07178 46 2 3 152.18 7,420,060 6,824
C51H28N505 2 4 17942 8,744,563 19,180
2 5 199.66 9,677,513 29,891
2 50 255.01 12,292,587 54,861
5 0 19.50 1,482,017 2
5 1 22014 16,063,569 5
5 2 43912 33,037,741 32
C03690 61 5 3 68488 52207745 178
CoaH3504 5 4 102496 78509554 349
5 5 1285.55 98,762,291 615
5 50 TO. 136,835,134 N.F.

Comparison of the performance for varying w for the problem ETULF.

operation. Actually, in the feature-vector-cut mentioned
in subsection , information of a lower feature vector g;
is only used if |T| = n. Another future work is to
develop a web server that implements our proposed
algorithm. Generalization of the proposed techniques
for other types of kernel functions and other problems
is also left as a future work.

Additional material

Additional file 1: Comparison of multiplicity-cut Comparison of
SimEnum including multiplicity-cut and SimEnum not including
multiplicity-cut for the problem ETULF. Note: (1) “add multiplicity-cut” is
the algorithm SimEnum including multiplicity-cut; and (2) “no
multiplicity-cut” is the algorithm SimEnum not including multiplicity-cut.
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